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ABSTRACT
The NAC family is one of the largest transcription factor families unique to plants,
which regulates the growth and development, biotic and abiotic stress responses, and
maturation and senescence in plants. In this study, PheNAC3, a NAC gene, was
isolated and characterized from moso bamboo (Phyllostachys edulis). PheNAC3
belong to the NAC1 subgroup and has a conserved NAC domain on the N-terminus,
which with 88.74% similarity to ONAC011 protein. PheNAC3 localized in the
nucleus and exhibited transactivation activity. PheNAC3 was upregulated during the
process of senescence of leaves and detected shoots. PheNAC3 was also induced by
ABA, MeJA, NaCl and darkness, but it had no remarkable response to PEG and
SA treatments. Overexpression of PheNAC3 could cause precocious senescence in
Arabidopsis. Transgenic Arabidopsis displayed faster seed germination, better
seedling growth, and a higher survival rate than the wild-type under salt or drought
stress conditions. Moreover, AtSAG12 associated with senescence and AtRD29A and
AtRD29b related to ABA were upregulated by PheNAC3 overexpression, but
AtCAB was inhibited. These findings show that PheNAC3 may participate in leaf
senescence and play critical roles in the salt and drought stress response.
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INTRODUCTION
Moso bamboo (Phyllostachys edulis) is an important biological resource because its
juvenile shoots are used for food and also in industrial production for its timber. It is
widely distributed in China, accounting for more than 70% of the national bamboo forest
area and has an important economic and ecological value. The flowering interval for moso
bamboo is infrequent and ranges from 67 to 100 years. Flower and shoot degeneration
of moso bamboo cause a huge economic and ecological loss and has a severe impact on the
ecological environment (Liao & Huang, 1984). Shoot degeneration includes shoot apical
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meristem senescence and programed cell death. Therefore, it is important to determine the
specific molecular mechanisms involved in the process of moso bamboo senescence.

Leaves, as photosynthetic organs, supply nutrients to the plant and are involved in plant
senescence. In the process of senescence of leaves, macromolecules are degraded and
senescence-related genes are upregulated or downregulated. Most transcription factors
(TFs), including NAC (no apical meristem, Arabidopsis transcription activation factor 1
and 2, cup-shapedcotyledon 2), WRKY, bZIP (Basic region/leucine zipper motif), MYB
(v-myb avian myeloblastosis viral oncogene homolog) and AP2/EREBP (APETALA2/
ethylene-responsive element binding proteins), act as important regulators in the
senescence process of leaves (Buchanan-Wollaston et al., 2005; Guo & Gan, 2012).
However, there are few reports on the molecular mechanism of leaf senescence in moso
bamboo.

NAC protein is a plant-specific transcription factor that not only participates in plant
development and the stress response but also regulates the plant senescence process
(Aida et al., 1997;Mao et al., 2010;Mitsuda et al., 2005; Liu, Sun & Wu, 2016; Guo, Cai &
Gan, 2004; Kim, Chung &Woo, 2011; Christiansen & Gregersen, 2014). Several NAC genes
related to senescence from different species were cloned and analyzed. For example,
AtORE1, OsNAC2 and SIORE2 are members of the ORE1 subgroup of the NAC gene
family, which regulate leaf senescence (Kim et al., 2009;Mao et al., 2017; Lira et al., 2017).
AtNAP, GhNAP, OsNAP, SiNAP and BeNAP belong to the NAP subgroup of the
NAC gene family, and all of which also regulate senescence (Guo & Gan, 2006; Chen et al.,
2011; Liang et al., 2014; Fan et al., 2015; Ren et al., 2017a). Moreover, Most NAC genes
regulate plant senescence by participating in the regulatory pathways of senescence-related
hormones and/or stress response, such as abscisic acid (ABA), methyl jasmonate
(MeJA), ethylene, salicylic acid (SA), drought, salt stress, dark and so on. OsNAC2
promotes leaf senescence via ABA biosynthesis and negatively regulates various abiotic
stresses in rice (Luo et al., 2016). OsNAP confers an abiotic stress response through the
ABA pathway (Chen et al., 2014). These results indicate that NAC homologous genes
related to senescence of different species may have similar functions and are closely related
to hormone or stress-induced senescence.

