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Abstract

Much progress has been made recently in understanding how olfactory coding works in insect brains. Here, I propose a wiring
diagram for the major steps from the first processing network (the antennal lobe) to behavioral readout. I argue that the sequence
of lateral inhibition in the antennal lobe, non-linear synapses, threshold-regulating gated spring network, selective lateral inhibitory
networks across glomeruli, and feedforward inhibition to the lateral protocerebrum cover most of the experimental results from dif-
ferent research groups and model species. I propose that the main difference between mushroom bodies and the lateral protoce-
rebrum is not about learned vs. innate behavior. Rather, mushroom bodies perform odor identification, whereas the lateral
protocerebrum performs odor evaluation (both learned and innate). I discuss the concepts of labeled line and combinatorial cod-
ing and postulate that, under restrictive experimental conditions, these networks lead to an apparent existence of ‘labeled line’
coding for special odors. Modulatory networks are proposed as switches between different evaluating systems in the lateral proto-
cerebrum. A review of experimental data and theoretical conjectures both contribute to this synthesis, creating new hypotheses
for future research.

Introduction

Sensory systems have evolved to extract as much useful information
from the environment as possible. ‘Useful’, in this context, is related
to the ecology of the animal and differs among species. In olfaction,
for example, many substances to which humans are anosmic can be
smelled by other species. Similarly, parameters such as sensitivity,
speed, sensory range, attribution of valence and/or capacity to mem-
orise differ among species. Given this variety, one would expect a
great diversity in the architecture of neural circuits that process sen-
sory information. At the same time, however, one would expect sub-
stantial similarities, because there are fundamental requirements that
are needed from all such systems, i.e. to increase the signal : noise
ratio, adapt to different environments, extract salient stimuli and
ignore irrelevant stimuli, format the signals in a way that allows for
memory formation, and evaluate an odor’s valence according to the
current motivational state, among others.
In this review, I look at the olfactory systems in insects. Although

data from Drosophila are dominant, given that most mechanistic
analyses in recent years have been performed in this species, data
from other species are equally considered. In Drosophila, molecular
manipulations allow repeated targeting of the same neurons across
individuals, and thus it is possible to perform detailed analyses of
their physiology and morphology, as well as their functional role
during behavior (e.g. by silencing or overexciting them). Our knowl-
edge of the olfactory passage from a stimulus all the way to behav-
ior has profited much from this species. Our knowledge of how

odors are coded in insects, however, equally relies on decades of
work on different insect species in many laboratories around the
world. Importantly, a comparison of different species also gives us
access to the diversity that has evolved in terms of neural networks,
sometimes to solve the same coding problem. Prominent non-Dro-
sophila model insects include the silk moth Bombyx mori, pioneered
by D. Schneider at the Max Planck Institute in Seewiesen (Schnei-
der, 1969), the moth Manduca sexta, with many papers from John
Hildebrand’s laboratory in Arizona (Homberg et al., 1989), the
cockroach Periplaneta americana, with substantial input from
J€urgen Boeckh in Regensburg, Germany (Boeckh et al., 1987), the
locust, with important inspirations from Gilles Laurent’s laboratory
at Caltech, now Frankfurt (Laurent, 1996), and the honeybee Apis
mellifera, with Randolf Menzel in Berlin, Germany, as a pioneer
(Menzel, 2012). Many more names and references should be listed
here to do justice to the sources of our knowledge.
I propose a putative neural connectivity network that could

account for many of the observations published to date. This net-
work mostly accommodates the reported observations, but it also
makes considerable assumptions, new hypotheses to be put to the
test in the next few years. Clearly, although we have made much
progress in understanding how olfaction works, we are far from
having found the solution and much work remains to be done.

The olfactory system of insects

Across species, odors are detected by olfactory receptor neurons
(ORNs) that express olfactory receptors (ORs) (Hallem et al., 2006;
Benton et al., 2009; Touhara & Vosshall, 2009). In most cases,
ORs work in conjunction with other molecules, e.g. coreceptors (Sil-
bering & Benton, 2010). These neurons bathe their dendrites in a
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liquid, which is the sensillar lymph in insects (Leal, 2013). The
lymph contains several accessory molecules, most notably olfactory
binding proteins. The net result of olfactory transduction is the gen-
eration of action potentials that are forwarded along the axons to the
brain. ORNs are located along the insect antennae, and in other
appendages in some species (e.g. the maxillary palps in flies and
mosquitoes). The diversity and nature of ORs, olfactory binding pro-
teins, and transduction cascades have been reviewed before (Kais-
sling, 2013; Leal, 2013) and are not the topic of this article.
The ORN axons enter the first brain structure to process olfactory

information, the antennal lobe (AL; see Fig. 1). Several reviews have
covered the AL circuitry, and only a selection are cited here (Masse
et al., 2009; Galizia & R€ossler, 2010; Clifford & Riffell, 2013; Gal-
izia & Lledo, 2013; Wilson, 2013). The functional units in the AL
are olfactory glomeruli, where each glomerulus collects all axons of
ORNs that express the same ORs, thus inheriting their odor-response
profiles. A population of neurons local to the AL [local neurons
(LNs)] branch within and between glomeruli. Output neurons have

