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ABSTRACT: Changing the substrate/cofactor specificity of an enzyme requires multiple mutations at spatially adjacent positions
around the substrate pocket. However, this is challenging when solely based on crystal structure information because enzymes
undergo dynamic conformational changes during the reaction process. Herein, we proposed a method for estimating the
contribution of each amino acid residue to substrate specificity by deploying a phylogenetic analysis with logistic regression. Since
this method can estimate the candidate amino acids for mutation by ranking, it is readable and can be used in protein engineering.
We demonstrated our concept using redox cofactor conversion of the Escherichia coli malic enzyme as a model, which still lacks
crystal structure elucidation. The use of logistic regression with amino acid sequences classified by cofactor specificity showed that
the NADP+-dependent malic enzyme completely switched cofactor specificity to NAD+ dependence without the need for a practical
screening step. The model showed that surrounding residues made a greater contribution to cofactor specificity than those in the
interior of the substrate pocket. These residues might be difficult to identify from crystal structure observations. We show that a
highly accurate and inferential machine learning model was obtained using amino acid sequences of structurally homologous and
functionally distinct enzymes as input data.
KEYWORDS: machine learning, enzyme engineering, cofactor specificity conversion, consensus sequence

■ INTRODUCTION
Since the origin of life, proteins with diverse structures and
functions have evolved through repeated cycles of mutations
and selection. Although natural proteins have been used from
basic science to industry, proteins are not expected to be
utilized outside the host organism or its living environment.
Thus, it is often necessary to adjust their functions to the
desired environmental conditions by improving their thermal
stability, catalytic activity, and substrate/cofactor specificity
conversion. The desired function of a protein can be replicated
by artificially accumulating the mutations that affect its
function in a fashion similar to that occurring in nature over
long periods of time.1 However, introducing mutations into a
protein is affected by previous mutations; therefore, each
mutation makes a nonlinear contribution to the function.2−5

Despite the mutations being necessary, they are often
disadvantageous for function and thermostability and are likely

to drop out of leading candidates through the artificial
evolution process. Moreover, some functions are produced
by the combined accumulation of unfavorable mutations in
what is known as sign epistasis, which makes the artificial
evolution of proteins more difficult.6

Artificial designing with the aim of altering substrate and
cofactor specificity is particularly challenging. Altering
substrate and cofactor specificity generally requires the
introduction of multiple mutations,7−9 and distant (>10 Å)
mutations can markedly affect catalytic function.10−13 More-
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over, we can realistically screen samples of only a few thousand
mutants in size, which is a small fraction of the total search
space required for activity-based mutant selection. Although
repeatedly utilizing saturation mutagenesis in directed
evolution improved enzyme activity and stability,14−16 high-
throughput screening must be established to obtain the desired

mutants. Computational enzyme design can overcome the
limitations of experimentally oriented evolution methods since
the evolutionary trajectories do not constrain the design
process. The retro-aldol reaction was generated with non-
natural substrates by embedding transition states generated by
quantum chemical calculations in scaffold structures, including

Figure 1. (A) Molecular phylogeny of ME. The leaf nodes are labeled with the species name, gene name in parentheses, and their preference for
redox cofactors. Those that have not yet been assigned a gene name are N/A. The reduced leaf nodes are labeled NADP+-dependent plant ME
(red), bacterial malolactic enzyme (green), and NAD+-dependent bacterial ME (blue). Numbers in parentheses in the reduced leaf denote the
number of sequences in each clade. Branches are labeled with bootstrap probability. For unreduced phylogeny, see Figure S1. (B) Superimposed
images of seven identified MEs (PDB IDs: 1DO8, 1GQ2, 1LLQ, 3WJA, 5CEE, 5OU5, and 6ZN4). Regions of high structural conservation where
there are no gaps and the RMSD of the α carbons are within 4 Å are colored magenta. (C) Table of average metrics values from the superimposed
structure of B. All metrics values for each structure are in the Supporting Information and Tables S1 and S2. (D) Superimposed images of ME
cocrystal structures with NADH or NADPH: PDB IDs 1DO8, 1GQ2, 1LLQ, and 5CEE. NADP+ or NAD+ are indicated by sticks.
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jelly-roll and TIM barrel.17 Subsequently, the development of
designer enzymes catalyzing Kemp elimination18 and the
Diels−Alder reaction19 shows that a variety of enzymes can be
designed by exploiting the high plasticity of the protein
scaffold. Although the computational enzyme designs that
convert these substrate specificities are useful and highly
successful, their use is limited because they require a precise
intermediate reaction structure of the substrate with residues
and result in low enzymatic activity.
Recently, machine learning (ML) was utilized to search an

enormous space and increase the possibility of selecting
desired variants to support directed evolution procedures.20−25