In Arabidopsis, AtNAC1, belonging to NAC1 subgroup, promotes lateral root
development (Xie et al., 2001). In moso bamboo, the study of Wang et al. (2016) indicate
that PeNAC1 are targeted for degradation by ped-miR164b and shared a highly conserved
N terminal DNA binding domain (94.52% homology with N terminal DNA binding
domain of AtNAC1). The overexpression of PeNAC1 may promote lateral root
development and enhance tolerance to salinity and drought stress in Arabidopsis
(Wang et al., 2016). In rice, as a member of NAC1 subgroup, ONAC011 acts as a negative
regulator in drought tolerance of rice (Fang, Xie & Xiong, 2014). Moreover, ONAC011-
overexpressing (OE) lines started heading 5–13 days earlier than control, and chlorophyl
degradation of OE lines started at an early stage compared with wild-type, so that
overexpression of ONAC011 can promote leaf senescence and accelerate heading time
(Mannai et al., 2017). To some extent, the function of proteins which were classified into
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same subfamily might be both conserved and species-specific between moso bamboo and
other plants.

For moso bamboo, based on the genome and sequencing, Peng et al. (2013) speculated
that a potential connection between drought-responsive and flowering genes of moso
bamboo and the NAC genes might be involved in flower senescence. The study of Li et al.
(2015) divide the 125 candidate NAC TFs of moso bamboo into 17 subgroups and
speculated that members of subgroups 1 and 14 might be involved in the senescence
process of moso bamboo. Chen & Ding (2013) found that PeNAC1 had high similarity to
AtNAP (involved in senescence regulation) in Arabidopsis. However, Li et al. (2015) and
Chen & Ding (2013) did not conduct an in-depth analysis of their functions. Up to
now, only the study of Li et al. (2019) indicates that PheNAP2 and PheNAP3 belong to
NAP subgroup (which promote leaf senescence) and were involved in the meristem
senescence process in harvested bamboo. The ectopic expression of PheNAP2 and
PheNAP3 promotes leaf senescence in Arabidopsis. To the best of our knowledge, no
further research has been conducted on the senescence-related NAC genes of moso
bamboo.

In this study, to explore the senescence-related possible NAC TF, the homologous gene
of ONAC011 were analyzed through homologous alignment, and a NAC transcription
factor named PheNAC3 was obtained. The amino acid (aa) sequences of PheNAC3 with
88.74% similarity to ONAC011 protein. And PheNAC3 possesses five more amino acids in
the N-terminus of the protein sequence than that of PeNAC1 studied by Wang et al.
(2016) (and possesses 15 additional bases at the 5′-end as compared to CDS of PeNAC1).
PheNAC3 was upregulated during the natural senescence of leaves and was induced by
ABA and NaCl in detected leaves of moso bamboo. The overexpression of PheNAC3might
promote the senescence process and increase abiotic stress resistance in Arabidopsis.

MATERIALS AND METHODS
Plant material, growth conditions and treatments
The Arabidopsis thaliana ecotype Columbia-0 (Col-0), all transgenic plants, and moso
bamboo (Phyllostachys edulis) seedlings were planted in a greenhouse under a 16/8 h light/
dark cycle (long daylight) at 23 �C. The different developmental stages of moso bamboo
leaves were sampled according to Ren et al. (2017b).

Treatments for senescence induction were performed with bamboo leaves and solutions
of various substances. The third leaf from 2 to 3-month-old moso bamboo seedlings
was detached and incubated in ABA solution (100 µM), MeJA solution (100 µM), SA
solution (100 µM), ethrel (ETH) solution (600 mg/L), NaCl solution (200 mM),
polyethylene glycol 6000 (PEG 6000) solution (20%, m/v), or sterile water. For dark
treatment, the detached leaves were incubated in sterile water under darkness. The leaf
samples were collected at 0, 1, 12, 24 and 48 h after treatment.