axons that exit the AL and project to the mushroom bodies (MBs)
and to the lateral protocerebrum (LP). These projection neurons
(PNs) are either uniglomerular (i.e. they branch in a single glomeru-
lus of the AL) or multiglomerular (i.e. they branch in many glome-
ruli). Most uniglomerular PNs target the MBs and also the LP and
are excitatory (ePNs), and most multiglomerular PNs target the LP
only and are inhibitory. MBs consist of many intrinsic neurons, the
Kenyon cells (KCs), which form dense arrays of dendritic and axonal
processes. The LP can be described as being more complex than the
MB, in that there are no easily identifiable structures, or as being less
complex, in that there are fewer neurons. MB extrinsic neurons also
innervate the LP. A highly simplified view of the olfactory system
would see the ORs as the receptive structure, the AL as the prepro-
cessing/reformatting structure, the MBs as the center of memory, and
the LP as the premotor/behavior-driving structure. In this review, I
skip the role of perireceptor events and olfactory coding in ORs, I do
analyse the network in the AL and its implications for the processing
of olfactory information, and I argue that a useful description for the
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Fig. 1. The insect olfactory system. Schematic of the insect olfactory system, with the AL (signal processing), MBs (odor identification) and LP (odor evalua-
tion). Three glomeruli are shown as examples for the AL, with only one glomerulus highlighted for clarity. Many ORNs converge on few PNs (ePNs; conver-
gence). The ORN–PN synapse has a saturating response property (saturating synapse). ORNs also feed on a network of inhibitory interglomerular LNs (iLNs)
that project back onto the ORN–PN synapse (gain control). An interglomerular network of LNs, probably including spontaneously active (SP) excitatory LNs
(eLNs) regulate PN baseline activity (spring model). A heterogeneous network of LNs, some of which are peptidergic, creates selective interglomerular inhibi-
tion (selective network). Multiglomerular inhibitory PNs project to the LP (LP inhibition). Uniglomerular ePNs project to both the MB for odor identification
and learning, and the LP for odor evaluation. In the MB, they synapse onto a large population of intrinsic KCs creating a connectivity matrix. The resulting
activity pattern is read out by MB extrinsic neurons, which in turn project to the LP. In the LP, odors are evaluated using unidimensional evaluators, with input
from ‘positive’ neurons being excitatory and weighted, and input from ‘negative’ neurons being inhibitory and weighted (the mechanisms here probably involve
further neurons, e.g. to create inhibitory input; driving strength is indicated by the size of the symbol used). Different evaluators are present in the LP, e.g. for
sexual odors (sex), food-related odors (hunger), or suitable oviposition sites (oviposition), and each glomerulus plays a different role in each evaluator. The
brain switches between these readout systems using modulatory transmitters or peptides. These modulators may simultaneously affect (or select) appropriate
selective LN networks in the AL (not shown). Excitatory connections are symbolised by blue triangles, inhibitory connections by red circles.
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role of MBs and the LP is that the MB is used for odor identification,
and the LP is used for odor evaluation.

Steps in olfactory coding

The olfactory system of insects is organised hierarchically. Thus, it
is possible to look at olfactory processing and coding in a sequential
fashion, beginning with the receptor level, then the AL, then the
MB and the LP. I follow this strategy in this review. However, I
would like to start with a caveat. First, a sequential analysis ignores
feedback, but the fact that data about feedback are scarce does not
mean that it does not exist. Indeed, neurons that could convey feed-
back information, e.g. from the LP or MB back to the AL, have
been described (Rybak & Menzel, 1993; Kirschner et al., 2006; Hu
et al., 2010). Second, at all stages, in fact already at the level of
ORNs in the antenna, activity is modulated by centrifugal neurons.
For example, the antenna is innervated by a large centrifugal amin-
ergic neuron in many species (Schroter et al., 2007; Rein et al.,
2013). These neurons release biogenic amines (octopamine, seroto-
nine, etc.), and/or neuropeptides (Nassel, 2000), and influence the
physiological properties of the target neurons in the relevant struc-
ture (Knapek et al., 2013). Technically, being centrifugal, they
might convey a component of feedback. In most cases, however,
they appear more related to behavioral states, such as hunger, thirst,
sexual arousal, attention, etc. Therefore, a sequential view of the
olfactory system as used here for the sake of clarity will necessarily
create an oversimplistic picture. Nevertheless, such a picture is use-
ful for understanding olfaction, and for generating new hypotheses.
The net result of the network proposed below is enhanced sensitiv-
ity, enhanced contrast across odors, a decorrelation of similar odor-
response patterns, some generalisation across concentrations, and
mixture processing. Other aspects will not be treated. For example,
temporal acuity is increased in the AL, whereby small time differ-
ences in the stimulus create longer time differences in the AL
response (Szyszka et al., 2012; Stierle et al., 2013). Other aspects
of temporal coding, e.g. the relevance of spike timing or oscillations
(Laurent et al., 2001), have also been neglected here.
Olfactory coding is combinatorial by nature (Galizia & Lledo,

2013); ORNs have selective, but overlapping, odor-response profiles.
Thus, an odor activates, in general, more than one ORN type, and it
is the task of the brain to understand the pattern of activity across
ORN types. We can visualise this using a photograph where each
pixel in the photograph would correspond to one ORN type. A white
image would correspond to no signal in all ORN types and a black
image would correspond to a strong signal in all ORN types (the
photoreceptors increase firing rate with decreasing luminosity of the
stimulus). It is our task to recognise an image (e.g. a nose) in the pic-
ture, and it is the task of sensory processing to extract the features of
the image that are most useful for that task. I will use this analogy in
several of the processing steps realised in the olfactory system. (Nat-
urally, this analogy has limitations; when observing photographs our
visual system also performs size invariance, displacement invariance,
some rotational correction and color analysis, etc., which are all
aspects that need to be ignored in the analogy with olfactory process-
ing. However, olfactory systems are able to cope with odor mixtures,
temporal complexities, and dedicated meanings of particular odors,
features that cannot be transferred to the photograph analogy.)