ML predicts the correspondence between sequences and
functions from the data independent of the physical model and
potential function. An early evolutionary engineering campaign
with a ML linear model reported obtaining the halohydrin
dehalogenase mutant that could increase volumetric produc-
tivity by approximately 4000-fold.22 Furthermore, Gaussian
process regression used to handle uncertainty in experimental
data has been used to improve the thermal stability of
cytochrome P450s,23 the optical properties of rhodopsin,24 and
the modification of fluorescent proteins.25 These models were
prepared by analyzing protein function data from initially

mutated residues for the following selection rounds. However,
even if it could construct a high-throughput assay system to
assess enzyme function, the experimentally predicted landscape
would be systematically biased against the dynamics of
adaptation because the experimental data would only cover a
tiny fraction of the actual landscape.26 In addition, the amino
acid residues that contribute to substrate specificity are known
to be distributed throughout the structure, not just around the
substrate pocket,27 making the identification of function-
determining amino acid residues even more challenging.
Therefore, identifying the location and number of those
impactful residues are key to both conventional and ML-
assisted protein evolution.
Herein, we propose a methodology for identifying amino

acid residues involved in cofactor specificity by combining a
logistic regression model with an amino acid sequence dataset
having the same fold structure but different cofactor specificity.
We hypothesized that conserved residues between structurally
homologous enzymes possessing different substrate/cofactor
specificities are interchangeable and can potentially alter their
substrate/cofactor specificities. Utilizing the logistic regression
model would allow preparing a ranking list of amino acids that
correspond to enzymes with complex features but without an

Figure 2. (A) Key steps illustrating the ML-based enzyme design for redox cofactor specificity conversion. ME containing both NADP+- and
NAD+-dependents were collected and classified by cofactor specificities. Each ME was then converted to a one-hot encoding and labeled by the
cofactors. ML was conducted using the one-hot encoding vectors made from MEs. The coefficients in the logistic function are the contribution to
cofactor recognition for each residue and were described as a heat map. The protein engineering step was implemented on the ME from E. coli
based on partial regression coefficients. (B) Confusion matrix and performance indexes. To evaluate the classification performance, 30% of the
dataset was used. (C) Calibration plot for estimating prediction accuracy. The x-axis represents the average predicted probability from the learned
model. The left and right y-axes indicate the ratio of positives and the sample number from the labeled data, respectively. A value of one and zero
indicates an NADP+-dependent- and NAD+-dependent enzyme, respectively.
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elucidated crystal structure and specifying the mutational
positions, which would allow for preferential mutation design
and efficiently limit the search space. This study tested our
hypothesis by changing the cofactor specificity of the
Escherichia coli malic enzyme (ME) from the NADP+-
dependent- to the NAD+-dependent form. ME is an enzyme
that decarboxylates malate, an intermediate in the tricarboxylic
acid cycle, to pyruvate, the final product of glycolysis,
accompanied by NAD+ or NADP+. Most organisms, from
prokaryotes to eukaryotes, harbor ME; thus, an abundance of
sequence data is available for both NAD+- and NADP+-
dependent MEs. By obtaining ME amino acid sequences from
various species, we aimed to obtain the residues responsible for
cofactor specificity.
Protein engineering to switch cofactor specificity was

primarily developed in metabolic engineering research.28−32

However, many redesigned enzymes are only promiscuous
modifications, and a basic understanding of cofactor specificity
switching is inadequate. In brief, this study used a logistic
regression model to identify the amino acids behind NAD+-
and NADP+-dependence for each position. Replacing the
amino acids in the order of the most significant differences in
features resulted in cofactor specificity switching. Interestingly,
introducing mutations in tens of units proposed by the
developed ML model did not produce any fatal negative effects
on the structure. The results highlight the potential of
combining ML with phylogenetic analysis for enzymatic design
with the aim of altering cofactor specificity.

■ RESULTS
Structural Conservation of ME. Molecular phylogenetic

analysis was initially performed to determine the similarity of
amino acid sequences of NAD+- and NADP+-dependent MEs
in terms of sequence homology. The amino acid sequences of
123 MEs from various species were obtained by performing a
Basic Local Alignment Search Tool (BLAST) search using the
UniProtKB/Swiss-Prot database annotated with various
properties of three NAD+- and NADP+-dependent MEs as
queries, respectively. A phylogenetic tree was constructed using
the maximum likelihood method after multiple sequence
alignments and trimming. Phylogenetic analysis revealed that
MEs are widely distributed in animal, plant, and bacterial phyla
and that NAD+- and NADP+-dependent MEs coexist within
the phylum (Figure 1A). This indicates that it is possible to
extract amino acid sequences of both NADP+- and NAD+-
dependent MEs in a species-independent manner without
introducing bias. Most plants have NADP+-dependent MEs,
while bacteria tend to have NAD+-dependent MEs, and some
bacteria have malolactic enzymes that do not utilize
coenzymes.
The structural similarity between cofactor and species

difference of MEs was performed using pairwise structural
alignment of known structures: three NAD+-dependent MEs
from human mitochondria, phytoplasmas, and nematodes and
four NADP+-dependent MEs from human, pigeon, maize, and
Bdellovibrio bacteria were obtained from the Protein Data Bank
(PDB), and their structures were superimposed (Figure 1B).
The magenta-colored regions are amino acid residues that do
not contain gaps and have a maximum root-mean-square
deviation (RMSD) of 4 Å or less between the paired carbon
atoms. Each ME consists of 380−630 amino acids, with an
average pairwise length of 420 residues. The average RMSD
and TM-scores33 calculated from the pairwise amino acid