To detach Moso bamboo shoots, after the sheaths of the shoot tips emerged from the
soil, they were manually removed after they reached the height of 35 ± 5 cm. The shoots
were placed at room temperature, sampling at 0, 12, 24 and 48 h, respectively.
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Isolation of PheNAC3 and its sequence analysis
Using the protein sequence of ONAC011 (Os06g0675600) as a query to search against
Bamboo.Hic.pep database (http://forestry.fafu.edu.cn/db/PhePacBio) (Wang et al., 2017;
Zhao et al., 2018), two peptide sequences (PH02Gene43417.t1 and PH02Gene32306.t1)
were found to have high similarities (over 83%) with that of ONAC011 protein, namely
PheNAC2 and PheNAC3, respectively. PheNAC3 had higher similarities with ONAC011
than PheNAC2. According to the CDS sequence of PheNAC3 gene retrieved from
Bamboo.Hic.cds database (http://forestry.fafu.edu.cn/db/PhePacBio), Primer Premier 5
software was used to design the primers to isolate PheNAC3.

The genome sequence and the promoter fragments (from −2,000 bp to the initiation
codon) of PheNAC3 were retrieved from moso bamboo genome database (http://forestry.
fafu.edu.cn/db/PhePacBio). The Gene Structure Display Server (http://gsds.cbi.pku.edu.cn/)
was used to visualize the intron patterns (Hu et al., 2015). The conserved NAM
domain was analyzed with the Conserved Domains Database (http://www.ncbi.nlm.nih.
gov/Structure/cdd/cdd.shtml). Multiple sequence alignment and neighbor-joining
phylogenetic analysis of PheNAC3 was performed with the program Clustal X 1.83 and
MEGA 7 (1,000 bootstrap replicates). The cis-acting reglatory elements were identified
with the online program Plant CARE (http://bioinformatics.psb.ugent.be/webtools/
plantcare/html/).

The LOC ID of NAC family proteins used for constructing the phylogenetic tree are as
follows: Arabidopsis thaliana, ATAF1 (ANAC002, AT1G01720.1), ORE1 (ANAC092,
AT5G39610.1). ORS1 (ANAC059, AT3G29035.1), CUC1 (ANAC054, AT3G15170.1),
CUC2 (ANAC098, AT5G53950.1), CUC3 (ANAC031, AT1G76420.1), NAC1 (ANAC022,
AT1G56010.2), NAP (ANAC029, AT1G69490.1), JUB1 (ANAC042, AT2G43000.1),
RD26 (ANAC072, AT4G27410.2), ANAC016 (AT1G34180.1), VNI2 (ANAC083,
AT5G13180.1); Oryza sativa, ONAC011 (OMTN4, Os06g46270), ONAC104 (OMTN6,
Os08g10080), ONAC060 (OMTN3, Os12g41680), ONAC002 (SNAC1, Os03g60080),
ONAC058 (OsNAP, Os03g21060), ONAC131 (Os12g03040). ONAC002 (OsNAC2,
Os04g38720); Brachypodium distachyon, BdNAC010 (Bradi1g32660), BdNAC054
(Bradi3g17287), BdNAC067 (Bradi4g02060), Petunia hybrida, StNAC262
(LOC102595632). The conserved motifs in the above senescence-related NAC sequences
were defined by MEME version 4.12.0 (http://meme-suite.org/tools/meme) (Bailey et al.,
2009).