Olfactory receptors – substantial coding is peripheral

Odor-response profiles are quantified and described by dose-
response curves. A good ligand for a particular OR will elicit a

response already at low concentration, the response increases with
increasing concentration, and saturates. ORNs generally have a
dynamic range of a few orders of magnitude at most. Dose-response
curves are not fixed, the cells can shift them left or right to adapt
their responses to the current baseline concentration of molecules in
the air. Thus, sensory adaptation allows extension of the dynamic
range of sensory systems to many orders of magnitude.
The ORs respond to several substances; if we know many of their

ligands, we call their response profiles ‘broad’, if we know only few
of them, we call the response profile ‘narrow’ (Galizia et al., 2010).
The responses to different substances differ in both sensitivity
(dose-response curve shifted sideways) and saturation (maximum
response). When two substances that use the same interaction site
on the receptor are mixed, the two substances compete for binding
(syntopic interaction, i.e. interaction at the same site) (Rospars et al.,
2008). This leads to important mixture interactions; the response to
an intermediate–low concentration of a strong ligand is reduced by
adding a intermediate–high concentration of a weaker ligand for the
same receptor. For example, the receptor OR22a in Drosophila
responds strongly to banana (Hallem & Carlson, 2006; Pelz et al.,
2006). Banana volatiles contain one of the best ligands for OR22a,
ethyl butyrate, but also a larger amount of a weak OR22a ligand,
isoamyl acetate (Jordan et al., 2001). A detailed analysis of the
response properties of OR22a to banana-like mixtures revealed that
the weak ligand, isoamyl acetate, accounts for most of the banana
response, rather than the strong ligand, ethyl butyrate (M€unch et al.,
2013). In other words, within the mixture this receptor appears to be
anosmic to its own better ligand, which is masked by another,
weaker ligand! For the olfactory system as a whole this means that
mixture processing may be perceptually simpler than previously
thought, if it is true that the response properties of ORs lead to
masking of the effects of substances in the mixture. Thus, complex
mixtures from a chemical point of view may turn out to be equiva-
lent to simpler mixtures from a perceptual point of view. This is not
something that is peculiar to olfaction; in the human auditory sys-
tem, many components of the physical stimulus are ignored by the
ear. For example, a loud sound creates a short obliteration of weak
sounds right after it. These properties have laid the basis of the
well-known sound-compressing system MP3 (Painter & Spanias,
2000). Better knowledge of such mechanisms in olfaction may lead
to the development of efficient odor-generating devices. Syntopic
mixture interactions are not the only ones in ORs; multiple receptors
expressed on one cell, ephaptic interactions within a sensillum, and
other mechanisms also lead to response complexity in the presence
of odor mixtures (Vermeulen & Rospars, 2004; Rospars et al.,
2008; Su et al., 2012).

Convergence – increased signal : noise ratio

In most olfactory systems, the first processing step consists of a high
convergence, i.e. many ORNs with similar odor-response profiles
converge on few PNs. Exceptions are numerically reduced systems,
such as the Drosophila larva or the nematode Caenorhabditis
elegans, where a particular type of OR is expressed only in a single
ORN (Bargmann & Kaplan, 1998; Gerber & Stocker, 2007). The
main effect of convergence is the increase of the signal : noise ratio.
Noise originates from two sources. The first is the basic noise in
each cell, i.e. the occurrence of spikes that are not related to an
odorant molecule binding to a receptor. This noise is present all the
time, given that ORNs typically have background activity already in
the absence of stimulation (de Bruyne et al., 1999; Hallem & Carl-
son, 2006). The second is the noise in the response, i.e. a variability
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in the number of spikes in response to a physically equal stimulus.
The first is a noise constant that can be added to the ORN response
and the second is related to the response magnitude. In both cases,
the noise in one ORN is statistically independent from the noise in
another ORN. As a consequence, averaging responses across recep-
tor cells lead to an increase of the signal : noise ratio, as illustrated
in Fig. 2. Mathematically, each response r can be formalised as the
signal s, and an added error term e, thus r = s + e. When more than
one receptor with statistically independent errors are averaged, the
term e is reduced by the square root of the number of receptors, i.e.
r ¼ sþ e

ffiffi

n
p , where n is the number of receptors averaged.

Non-linear input synapse – strengthened weak responses

The input synapse of ORNs to PNs is highly non-linear (Olsen
et al., 2010). At low spiking frequencies of ORNs, a small change
in the ORN firing rate leads to a large change in PN firing rate,
whereas this transfer function is more shallow at higher frequencies.
Thus, the transfer function of the ORN–PN synapse follows a satu-
ration curve that increases the information (i.e. the dynamic differ-
ences) at low response levels, at the expense of loss in dynamic
range at the higher response range. How does this affect the odor
information? An example from the visual world is seen in Fig. 3.
The transformation function follows the following formula

RPN ¼ Rmax
R1:5
ORN

R1:5
ORN þ r1:5

where RPN is the firing rate of a PN, Rmax is its maximum firing
rate, and RORN is the firing rate of its ORN input (Olsen et al.,
2010). The r term and the exponents create the saturating property

of the function. Based on physiological experiments, an exponent of
1.5 and a value of r = 12 was proposed (Luo et al., 2010; Olsen
et al., 2010). For the visual example shown in Fig. 3, an exponent
of 1.5 and r = 30 was used on pixel gray values from 0 to 255.
The ORN–PN synapse does not only have a steep response curve,

it also has a relatively long integration time, which is important
when stimuli have a low concentration. Integrating over time allows
for small input signals to have an effect on PN responses, because
temporal summation is increased (Tabuchi et al., 2013).