residues were 1.57 and 0.852, respectively (Figure 1C). The
TM-score has a range of 0−1; since it was significantly greater
than 0.5, this indicated that NADH or NADPH has the same
fold structure. Magenta represents the cofactor binding site in
the conserved region of the four ME crystal structures
containing NAD(H) or NADP(H) (Figure 1D). These results
indicate that the ME sequence structures of various species are
highly conserved, especially in the vicinity of the active site.
The amino acid sequences of MEs from various organisms in
the database are expected to have homologous folds to each
other. The results led us to believe that functional conversion
by sequence exchange was achieved if we could extract features
of the NAD+ and NADP+-dependents.
Building a Machine Learning Model. The scheme

leading from machine learning to cofactor specificity
conversion by protein engineering is shown in Figure 2A.
We randomly collected sequences of both NADP+- and NAD+-
dependents of MEs from the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database to investigate mutation
positions and candidate amino acids for cofactor preference
conversion. The KEGG database encompasses information
from various databases such as Swiss-Prot, TrEMBL, RefSeq,
and PDB; as a result, we thought that it is possible to collect
broad ME amino acid sequences from diverse species. One
thousand ME amino acid sequences were collected, and 952
(448 NAD+-dependent and 504 NADP+-dependent) unique
sequences were obtained by deleting duplicates. The amino
acid sequences in the dataset ranged between 289 and 1042
residues in length (Figure S2). The unique sequences were
aligned using Clustal Omega to detect point mutations,
insertions, and deletions. It is also advantageous for ML if
the sequence lengths are identical, including the gaps. Finally,
286 sequence data (122 NAD+-dependent and 164 NADP+-
dependent), or 30% of the dataset, were used as the test set for
model validation and the remainder as the training set.
The dataset was trained on a logistic regression model. The

collected ME sequences were expressed as a one-hot vector in
M × N (eq 1), and NADP+- and NAD+-dependents were set to
one and zero, respectively, to treat them as teacher labels. M is
the type of amino acid (20 types), and N is the length of the
amino acid residues, including gaps.
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The M × N dimensional one-hot vectors from the amino
acid sequences were then transformed into a linear polynomial
with an intercept parameter β0 and coefficient parameters βi,j (i
= 1, 2, 3, ···, M and j = 1, 2, 3, ···, N) (eq 2). The equation was
substituted into the logistic function to express the features
that determine NADP+- and NAD+-dependents from one to
zero (eq 3). Values closer to zero represent the NAD+-
dependent form, while values closer to one represent the
NADP+-dependent sequence.

f x x x x( ) M N M N0 1,1 1,1 1,2 1,2 , ,= + + + ··· + (2)

x( )
1

1 e f x( )
=

+ (3)

A logistic regression model based on the training set was
used to discriminate the 286 MEs in the test set. Figure 2B
presents the confusion matrix and its performance indexes.
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The training model mistakenly recognized only two NADP+-
dependent MEs as NAD+-dependent MEs but achieved the
classification of cofactor specificity of MEs with 99.3%
accuracy. Moreover, as a classification index, F-measures
were given from precision and recall for NADP+- and NAD+-
dependent MEs and were 99.4 and 99.2%, respectively,
confirming that the classifier was able to discern cofactor
specificity from the differences in amino acid sequence. Figure
2C demonstrates the calibration plot used to evaluate the
logistic regression model. It evaluates how well the model’s
predicted probabilities match the actual ratios. The bar graph is
a histogram where the horizontal x-axis is the probability of
NADP+-dependent ME being predicted by the model divided
into multiple intervals, and the vertical right y-axis is the
number of test samples. The calibration plot contains the same
horizontal axis as that of the histogram. The vertical axis (left y-
axis) is the percentage of actual NADP+-dependent ME
samples in each histogram interval. When the score and the
actual percentage match, the calibration plot fits on the 45°
line (dashed line); therefore, the closer the calibration plot is
to the 45° line, the better the model’s prediction performance.
In this ML model, the prediction did not significantly deviate
from the 45° line in the calibration plot. Moreover, k-fold
cross-validation was used to evaluate the generalization
performance of the test and training sets for the logistic
regression and other ML models, including linear regression,
group lasso, and decision tree models (Table S3). The logistic
regression model had the highest score, and its prediction rate
was 99.7%. The cross-validation results proved that overfitting
has not occurred during model-building. Although the decision
tree model also achieved high accuracy (98.8%), it is not easy
to focus on a single residue due to its properties. Therefore, we
adopted the logistic regression model for the following enzyme
design since it can evaluate the importance of each residue and
position contributing to cofactor specificity with higher
resolution.
Contribution of ME Amino Acid Residues to Cofactor