Gene expression analysis
Total RNA was extracted using RNAiso Plus (Code No.: 9108; Takara, Kusatsu, Japan)
according to manufacturer’s instructions. First-strand cDNA was synthesized using a
PrimeScript RT Reagent Kit with gDNA Eraser (Code No: RR420A; Takara, Kusatsu,
Japan). The specific primers were designed using Primer 3 Input software (version 4.1.0).
The quantitative PCR assays were performed as described by Cheng et al. (2017).
The primers used for qRT-PCR are listed in Table S1. The tonoplast intrinsic protein 41
gene (TIP41) (Fan et al., 2013) and ACT2 (Chen et al., 2011) were used as reference genes
in moso bamboo and Arabidopsis, respectively.
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Subcellular localization and transcriptional activation
For the subcellular localization experiment, the full-length coding sequence of PheNAC3
without the stop codon was cloned and inserted into the PCAMBIA2300-35S-EGFP
vector. The functional vectors of green fluorescent protein (GFP)-tagged PheNAC3
were introduced into Agrobacterium tumefaciens strain GV3101. The transformed
Agrobacterium strain was infiltrated into the fully expanded leaves of 4-week-old tobacco
(Nicotiana benthamiana). After 48 h, the GFP signal was detected by fluorescence
microscope. The subcellular localization also was performed by transfecting GFP-tagged
PheNAC3 into Arabidopsis protoplasts according to Yoo, Cho & Sheen (2007).

For transcriptional activation analysis in yeast, the full-length PheNAC3 cDNA was
inserted into the PGBTK7 vector. The fusion vector of PheNAC3 and the GAL4
DNA-binding domain were transformed into yeast strain AH109 according to the
manufacturer’s instructions (Clontech). The transactivation activity of the PheNAC3
protein was evaluated according to growth status and a-galactosidase activity (Chen et al.,
2011; Chai et al., 2014).

Overexpression and stress treatments
The full-length cDNA of PheNAC3 was cloned into the pCAMBIA 2300 vector
according to Cui et al. (2013). The pCAMBIA 2300-PheNAC3 vector was introduced into
Arabidopsis (Columbia-0, Col-0) through the floral dipping method (Clough & Bent,
1998). Putative transgenic plants were selected on 1/2 Murashige and Skoog (MS) medium
solid plates supplemented with 50 mg/L kanamycin.

To observe the effects of NaCl or mannitol on seed germination and phenotypic
differences between WT and OE-PheNAC3 plants, three independent PheNAC3
overexpressing lines (T3) and WT Arabidopsis plants were tested according to method
previously methord (Hou et al., 2018). WT and PheNAC3 seeds were sown on 1/2 MS
medium solid plates with 150 mM NaCl or 200 mM mannitol, stratified at 4 �C for
2 days and then transferred to long-day growth conditions (16 h light/8 h dark cycle
at 23 ± 2 �C) in a growth chamber. Seed germination rates was daily were measured after
2 days until the number of germinated seeds no longer increased. The taproot lengths and
lateral roots per taproot were measured after 10 days.

RESULTS
PheNAC3 is a homolog of ONAC011 and NAC1 in moso bamboo
To identify the NAC TFs associated with senescence in moso bamboo, the protein
sequence of ONAC011 was used as a query to search against Bamboo.Hic.pep database
(http://forestry.fafu.edu.cn/db/PhePacBio). One putative NAC protein (moso bamboo
database: PH02Gene32306.t1; NCBI ID: FP095491) sharing high similarity (87%)
with ONAC011 protein was named PheNAC3. Based on the analysis of intron–exon
arrangement and conserved domain, the results showed that PheNAC3 contained two
introns, three exons and the complete NAM domain (pfam02365; Fig. S1). Phylogenetic
analysis of PheNAC3 and other NACs related to senescence revealed that PheNAC3 and
ONAC011 were classified into one clade with 100% bootstrap support (Fig. 1A).
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Figure 1 Sequence and phylogenetic analysis of PheNAC3. (A) Phylogenetic relationships among
PheNAC3 proteins and 24 senescence-related NAC proteins. The numbers beside each node represent
bootstrap values (≥50%) based on 1,000 replications. PheNAC3 is marked by a red circle. (B) Conserved
motifs analyzed through MEME. Details of the individual motifs is shown in Fig. S2. (C) Two-sequence
alignment of PheNAC3 and ONAC011. Arrows indicate the five conserved subdomains (A–E). The red
asterisk denotes the residues (arginine and glutamic acid) forming a salt bridge stabilizing the dimer-
ization interface; the red pound sign denotes the residues (lysine and arginine) in a region containing
several highly conserved residues of importance to DNA binding.