Gain control – divisive normalisation

Olfaction, as reported above, is combinatorial. The very first step of
olfactory coding takes this into account, by introducing a compara-
tive step across all ORNs; their global activity is measured, and the
input is modified accordingly. This step of lateral inhibition shifts
the response range of PNs, and thus increases the contrast of the
across-glomeruli signal. Indeed, a computational test modeling MB
KCs showed that lateral inhibition improved the capacity of a linear
decoder to extract the pattern identity (Olsen & Wilson, 2008; Olsen
et al., 2010). This step has been demonstrated in the Drosophila AL
with a detailed analysis of single cell responses. That study showed
that non-linear input synapses and normalisation together create a
response that can be mathematically described as follows (Olsen
et al., 2010; Parnas et al., 2013)

RPN ¼ Rmax
R1:5
ORN

R1:5
ORN þ r1:5 þ ðmRRORNÞ

Most of this formula has been explained above. In the added term
mΣRORN, m is a variable that may differ from glomerulus to glo-
merulus (i.e. from ORN class to ORN class). Lateral inhibition is
always the result of inhibitory neurons that branch across glomeruli,
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Fig. 2. Convergence of ORNs onto PNs. Many ORNs converge onto few
PNs. In this illustration, every pixel of the photograph corresponds to one
ORN family. An original image (upper row, center) is shown in a low-noise
(upper row, left) or a high-noise (upper row, right) situation. In this illustra-
tion, Gaussian noise has been added to the image, simulating noisy receptor
cells. When 100 cells are averaged for each pixel, the image quality is con-
siderably increased (bottom row). In honeybees, receptor cell types have pop-
ulations of 400 cells each, on average. Noise goes down with the square root
of the number of averaged ORNs (see text).
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Fig. 3. Saturating synapse. Using the same analogy between ORNs and pix-
els in a photograph as in Fig. 2, the effect of a saturating ORN–PN synapse
is shown. The original image (upper left) is transformed via a saturating syn-
apse (response curve, upper row, center) into an image where the darker
areas (weak sensory input) are enhanced (more visible). The bottom row
shows the corresponding histograms – a dark image (histogram with most
values to the left) is transformed into a balanced image (histogram with val-
ues across the dynamic range). A saturating synapse ensures reliable
responses also to weak sensory input. See text for the saturating function
used.
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i.e. the LNs. The experimental analysis finds two important proper-
ties. First, the global activity factor (i.e. the input to LNs) correlates
well with total input activity (in the experiments by Olsen et al.
(2010), these were measured as electroantennograms). Therefore, in
my proposed network (Fig. 1), I assume that these LNs receive
direct input from ORNs. Second, these LNs do not inhibit the PNs
directly, but the presynaptic terminal onto the PNs (Olsen & Wilson,
2008; Root et al., 2008). At high concentrations, the inhibitory lat-
eral network pushes activity down (Das et al., 2011), enhancing the
interglomerular contrast (Silbering & Galizia, 2007; Silbering et al.,
2008) and flattening the dose-response curves (Sachse & Galizia,
2003). The net result is a network that efficiently and quickly adapts
to the overall sensory input to the system, as shown in Fig. 4.
Interestingly, this arrangement is compatible with earlier data

from the moth AL (Christensen et al., 1998). In that article, PN
responses were shown to have an early response to a stimulus (cor-
responding to the monosynaptic connection from ORNs to PNs) that
is immediately suppressed by inhibition (corresponding to the disy-
naptic pathway ORN–LN–ORN synapse), and depolarising activity
later (interpreted as disinhibitory activity). Similar complex time-
courses were not observed in the work by Olsen et al. (2010) sug-
gesting that the Drosophila system might be less complex. Alterna-
tively, the difference may be in experimental design; the work on
moths was performed by intracellular recording with sharp elec-
trodes, resulting in a random choice of PNs being impaled. In this
situation, most PNs are unlikely to be either the best responding
ones or the silent ones. In the work by Olsen et al. (2010), intracel-
lular recordings were performed by targeted recording from individ-
ually identified PNs. In these neurons, odors could be carefully
chosen to elicit either a very strong response, or almost none. In
fact, the wiring pattern proposed in this review (Fig. 1) would
predict the response patterns observed by Christensen et al. (1998)

for PNs with intermediate input strength only. Thus, a global nor-
malisation network of this kind can create responses that look like
‘disinhibitory’ responses. Similarly, this network creates PN
responses that are, on average and across glomeruli, delayed as
compared with LN responses, in concordance with experimental
findings (Christensen et al., 1998; Krofczik et al., 2008; Meyer
et al., 2013).

Threshold control – the gated spring model

The PNs typically show strong background activity, which is mostly
driven by spontaneous activity in ORNs. When recording from PNs
across glomeruli for long time periods without any olfactory stimu-
lus it becomes apparent that this spontaneous activity is controlled
by a network of LNs, as there is no preferential pattern of activity,
as shown by a principal component analysis across glomeruli (Galan
et al., 2006). What is the functional significance of this? In many
sensory systems, the neurons are kept very close to their activity
threshold, in order to increase their sensitivity to even minute input.
It suffices to mention auditory receptor neurons as examples; the
mechanoreceptors shift their response range (they adapt) using a
combination of Ca2+ binding to channels and a mechanical move-
ment of myosin, creating ‘self-tuned critical oscillators’ (Vilfan &
Duke, 2003). Spontaneous activity is generated because receptors
are maintained at the threshold of oscillatory instability (Vilfan &
Duke, 2003). When the neuron is activated, the receptors are turned
down, and when the neuron is silent they are turned up (Hudspeth
et al., 2000). For this reason, I have dubbed the corresponding
mechanism regulating spontaneous activity in the AL ‘the gated
spring model’ of lateral activity control (Sachse & Galizia, 2006),
even though that term is related to sensory neurons, whereas here I
am looking at processing networks. Thus, when no input is present,
excitatory activity ‘regulates’ the PNs to be just active, creating a
pattern of spontaneous activity (Sachse & Galizia, 2002; Galan
et al., 2006; Olsen et al., 2007; Root et al., 2007; Shang et al.,
2007). Subsequently, even minute stimuli will create a suprathresh-
old excitation, effectively amplifying the signal. This mechanism of
threshold control is closely related to stochastic resonance, a mecha-
nism studied in visual processing (Simonotto et al., 1997), and
adapted to the visualisation of the mechanism in Fig. 5.
How is that process realised within the AL network? In our previ-