Specificity. The partial regression coefficient (β) of the
logistic regression model after training is a weight parameter
for the cofactor specificity of each amino acid residue and is
synonymous with the contribution of each amino acid residue
to cofactor specificity. In this study, the cofactor specificity of
ME from E. coli strain K12 (MaeB) was converted from
NADP+- to NAD+-dependent. This is a suitable model to
explain the concept of this study because the three-dimensional
structure of MaeB is not elucidated. The PTA domain from
427 to 759 consists of a phosphate acetyltransferase without

catalytic activity and is a suggested acetyl-CoA sensor for
allosteric regulation.34,35 MEs of many species do not have a
PTA domain; therefore, only the ME domain was used for ML
in this study. Henceforth, the ME domain of MaeB from E. coli
is referred to as trcMaeB. trcMaeB did not recognize NAD+ as
well as full-length MaeB but expressed catalytic function in the
presence of NADP+ (Table 1), which is consistent with a
previous study.36

A heat map of the contribution of each trcMaeB amino acid
residue to cofactor specificity based on ML-optimized partial
regression coefficients is shown in Figure 3. The top line shows
the predicted secondary structure information of trcMaeB
based on AlphaFold237 and RoseTTAFold38 (Figure S3), the
middle line shows the contribution of each amino acid residue
of trcMaeB to cofactor specificity, and the bottom lines show
the contribution of each of the 20 amino acid side chains
toward cofactor specificity. Larger partial regression coef-
ficients βi,j obtained from this model contribute to the NADP+-
dependent form, while smaller coefficients contribute to
NADP+-type residues. Equation 4 was set up to identify the
amino acid residues with the highest contribution to cofactor
specificity.

sscore( ) max( ) min( )j j j= | | + | | (4)

Score(sj) is the contribution of cofactor specificity, and |
max(βj)| and |min(βj)| are the absolute values of the maximum
and minimum partial regression coefficients at the residue
position, respectively. Since score(sj) values represent the
strength of the effect on cofactor specificity, a mutation ranking
was created according to this value, and this information was
used to introduce mutations into trcMaeB.
Assessing Catalytic Properties of Designed ME

Variants. The ML model introduced up to 100 mutations
into trcMaeB (ten at a time) to create trcMaeB mutants
(trcMaeB10−100; Figure S4). If the natural trcMaeB already
had amino acid residues characteristic of NADP+, the original
residues were retained. The ML-designed trcMaeB mutants
were prepared using an E. coli expression system. Purified,
soluble mutants were obtained for trcMaeB10−70, which
introduced mutations ranked 10−70 (Figure 4A), while
trcMaeB80−100 mutants could not be purified. The
introduction of mutations accumulated load to the structure
since amino acid sequence conservation decreases with lower
ranks.
Conversion of malate to pyruvate in the presence of NADP+

or NAD+ was performed on trcMaeB10−70 expressed in the

Table 1. Kinetic Parameters of MaeB, trcMaeB, and trcMaeB Variantsa

KM (μM) kcat (s−1) kcat/KM (s−1 mM−1)

NAD+ NADP+ NAD+ NADP+ NAD+ NADP+

MaeB (full length) n.d. 62 ± 8 n.d. 37.7 ± 0.50 n.d. 608
trcMaeB n.d. 173 ± 28 n.d. 7.35 ± 0.08 n.d. 42.5
trcMaeB10 210 ± 50 100 ± 30 0.39 ± 0.02 0.20 ± 0.02 1.9 2.0
trcMaeB20 77 ± 12 110 ± 30 0.55 ± 0.01 0.14 ± 0.01 7.1 1.2
trcMaeB30 78 ± 7 n.d. 0.66 ± 0.01 n.d. 8.4 n.d.
trcMaeB40 80 ± 14 n.d. 0.47 ± 0.01 n.d. 5.9 n.d.
trcMaeB50 76 ± 2 n.d. 0.73 ± 0.00 n.d. 9.6 n.d.
trcMaeB60 190 ± 30 n.d. 0.43 ± 0.01 n.d. 2.3 n.d.
trcMaeB70 n.d. n.d. n.d. n.d. n.d. n.d.
trcMaeB K237Q n.d. n.d. n.d. n.d. n.d. n.d.

a“n.d.” not determined due to the inability to fit.
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Figure 3. Aligned heat map showing properties of amino acid residues with relationship scores for redox cofactors. Red and blue indicate a high
correlation for NADP+ and NAD+, respectively. The contribution of each amino acid residue comprising trcMaeB to cofactor specificity is also
shown as a heat map. Hyphenated columns in the trcMaeB sequence indicate newly inserted amino acids. In addition, the top line of the heat map
shows the secondary structure information of trcMaeB predicted by AlphaFold2 and RoseTTAFold. The letters H and S represent the helix and
sheet structure, respectively. For the predicted three-dimensional structures, see Figure S3.
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soluble fraction to investigate cofactor selectivity (Table 1 and
Figure S5). Wild-type trcMaeB was completely inactive against
NAD+, whereas trcMaeB10 expressed catalytic activity for
NAD+. Moreover, the affinity and turnover number for NADP+