Full-size DOI: 10.7717/peerj.8716/fig-1
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Furthermore, the conserved motif distribution was consistent with the classification of the
phylogenetic analysis (Fig. 1B).

In previous studies, most of the NAC proteins possessed A–E subdomains in the
N-termini that conferred the DNA-binding activity. In this study, motifs 3, 4, 1, 2 and 5
specifying the NAM subdomain A–E were present in PheNAC3 proteins. In the C-termini,
motif 6 was found in both NAC1 and NAM/CUC subgroups, while motifs 7, 8, 9 and
10 were only found in NAC1 subgroup. Moreover, motif 12 was only present in most of the
members of subgroup NAM/CUC. Multiple sequence alignment showed that PheNAC3
showed with 88.74% similarity to ONAC011 protein (Fig. 1C). The PheNAC3 protein
also had a conserved core sequence of DBD and NLS in subdomain C and D. Furthermore,
sequence alignment indicated that the CDS sequence of PheNAC3 was longer than
that of PeNAC1 by only 15 bases at the 5′ end. The amino acid encoded by the
15 base-sequence corresponded to motif 10 based on conserved motif analysis through
MEME (Figs. S1B, S1 and S2).

PheNAC3 was localized in the nucleus and possessed transcriptional
activity
A previous study reported that OMTN4/ONAC011 is a nuclear protein and putative
transcriptional activator (Fang, Xie & Xiong, 2014). To determine the subcellular
localization of PheNAC3, the PheNAC3-GFP fusion vector was transiently expressed in
tobacco (Nicotiana benthamiana). The PheNAC3-GFP fusion protein was localized in the
nucleus (Fig. 2A), as the GFP fluorescence in all cases colocalized with the fluorescence
of the 4′,6-diamidino-2-phenylindole marker. The control GFP was distributed
throughout the cell. In addition, the PheNAC3-GFP fusion protein also was localized in
nucleus of Arabidopsis protoplasts (Fig. S3).

To examine whether PheNAC3 engages in transcriptional activation, the full-length
PheNAC3 was fuzed to the GAL4 DBD of the pGBKT7 vector (Fig. 2B). The resulting
constructs were expressed in AH109 yeast cells. The empty pGBKT7 vector was used as a
negative control, and pGBKT7-53 and pGADT7-T were used as positive controls.
All the transformants grew well on synthetic defined (SD)/-Trp medium, but only the yeast
cells as a positive control and PheNAC3-BD could survive and simultaneously turn blue
on SD/-Trp/-His/X-a-Gal medium (Fig. 2C).

Expression profile of PheNAC3 during senescence of moso bamboo
leaves and shoots
To evaluate the contribution of PheNAC3 in leaf senescence, we further analyzed the
relative expression levels of PheNAC3 in moso bamboo through qRT-PCR. The results
show that there were similar expression levels of PheNAC3 in roots and leaves (Fig. S4A).
According to the photochemical efficiency of photosystem II (Fv/Fm) and the content of
chlorophyl, the developmental stages of moso bamboo leaves were divided into young
leaves, mature leaves, and senescent leaves (Ren et al., 2017b). There was an increase in
PheNAC3 transcript accumulation during the natural senescence of leaves (Fig. S4B).
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Figure 2 Subcellular localization and transcriptional activity of PheNAC3. (A–C) Nuclear localiza-
tion of PheNAC3. (D–F) Subcellular localization of free GFP. (A and D) GFP, fluorescence of
GhNAP-GFP fusion protein and free GFP protein, respectively; (B and E) DAPI, the protoplasts are
stained with DAPI to visualize the nucleus; (C and F) Merge, merged images of GFP and DAPI ones;
Bar = 10 mm. (G) Basal map for plasmid pGBKT7–PheNAC3. (H and I) Analysis of transcriptional
activity for PheNAC3. The positive control: pGBKT7-53 + pGADT7-T, the negative control: the empty
pGBKT7 vector, SD/–Trp and SD/–Trp/-His/X-a-Gal media for examination of growth and the
expression of a-galactosidase. Full-size DOI: 10.7717/peerj.8716/fig-2
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According to the physiological and biochemical changes during the senescence of
harvested shoots, sharp transitions occurred at 12 and 24 h, as compared to 0 h (Li et al.,
2019). Additionally, the detached shoots become inedible after being stored for 24 h.
Therefore, four representative storage time points (0, 12, 24 and 48 h) were selected to
analyze the relative expression pattern of PheNAC3. The results showed that PheNAC3
was significantly upregulated (approximately 3-fold higher than 0 h) at 12 h and continued
to increase expression at 24 h (approximately 6-fold higher) and 48 h (approximately
17-fold higher) (Fig. S4C).