ous work (Sachse & Galizia, 2006) we postulated a push–pull mech-
anism; PNs are spontaneously active [as shown, for example, by
their tendency to respond with excitation at the end of olfactory
stimuli to which they do not respond (rebound excitation as release
from lateral inhibition)], and this activity drives inhibitory LNs that
downregulate all PNs across glomeruli. As PNs become more silent,
LNs become less active, inhibition on PNs is reduced, and PNs start
to fire again. Such a network of feedback inhibition creates the
desired ‘spring model’ (or stochastic resonance) characteristic. It is
also a network that has a propensity to oscillate when the system is
driven by strong input. Indeed, odor-evoked oscillations are wide-
spread in olfactory systems (Laurent et al., 2001). These response
properties have also been shown in Drosophila, where a network of
excitatory LNs appears to mediate the task (Olsen et al., 2007; Root
et al., 2007; Shang et al., 2007). Excitatory LNs form excitatory
synapses onto PNs (Huang et al., 2010; Yaksi & Wilson, 2010).
Thus, the network proposed in Fig. 1 shows an inhibitory network
across all glomeruli, feeding into spontaneously excitatory LNs that
drive PN activity. Threshold control could also act locally, using
reciprocal synapses that are frequent in the AL (Malun, 1991). In
this view, excitatory LNs branching across glomeruli (interglomerular)
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Fig. 4. Gain control. Using the same analogy of a photograph as in Fig. 2,
here I add a gain control network that takes the overall activity into account.
Thus, dark images are transformed into brighter images (upper row), whereas
bright images are darkened (lower row). In both cases, the result is a better
exploitation of the dynamic range of the system, thus improving the possibil-
ities for downstream networks (notably the MBs) to extract the relevant
activity pattern. As the global input across ORNs increases, the saturating
synapse response curve is shifted to the right due to inhibitory interglomeru-
lar LN presynaptic inhibition (see text for the functions used here).
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would be functionally intraglomerular! In all cases, the logic
remains comparable – a feedback push–pull mechanism. It may well
be that different species have found different networks to accom-
plish this task.

Selective lateral processing

All of the lateral neuron effects so far were largely uniform (even
though the factor m used for gain control in the formula above is
not uniform across glomeruli, the neural network still involves many
if not all glomeruli). However, not all LNs branch in all glomeruli.
Thus, a biased implementation of lateral processing exists. In Dro-
sophila, where the morphology of LNs has been studied systemati-
cally (Chou et al., 2010), most LNs branch across all glomeruli, but
a substantial part omits some glomeruli, or has a patchy innervation
pattern. Does this selective pattern have a functional property? It
appears that, in the case of Drosophila, glomeruli with narrower
tuning properties are less innervated (Chou et al., 2010). Narrow
tuning also means less common activity with other glomeruli, and
therefore possibly less necessity to engage in lateral inhibition.
The total number of LNs in Drosophila is in the range of a cou-

ple of hundred at most (approximately three times as many as there

are glomeruli); in honeybees, with 160 glomeruli, the number of
LNs is in the range of a few thousand (Galizia & R€ossler, 2010)!
Single cell recordings show that most of these neurons are heteroge-
neous, i.e. they branch strongly in a single glomerulus, and weakly
in a few (20-40) other glomeruli (Flanagan & Mercer, 1989; Galizia
& Kimmerle, 2004; Meyer & Galizia, 2012). Neurons with this mor-
phology are ideally suited for more specific contrast calculations
across glomeruli. They mediate inhibition between glomeruli that is
not reciprocal (Girardin et al., 2013). Furthermore, the resulting con-
nectivity pattern is different from individual to individual, thus it is
either stochastic, or is strongly dependent on previous experience
(Girardin et al., 2013). Why does the bee have more heterogeneous
LNs than the fruit fly? The answer to this question is unknown at
this time. It might be related to their ecology as bees depend on
coding and learning many odors without an innate meaning when
they learn the odor of flowers that they visit to collect nectar. Flies,
however, have a more innate behavioral spectrum of attractive odors
related to food or oviposition sites. An answer to this hypothesis
may be found by comparing closely related species with different
ecology, e.g. generalist vs. specialist bees (Burger et al., 2013).
Little is known about the details of this network formed by