greatly decreased, the KM value increased 2.8-fold, and kcat
value decreased to 1/5, resulting in a promiscuous state with
activity against both NAD+ and NADP+. trcMaeB20, which
added more than 10 mutations to trcMaeB10, showed
increased and decreased affinity and turnover number for
NAD+ and NADP+, respectively. Further mutation accumu-
lation, according to the ranking, indicated a shift to a more
NAD+-dependent state. trcMaeB30 lost the affinity for NADP+

and gained NAD+ specificity. Our ML model found that 20−
30 mutations were sufficient to switch the cofactor specificity
of trcMaeB, and the expression level was not greatly affected.
trcMaeB50 showed the best kcat/KM value for NAD+. trcMae60
had decreased enzyme function, and trcMaeB70 showed no
recognition of either cofactor, which indicated that mutations
with lower ML rankings have weaker contributions to NAD+

function and may harm catalytic activity. Substituting dozens
of amino acids in a protein and converting substrate and
cofactor specificity from sequence information alone is beyond
the reach of conventional protein engineering, which relies on
random mutations or point mutations based on the curation.
The ML model in this work may narrow down the mutation
positions and amino acid candidates that cannot be found
based on structural information alone.
Molecular Modeling Simulations for Structural

Comparison and Visualization of Mutation Sites.
Comparative models were generated using Rosetta to identify
the mutation position and effect of mutagenesis on structure
(Figure 5A). Mutations were scattered throughout the ranking-
independent structure, and mutated residue clusters were
observed at various locations. These mutations and clusters
were suggested to induce structural distortions; however, no
significant decrease in expression levels and no large increase in
energy scores were observed in homology models (Figures 4B
and S6). These results suggested that the ML model effectively
selected pairs of covariant residues, preventing stability loss

and inactivation. In particular, we focused on trcMaeB10−30
with switched cofactor specificity and investigated the mutated
residues around the substrate pocket (Figure 5B). Except for
A238Q and K237Q, we observed a tendency for hydrophobic
amino acids to appear around the substrate pocket. In
trcMaeB10, R302G and D304A mutations were observed.
Since these mutations were in the form of hydrophilic amino
acids with large side chains that were converted to hydro-
phobic small amino acids, they may influence the structure
and/or dynamics of trcMaeB. The observed substitutions
around the pocket imply a slight change in internal structure
and dynamics, which affects cofactor selectivity.
On the other hand, mutations in residues away from the

substrate pocket were also observed, which may affect the
structure of paired ME domains. The MaeB structure of B.
bacteriovorus HD100, which has a 61.8% homology with the
MaeB of E. coli, demonstrates that the N-terminal crossover
ME region of this enzyme is composed of an α-helix and a
random coil and is essential for dimeric ME domain formation
(Figure S7). Thus, this indicates that the residues far from the
substrate pocket may affect the multimer formation and induce
slight conformational changes.
Furthermore, the MEs from Aster yellows witches’-broom

phytoplasma (AYWB) have a 47.9% homology to trcMaeB.
The amino acid residues in the known substrate pocket from
the crystal structure of NADP+-dependent ME from B.
bacteriovorus HD100 and NAD+-dependent ME from AYWB
were compared. The phosphate group of NADP+ interacts with
lysine at position 250 of ME from B. bacteriovorus HD100,
while glutamine is present at the same position (position 231)
in NAD+-dependent ME from AYWB (Figure 5C,D). The
trcMaeB mutant lysine at position 237 was mutated to
glutamine and was ranked 21st (Figure 5E,F). No further
mutations to the substrate pocket were identified up to the
70th ranking of accumulating mutations with an observation of
our homology models. These results suggest that the amino
acid residue at position 237 strongly influences cofactor
specificity. However, it is not apparent whether a single
mutation at K237Q would be able to affect cofactor specificity

Figure 4. SDS-PAGE image (A) and yields (B) of MaeB, trcMaeB, and trcMaeB variants after purification by metal affinity chromatography. In
panel (A), one asterisk indicates band positions of MaeB (full length), and two asterisks indicate band positions of trcMaeB and its mutants. In
panel (B), the variants that could not be purified from soluble fractions are indicated by sloping lines.
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switching. Thus, we tested the need for substituting the top-
ranking residues higher than K237Q on 21st in the ranking by
creating trcMaeB K237Q and investigating its catalytic
function.
trcMaeB K237Q was prepared by trcMaeB point mutation,

expressed in E. coli strain AG1, and purified by immobilized
metal-ion affinity chromatography as with previous trcMaeB
proteins to evaluate the effect on cofactor selectivity. trcMaeB
K237Q was expressed at the same level as trcMaeB (Figure
5G) but did not react with NAD+ (Table 1). Furthermore, the
original activity against NADP+ was lost. These results indicate
that the mutation of only the substrate-interacting residues in
trcMaeB is insufficient for cofactor specificity and suggests that
small structural changes around the substrate pocket are
essential. The substituted candidate residues proposed by the

logistic regression model indirectly interact with the cofactor,
resulting in a substrate pocket that influences structure and
dynamics and switches cofactor specificity.