heterogeneous LNs. In my proposed wiring diagram (Fig. 1), they

A B C

Fig. 5. Spring model. When the PNs are kept near to threshold, they become more sensitive for weak inputs. In this visualisation, a weak image was used as
fictive input, and an activity threshold was assumed. When a pixel value was above threshold, it was clipped to white, whereas below threshold it was clipped
to black. Adding a weak noisy signal still keeps most pixels below threshold (A; top – visualisation of the picture; bottom – an example with a sine wave as
signal; here, the threshold is the blue line, activity above threshold is given in red and the original sine wave without noise is shown in yellow). Adding more
noise allows visualisation of the weak picture (B, upper; in the lower sine wave case the periodicity is now visible in the suprathreshold pixels), whereas adding
too much noise removes the picture information (C; with close to random spatial distribution of white and black pixels). This mechanism has been described as
stochastic resonance for visual perception. The figure was inspired by Fig. 1 in Simonotto et al. (1997). Although the pictures in this visualisation are static,
adding an appropriate amount of noise (i.e. keeping the PNs close to threshold) is most effective in a dynamic situation. For a dynamic version of this phenom-
enon see the supplementary movies in an article about excitatory LNs (Shang et al., 2007).
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are included as a group of neurons that perform some lateral
connectivity of unknown connectivity. We know, however, that, as
a first approximation, the inhibitory connections between glomeruli
follow a function similar to a Mexican hat, i.e. glomeruli tend to
inhibit other glomeruli that have an overlapping response profile
(Linster et al., 2005). Functionally, this creates a sharpening that in
image processing corresponds to an unsharp-mask filter (Fig. 6).
The result is an odor representation where the across-odor contrast
is stronger than in the ORN input, a situation that is probably partic-
ularly important when processing odor mixtures. Indeed, odor mix-
tures show particularly high occurrences of across-glomeruli
inhibitions (Deisig et al., 2006; Silbering & Galizia, 2007; Silbering
et al., 2008; Stierle et al., 2013). I might include one further specu-
lation here; in bees, it has been observed that many of these neurons
use neuropeptides, and some of these observations have been pub-
lished (Kreissl et al., 2010). A variety of neuropeptides in LNs have
also been reported in other species (N€assel & Homberg, 2006; Berg
et al., 2007; Ignell et al., 2009; Carlsson et al., 2010). This observa-
tion could suggest that subpopulations of LNs are recruited as mod-
ulators in particular behavioral states of the animal, in order to
generate specific computational contrast across glomeruli. Such
states might include hunger, thirst, sexual arousal, etc. I come back
to these states when looking at the LP below.

Plasticity in the antennal lobe

Plasticity in the AL has been shown in several studies. In bees,
spontaneous activity [the ‘gated spring’ model (Fig. 5)] also con-
tains a short-term memory of recent odors; when an odor is given,
the corresponding pattern is preferentially activated during the fol-
lowing few minutes (Galan et al., 2006). This mechanism leads to
an interesting effect, i.e. the gated spring does not just increase the
sensitivity to any input, but preferentially to a repeated input. Thus,
an insect flying through an odorant plume becomes (for a short time
period thereafter) more sensitive to odor plumes of the same odor-
ant. Similar increases in odor responses to repeated stimulation have
also been shown in locusts (Stopfer & Laurent, 1999). Non-associa-
tive memory also shifts odor representation towards better discrimi-
nation (Locatelli et al., 2013; Rein et al., 2013). It is unclear which
synapses in my wiring diagram would be the most likely candidate
for this plasticity, but the selective lateral processing network would
be an easy candidate.
The spatial activity patterns across glomeruli are modified after

classical conditioning of an odor (Faber & Menzel, 2001; Roman &
Davis, 2001; Denker et al., 2010). In a detailed analysis of plasticity
within the AL after differential classical conditioning I could show
that at least two effects overlap (Fig. 7), one non-associative and
one associative learning rule (Rath et al., 2011). Within my wiring
scheme (Fig. 1), this learning would occur at the LN–ORN synapse
in the gain control network. It remains to be shown whether the
same neurons do gain control and this plasticity, or whether these
effects are mediated by two separate neuron populations. Space con-
straints do not allow a detailed analysis of the effects of odor learn-
ing on olfactory processing in the AL here.

The readout of antennal lobe activity patterns

The mushroom bodies – odor identification

The across-glomeruli pattern of activity is transferred as an across-
PN pattern of activity to the MBs and LP. There is abundant data
that MBs are the major site of olfactory learning across insect

species (Menzel & Giurfa, 2001; Heisenberg, 2003; Menzel, 2012).
In bees, approximately 800 PNs innervate the MBs, and synapse
onto 180 000 KCs. In Drosophila, the numbers are approximately
150 and 2500. Each KC extracts a subfamily of across-PN patterns
(Heisenberg, 2003). This arrangement corresponds to a massive
increase in dimensionality, similar to what is performed in a support
vector machine (Huerta et al., 2004). In theory, with a binary read-
out system, no noise, and no redundancy, 2500 KCs would allow
the extraction of 22500 patterns. Which patterns are synaptically real-
ised is randomly generated during development (Caron et al., 2013).
Each KC is mostly driven by the pattern of activity of those ePNs
that synapse onto it (Li et al., 2013). Thus, the MBs are ideally sui-
ted to identify any particular or a large variety of odors (as repre-
sented in an across-PN pattern and transformed into a more
selective across-KC pattern) (Campbell et al., 2013). Learning
would increase or decrease the valence of that particular odor, i.e. of
a particular subgroup of activated KCs. Associative reinforcement

A B

C D

Fig. 6. Selective networks. Effect of heterogeneous inhibitory interglomeru-
lar LNs on signal processing. In the images here, I simulate the situation
whereby adjacent pixels in an image would correspond to ORNs with over-
lapping response profiles. The closer that two pixels are in space (on the
photograph), the more overlapping are the response profiles of the ORNs that
they symbolise. Under these conditions, a lateral connectivity scheme
whereby a glomerulus inhibits other glomeruli with a strength scaled to their
response overlap corresponds to an unsharp-mask filter in image processing.
In the figure, an original image (A) has been unsharp masked using increas-
ing radii (from B to D), but with equal strength. Local details are best cap-
tured in B, global contrasts are strengthened in D. This selective lateral
inhibition increases local contrast in sensory processing.
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learning stabilises odor representations in KCs (Szyszka et al.,
2008), whereas non-reinforced odor presentations weaken them
(Szyszka et al., 2008; Honegger et al., 2011).

The lateral protocerebrum – odor evaluation

All PNs that project to the MBs also project to the LP, and most of
these PNs are excitatory and uniglomerular within the AL. Multi-
glomerular PNs generally project to the LP only, and are generally

inhibitory. Thus, the LP receives two streams of information from
the AL – an excitatory across-PN pattern, corresponding to the glo-
merular pattern, and a summed inhibitory signal. However, unlike
the MBs, the LP does not have the numerical capacity to extract
many patterns. Several experiments, mostly in Drosophila, have
shown that the LP is an evaluator. The spatial arrangement of activ-
ity in the LP corresponds to an odor’s valence. In part, this arrange-
ment may be inherited from a spatial organisation in the AL
(Knaden et al., 2012). In the AL, each glomerular channel from the
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Fig. 7. Learning in the AL network. Model of associative plasticity in the AL after differential conditioning. (A) After differential conditioning, glomerular
responses increase in those glomeruli responding only to the positively reinforced odor (‘A glomerulus’), or those that do not respond to any of the trained
odors (‘none glomerulus’), decrease in glomeruli that respond to the positive and negative odor, and remain unchanged if they respond only to the negative
odor. (B) Two synaptic learning rules explain the data – (1) long-term potentiation (LTP) at the excitatory ORN–PN synapse under the control of the uncondi-
tioned stimulus (US; reward) as a positive reinforcer; coincident activity (red) at the ORN–PN synapse will strengthen synapses (arrow up) only if the US is
present; and (2) reinforcer-independent Hebbian LTP/long-term depression (LTD) at the inhibitory LN–ORN synapse. Coincident presynaptic and postsynaptic
activity (red) leads to LTP. No activity (blue) in the postsynaptic ORN and activity (red) in the presynaptic LN leads to LTD. (C) Model of learning-induced
plasticity in the AL. The learning rules shown in B create the observations reported in A. See Rath et al. (2011) for details.
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AL is attributed a value along a valence scale, and the LP computes
a global valence. When two odors are compared for their valence,
this comparison is highly correlated with the similarity of their
across-glomerular patterns (either as Euclidean distance in a multidi-
mensional space, or as their angular distance, which is the corre-
spondent, intensity-invariant measure) (Parnas et al., 2013). The
input from inhibitory PNs leads to a further increase in odor dissimi-
larity (Parnas et al., 2013). Although conceptually related to the
gain control network in the AL, here the inhibitory network is
clearly feedforward. Furthermore, the inhibitory magnitude seems
better predicted by the across-glomeruli output activity, rather than
by the receptor neuron input activity. Therefore, in my connectivity
scheme (Fig. 1), these neurons collect information from all PNs
within the AL, a putative arrangement as the input synapse to inhib-
itory PNs has not yet been investigated. Importantly, the connection
from the AL to the LP output neurons appears to be hardwired and
genetically predetermined; PNs target different areas in the LP
dependent on their tuning to fruit odors or pheromones (Jefferis
et al., 2007; Liang et al., 2013). They may target both functionally
excitatory and functionally inhibitory connections in the LP,
symbolised as triangles or circles in Fig. 1, respectively.
This view of the function of the LP is essentially binary; each

odor can be either ‘good’ or ‘bad’, consistent with observations in
humans that pleasantness is the most important (although not the
only) descriptor of odors (Khan et al., 2007). In fact, in most cases,
the behavioral response of an animal is mostly unidimensional –
either approach (positive) or withdraw (negative); either copulate
(‘positive’) or reject (‘negative’); either lay an egg (‘positive’), or
search another site (‘negative’). The ‘hardwired’ LP is consistent
with this view; ePNs from ‘positive’ glomeruli have strongly excit-
atory input to LP neurons, and ePNs from ‘negative’ glomeruli have
strongly inhibitory input to the LP neurons (most likely via interca-
lated inhibitory neurons, not shown in Fig. 1). The feedforward
inhibitory input from the AL to the LP is module-specific, i.e. selec-
tive for food odors or pheromones (Liang et al., 2013; Fisek & Wil-
son, 2014). Because the readout maybe unidimensional to a large
degree, some odors code in a way that resembles a ‘labeled line’
under experimental conditions (see below).
In different situations, different odors are positive or negative. In

the hungry state, food odors might be more important than water, but
in a thirsty state that situation is reversed. Odor valence shifts accord-
ing to sexual arousal, need to oviposit, hunger, thirst, attention, stress
from a predator, etc. For example, the gustatory receptor Gr43a is
used as a fructose sensor in the brain, and regulates satiation/hunger
in Drosophila (Miyamoto et al., 2012). Thus, the readout in the LP
is unlikely to be really hardwired. How can these two views be rec-
onciled? Here, I speculate that peptidergic and/or modulatory control
might select the effective connectivity matrix in the LP, in order to
switch from one readout axis to another. Although there is as yet no
evidence for this in the olfactory readout in the insect LP, similar sit-
uations have been shown in other systems (Bargmann, 2012). In the
stomatogastric network, for example, the pattern generator changes
depending on which peptide is present (Marder & Bucher, 2007).
Similarly, in C. elegans, the readout of an odor is dependent on the
activity of the peptidergic network (Chalasani et al., 2010). For the
insect olfactory system, however, this hypothesis awaits experimental
confirmation. It is likely that the same peptides and/or modulators
also affect the selective network of inhibitory interglomerular LNs in
the AL and the MB networks, so that signal processing is already
task specific and related to the appropriate readout axis. Indeed, neu-
ropeptides modulate responses already in ORNs (Ignell et al., 2009;
Leinwand & Chalasani, 2011; Root et al., 2011).