■ DISCUSSION
We proposed a highly readable ML model with high prediction
accuracy by restricting the input data to enzymes belonging to
the same structural family and demonstrated its application to
protein engineering. In recent years, protein science has made
many attempts to conduct deep learning to grasp the complex
features of proteins using a large amount of miscellaneous data.
For example, predictions of protein structures,37,38 EC
numbers,39 interaction sites with other biomolecules,40 and
unstable regions in a protein core41 were performed to
statistically represent this global knowledge of proteins. ML-

Figure 5. (A) Superimposed images of the trcMaeB10−70 homology model created with the RosettaCM protocol. The colored spheres indicate
the mutation sites based on the contribution ranking for cofactor specificity provided by ML. Black circles indicate the area around the substrate
pocket. (B) Superimposed images of regions around the substrate pockets of the trcMaeB10−30 homology models. Red, orange, and yellow sticks
indicate residues in Ranks 1−10, 11−20, and 21−30, respectively. Amino acid residues marked with an asterisk indicate that the mutations have not
occurred because trcMaeB already has residues. (C) Close-up look into the NADPH-binding site of ME from Bdellovibrio bacteriovorus HD100
(PDB ID: 6ZN7). (D) Close-up look into the NADH-binding site of ME from AYWB (PDB ID: 5CEE). (E) Predicted cofactor binding site of
trcMaeB from the homology model. (F) Predicted cofactor binding site of trcMaeB30 from the homology model. (G) SDS-PAGE image and yields
of the trcMaeB K273Q variant after purification by immobilized metal-ion affinity chromatography.
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based protein research is now in its infancy, with the successful
identification of protein features. The more one tries to capture
complex features using various data, the more complex the
model becomes and the more difficult inference becomes;
however, prediction accuracy may improve. Inference difficulty
is a big issue when results from complex models are applied to
protein engineering. Furthermore, the quantity of data is
critically important to capture features from many explanatory
variables; however, it is not easy to prepare a large amount of
high-fidelity experimental data that withstand deep learning
specifications.
The emphasis of our study is that protein function can be

predicted with high accuracy and readability using classified
input data and a simple multiple regression model. Although
this method requires the creation of an optimized model for
each protein, it allows us to classify and engineer enzymes with
a high degree of accuracy. Therefore, this method can help
estimate the residues that control individual protein function
and modify the substrate and cofactor specificity without
changing the framework. We have classified the cofactor
specificities of MaeB and predicted the degree of conservation
for each position in the amino acid sequence. Our model’s
cofactor specificity discrimination accuracy was more than
99.3% in MEs (Figure 2B and Table S3), and the introduction
of mutations up to the 30th ranking completely switched the
cofactor specificity from NADP+-dependent to NAD+-depend-
ent (Table 1). Although ML was used to predict substrate
specificity in the past, our proposed cofactor specificity
modification focusing on individual amino acid residues will
further expand the use of ML. Moreover, a glimpse of the
evolutionary process in nature was observed by converting
cofactor specificity. The evolution of enzymes in nature is
thought to occur via a promiscuous state in which a secondary
activity distinct from the original primary activity is expressed,
and at least two substrates are recognized.10,42 Our results also
followed a pathway from a promiscuous state recognizing
NAD+ and NADP+ to a completely NAD+-dependent state due
to the accumulation of mutant residues (Table 1). Since
multiple mutagenesis is necessary to alter substrate and
cofactor specificity, we believe that ML can be an effective
tool in identifying mutation positions and suggesting candidate
amino acids.
It is noteworthy that the trcMaeB70 variant with a mutation

ratio of 14.5% (up to the 70th rank) was expressed in the
soluble fraction (Figure 4A). The difference in free energy
between the stable and unfolded states of natural proteins is
approximately 5−10 kcal/mol, and many proteins unfold with
only a slight loss of hydrogen bonds.43 Our ML-based protein
engineering strategy is based on multiple sequence alignment
similar to the consensus sequence design method.44,45 In this
consensus sequence design method, nonconserved amino acids
in the protein are replaced with highly conserved residues
extracted from the homologous protein sequence to improve
protein stability while preserving biological activity. There is
also a structural stabilization method called PROSS, which
expands the consensus sequence design method combined
with rational design.46,47 Meanwhile, our logistic regression
method aims to switch substrate and cofactor selectivity and
has the advantage of clarifying the order of functional
expression. The highly mutated variants generated by ML
design may successfully select consensus sequences since they
were well expressed following their change in function. Even in
the comparative model generated by Rosetta, the RMSD values

averaged 1.22 Å, and the energy values did not significantly
increase up to trcMaeB70 (Figure S6). These results indicate
that ML can extract amino acid residues contributing to
structure and function expression from homologous sequences
in a ranking format. However, this method is not a panacea in
protein engineering. Similar to the challenges of conventional
consensus design, enzyme activity cannot be controlled. The
kcat/KM of the designed trcMaeB was reduced to approximately
1/5 of that of the original version. Improvements in enzyme
activity might require traditional directed evolution techniques
or recent ML methods to assist in directed evolution. Although
we only used amino acid sequences with cofactor specificity
labels as inputs, the addition of more parameters, including
catalytic activity and denaturation midpoints, for each enzyme,
would allow us to weigh each enzyme with regard to those
values. This would ultimately facilitate building an influential
ML model that can, for example, alter substrate specificity
while increasing enzyme activity.
In synthetic biology and metabolic engineering, altering the

cofactor preference of metabolic enzymes has been recognized
as one of the key strategies for controlling metabolic pathways
and maximizing target substance production since 1990.29 The
only structural difference is that NAD(H) and NADP(H) are
phosphorylated at the 2′ position of the ribose moiety, well
away from the hydride acceptor atom of the nicotinamide ring.
However, redox enzymes in nature strongly prefer one of the
derivatives and significantly reduce the activity of the other.
Studies utilizing enzymes with different redox cofactor
selectivity from other organisms were reported; however,
protein engineering is often needed because heterologous
enzymes may not be expressed or have good catalytic activities.
There are reports of narrowing down candidate mutant
residues from crystal structures of enzymes with bound
cofactors28−31 and proliferative screening that alters the
cellular metabolic state.32 However, a high-throughput assay
that can screen many metabolic enzymes has not been
constructed. In this study, we redesigned the cofactor
specificity of MaeB from NADP+ to NAD+ without structure
information and screening steps. Therefore, it represents a
versatile methodology with potential for extension into the
fields of synthetic biology and metabolic engineering, where
the redox balance of cells requires control.
In summary, we used the logistic regression model derived

from datasets with the same structure but different functions to
switch enzyme functions with unknown steric structures
without causing fatal destabilization. While directed evolution
is generally limited to a few mutations in a protein, our model
allows the introduction of dozens of mutations as if guiding a
path through a vast search space of the protein. Since this
method is a statistical process using a large amount of sequence
information, it may be possible to search for hot spot residues
that cannot be detected from structural information alone. The
accumulation of mutations in additive order of contribution
did not disrupt the protein structure. The ability to reliably
change the specificity of a cofactor even from sequence data
alone is a strength of the logistic regression model.

■ MATERIALS AND METHODS
Phylogenetic Analysis. BLAST homology search was

performed using UniProtKB/Swiss-Prot48 as a database and
utilized three NAD+-dependent MEs (from Arabidopsis
thaliana’s mitochondria, Rhizobium meliloti, and Solanum
tuberosum) and three NADP+-dependent MEs (from E. coli,
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Haemophilus influenzae, and Flaveria pringlei) as query
sequences. The E-value was set to <10−7. The amino acid
sequences of the obtained IDs were extracted from UniProtKB,
and those between 280 and 350 amino acid residues were used
for subsequent operations. Multiple sequence alignments were
created using MAFFT.49 After removing poorly aligned
regions, a phylogenetic tree was estimated by the maximum
likelihood method using IQTree v2.50 The LG+R6 model was
selected for phylogenetic tree prediction based on the Bayesian
information criterion score using ModelFinder.51 The
reliability of the estimated clade was evaluated by the bootstrap
method with UFBoot252 using 1500 bootstrap iterations.
Machine Learning. One thousand amino acid sequences

of NAD- and NADP-forms of ME were randomly obtained
using the KEGG database.53 The amino acid sequences of the
dataset ranged between 289 and 1042 residues in length.
Duplicate samples were removed, and multiple sequence
alignment was performed to align amino acid sequences of all
samples (including gaps) to the same length using Clustal
Omega.54 A binary representation was introduced to process
the amino acid sequences in the ML framework, where M is
the type of amino acid and N is the number of residues,
including gaps after alignment. Amino acid sequences are
represented by M × N {0, 1} binary variables, where M is the
type of amino acid and N is the amino acid sequence length. In
addition, the NAD- and NADP-types were represented as 0
and 1, respectively, to treat them as teacher labels. A logistic
regression model was used for training, with 30% of the total
data used for test data and 70% used for training data. The
partial regression coefficient β is the weight parameter of the
logistic function; it was optimized by the steepest descent
method. In particular, the cross-entropy was used as a loss
function and the gradient descent method was used to
minimize the cross-entropy loss.
Plasmid Construction. Full-length MaeB derived from E.

coli strain K12 was obtained from the ASKA clone library.55

This MaeB had a 6×His-tag at the N-terminus and was
subcloned into the pCA24N vector. The DNA fragment of
trcMaeB (also known as the ME region of MaeB) was made by
PCR amplification of the pCA24N-MaeB template using
PrimeSTAR GXL DNA polymerase (Takara Bio, Kusatsu,
Japan). The amplified fragment was inserted into a pCA24N
vector previously digested with Sf iI using Gibson assembly
(reagents were acquired from New England Biolabs, Ipswich,
MA) and then transformed into E. coli strain AG1. The DNA
fragments of trcMaeB10−100 mutants were codon-optimized
for E. coli strain K12 (Thermo Fisher Scientific, Waltham,
MA), amplified by PCR, gel-purified, and inserted into
pCA24N, as described above. pCA24N-trcMaeB K237Q was
generated by PCR-based site-directed mutagenesis using
mutant primers and trcMaeB as the template to obtain two
fragments. Overlap extension PCR used the two obtained
fragments as a template to generate the full-length gene, which
was cloned into the pCA24N vector, as described above. All
strains harboring the constructs used in this study were
selected on LB agar plates containing 50 μg mL−1