Relationship of mushroom bodies and lateral protocerebrum

In this view, the MBs are used for odor identification, whereas the
LP is used for odor valence evaluation. The MBs have been shown
to be the site for learning odors, and a learned odor is attributed a
specific valence after learning (when the animal is in the right moti-
vational state). MB extrinsic neurons innervate the LP (Rybak &
Menzel, 1993) so that learned odors can directly influence odor
valence readout in the LP. Thus, these learned odors contribute to
the odor evaluation network in the LP. An important effect of MB
extrinsic neurons is to inhibit behavioral output. Indeed, the inhibi-
tory output as response to an odor decreases after that odor has been
trained in an associative learning paradigm (Rybak & Menzel, 1998;
Okada et al., 2007); thus learning leads to a disinhibitory action of
the MB on the LP evaluator system. The inhibitory action of MBs
on behavior is also apparent from animals where MBs have been
experimentally blocked; the animals show increased locomotion (i.e.
disinhibited behavior) (Huber, 1962). This review focuses on odor
coding. Such a simplified view does not do justice to the many
other tasks accomplished by MBs in their role as multimodal inte-
gration and learning centers, in particular in social insects such as
honeybees (Menzel, 2012).

Labeled line odors – parallel olfactory systems?

The sexual pheromone circuit is often regarded as a system of its
own kind, i.e. highly selective receptors, dedicated glomeruli gener-
ally grouped at the side of the AL, and stereotypical behavior; the
best-studied example is the macroglomerular complex in male moths
(Berg et al., 1998). However, that picture is less clear now; rather
than highly selective receptors, it may be that similar molecules that
also activate these receptors are rare in nature. In fact, in the labora-
tory, different, chemically more stable ligands are used for M. sexta
sex pheromones, showing that they do also respond to molecules
other than the native substance (Christensen et al., 1989; Christen-
sen & Hildebrand, 1997). Similarly, processing in the AL is not
organised separately; LNs branch in the macroglomerular complex
and in other glomeruli, and a strong interaction between plant odors
and sex pheromones has been shown in both behavior and physiol-
ogy (Reisenman et al., 2008, 2011; Barrozo et al., 2010; Chaffiol
et al., 2012).
The picture has gained in complexity (or in simplicity, if you

wish) mostly thanks to data from Drosophila. In recent years, several
apparently dedicated lines have been characterised, from the receptor
cell all the way to behavior. These are dedicated lines in which a sin-
gle stimulus is coded, in a highly selective manner, by a single class
of receptors hence by a single glomerulus in the AL, probably pro-
jecting to a dedicated area in the LP with direct control of premotor
neurons. These systems included, for aversive stimuli – lines for CO2

with the receptors Gr21a and Gr63a and the glomerulus V; geosmin
as an odor related to mold on fruit with the receptor Or56a and glo-
merulus DA2; and different acids with receptors IR64a and glomeru-
lus DC4. For attractive stimuli, reports include ammonia and amines
with IR92a projecting to VM1; limonene with Or19a and glomerulus
DC1, used for oviposition on citrus fruit; as well as components from
yeast (Or71a and glomerulus VC2) and ethylene (possibly sensed by
CO2 receptors), both indicating ripe fruit; and phenylacetic acid and
phenylacetaldehyde with IR84a and glomerulus VL2A (Suh et al.,
2004; Jones et al., 2007; Kwon et al., 2007; Semmelhack & Wang,
2009; Ai et al., 2010; Ruta et al., 2010; Grosjean et al., 2011; Sten-
smyr et al., 2012; Dweck et al., 2013; Min et al., 2013). Similarly,
several sex-related stimuli were characterised along the processing
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pathway, in particular cis-vaccenyl acetate, Or67d, DA1 and other
fly odors via Or47b and glomerulus VA1lm (van der Goes van
Naters & Carlson, 2007; Kurtovic et al., 2007; Schlief & Wilson,
2007; Datta et al., 2008; Ruta et al., 2010).
At first sight, the characterisation of so many ‘labeled line’ chan-

nels appears incompatible with an olfactory system based on combi-
natorial coding. So, is my conjecture of a wiring diagram as shown
in Fig. 1 either futile or limited to but a part of the olfactory sys-
tem? However, as seen for sex pheromones in moths, dedicated sys-
tems do interact with the entire olfactory network. This has also
been shown for several of the ‘labeled line’ systems in Drosophila
(Faucher et al., 2013; Lin et al., 2013). How can the experimental
data be reconciled? One possible explanation lies in the structure of
the LP readout; in an experimental situation where highly attractive
or highly aversive substances are given alone, the readout system of
the LP proposed here will be indistinguishable from a labeled line
system. In experiments, food-related odors are generally tested with
starved animals, sex odors are tested with animals that are sexually
aroused, and egg laying is tested with animals that have copulated.
Thus, the experimental design imposes that the animal is tested in a
situation where the putative modulatory/peptidergic ‘switch’ is acti-
vated accordingly, and if ‘the best’ or any one of the best ligands is
used, the result is a processing path in the brain that resembles a
labeled line system. Furthermore, laboratory experiments follow a
reductionist design in order to be informative, and that means that
confounding odors are generally avoided. Under such conditions,
the LP evaluator will act exactly like a labeled line, and it might
appear that activity in a single glomerulus is sufficient for a behav-
ioral output! Thus, the experimental observation of dedicated
chemosensory processing paths is compatible with my connectivity
scheme, and does not create a separate olfactory system. Indeed, in
real life, situations that involve the olfactory system in such a spe-
cialised way will be rare; animals are generally exposed to many
odors at the same time, to turbulent mixtures, to varying or even
ambiguous motivational states, and to odors with learned signifi-
cance that are processed via the MBs, and also impinge on the eval-
uation system in the LP. Bringing real-life complexity into the
laboratory is the next challenge for the field.
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