chloramphenicol. Sequences were confirmed using Sanger
sequencing.
Protein Expression and Purification. Escherichia coli

strain AG1 was transformed with the resultant plasmids and
spread onto an LB agar plate containing 50 μg mL−1

chloramphenicol. Single colonies were randomly picked and
grown in an LB liquid media containing 50 μg mL−1

chloramphenicol at 37 °C. The overnight cell culture was
inoculated into LB media supplemented with 50 μg mL−1

chloramphenicol in a baffled Erlenmeyer flask. The cells were
cultivated with shaking at 37 °C until the optical density at 600
nm reached 0.5−0.6, followed by the addition of isopropyl-β-D-
thiogalactoside to a final concentration of 0.5 mM to induce
protein expression, and the cells were cultivated for a further 3
h. Cells were harvested by centrifugation and resuspended in
buffer A (50 mM Tris-HCl pH 7.4, 200 mM NaCl, and 5 mM
imidazole). The suspension was sonicated eight times (30 s
sonication with 30 s intervals between the treatments) using
Bioruptor (Sonicbio, Knanagawa, Japan). The supernatant was
collected via centrifugation. The supernatant was filtered using
a membrane filter (pore size 0.22 μm; Merck, Kenilworth, NJ),
followed by the immobilization of the expressed 6× His-tagged
proteins onto Ni-NTA beads in batches, washed with buffer B
(50 mM Tris-HCl pH 7.4, 200 mM NaCl, and 50 mM
imidazole), and eluted with buffer C (50 mM Tris-HCl pH 7.4,
200 mM NaCl, 300 mM imidazole). The protein was buffer-
exchanged into 50 mM Tris-HCl pH 7.4 using a PD-10
column (Cytiva, Marlborough, MA). All purification and
desalting steps were performed at 4 °C in a cold room.
Proteins were then concentrated using an Amicon 10-kDa
cutoff Ultra centrifugal filter device (Merck). Protein
concentrations were measured by recording the absorbance
at 280 nm. Purities of the recombinant proteins were
determined using SDS-PAGE.
Kinetic Assay. Enzyme activity was determined by

dynamically measuring the absorbance at 340 nm of NAD-
(P)H produced during the oxidative decarboxylation of L-
malic acid to pyruvate using the UV−vis spectrophotometer
(V-750; Jasco, Tokyo, Japan). The following molar extinction
coefficient for NAD(P)H was used for all calculations: 6.22
mM−1 cm−1. All compounds of the reaction mixture were
pipetted into a 1 cm light path cuvette, and reactions were
initiated by the addition of enzyme solution. The reaction
media was composed of 1 μM purified ME (full-length MaeB,
trcMaeB, trcMaeB10−100 variants, or trcMaeB K273Q), 67
mM Tris-HCl pH 7.4, 5 mM MnCl2, 3.3 mM L-malic acid, and
0.2−3.2 mM NAD(P)+. Apparent Michaelis−Menten param-
eters were determined for both cofactors (NAD+ and NADP+)
by varying their concentrations about the KM, while other
components were at saturating concentrations. The initial rates
at variable NAD(P)+ concentrations were fitted to the
Michaelis−Menten model using R software (v. 4.1.1).
Homology Modeling. Model structures for trcMaeB and

its mutants were generated using the RosettaCM protocol.56

Template structures against trcMaeB amino acid sequences
were searched in Protein BLAST using PDB as the database,
with three structures showing the highest % identity selected
(PDB IDs: 2DVM, 5CEE, and 6ZN4). 3-mer and 9-mer
fragments were prepared on the Robetta fragment server
(http://robetta.bakerlab.org/fragmentsubmit.jsp) to fill in for
missing residues during the hybridization step. Target
sequences were threaded into prealigned templates using
Rosetta’s partial thread application after obtaining all input
files.56 The threaded models were passed to the hybridization
application using Rosetta XML scripts;57 1500 models were
generated per run, and the model with the lowest total energy
was chosen as the final model. The RosettaCM operating
procedure followed the RosettaCommons manual (https://
www.rosettacommons.org/docs/latest/appl icat ion_
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documentation/structure_prediction/RosettaCM). Input files
and command lines are listed in the Supporting Information.
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The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acssynbio.2c00315.

Molecular phylogeny of the malic enzyme (Figure S1);
histogram of amino acid sequence length of the malic
enzyme used in the machine learning dataset (Figure
S2); sequence organization and model structures of
MaeB from E. coli strain K12 (Figure S); sequence
alignment of trcMaeB and its mutants (Figure S4);
dependence of initial reaction velocity on NAD(P)+
concentrations (Figure S5); scatter plots of the Rosetta
total energy values of the variant models created with the
RosettaCM protocol and their violin plots (Figure S6);
ME dimer crystal structure of MaeB from B.
bacteriovorus HD100 (Figure S7); RMSD values and
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