The transcript profiles of PheNAC3 were evaluated according to different treatments
for detached leaves to induce senescence (i.e., treatment with ABA, MeJA, SA, darkness,
salt, or drought; Fig. 3). After 48 h of treatments, all leaves turned yellow, and the
chlorophyl content significantly decreased. Additionally, down- and upregulation of
the chloroplast maintenance-related TF (PheGLK1, PH01000738G0520) and the
senescence-associated gene (PheSAG12, PH01001461G0020) occurred, respectively
(Fig. S3). PheNAC3 was upregulated during all seven senescence-induction treatments.
Among these, PheNAC3 showed upregulated expression after ABA, darkness and salt
stress. During the ABA treatment, the expression level of PheNAC3 was at least four-fold
higher than that of the control within 12 h (Fig. 3A). The expression level of PheNAC3 was
approximately 3-fold higher than that of the control after 24 h of darkness (Fig. 3D).
Particularly, the expression level of PheNAC3 was approximately 11-fold higher than that
of the control after 24 h of treatment with 200 mMNaCl (Fig. 3C). The distinct expression
patterns of PheNAC3 suggested that it might function differently during different
senescence processes.

Figure 3 Expression analysis of PheNAC3 via qRT-PCR during induced senescence. (A–F) Expression
patterns of PheNAC3 gene in detached leaves treated with ABA, MeJA, NaCl, Dark, PEG and SA; values
represent the mean ± SE from three biological replicates. Statistically significant differences compared to
0 h (not-treated control) or young leaves are marked with asterisks (�P < 0.05 and ��P < 0.01).

Full-size DOI: 10.7717/peerj.8716/fig-3
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PheNAC3 overexpression caused precocious leaf senescence
phenotype
The PheNAC3 coding sequence, driven by the 35S promoter, was introduced into the
wild-type (Col-0) plants to overexpress PheNAC3. After 3 weeks of growth, the PheNAC3
overexpressors (OE-PheNAC3) displayed the senescence phenotype (the tip of 7th leaf
begins to turn yellow), while the non-yellowing phenotype was found in Col-0 (Fig. S6).
After 5 weeks, both OE-PheNAC3 and Col-0 displayed the senescence phenotype
(Fig. 4A). The expression level of PheNAC3 in OE-PheNAC3 lines was confirmed by
RT-PCR (Fig. S7). The detached leaves were divided into three groups (G1–G3; Fig. 4B)
according to the senescent condition. G2 and G3 were used to analyze the chlorophyl
content and target gene expression levels. Compared with Col-0, the OE-PheNAC3 lines
showed much lower chlorophyl content in G2 leaves (Fig. 4C; Fig. S8). The above results
demonstrated that overexpression of PheNAC3 could induce leaf senescence-related
physiological changes in Arabidopsis.

Figure 4 Ectopic expression of PheNAC3 in Arabidopsis induced early leaf senescence. (A) The phenotype of 5-week-old Col and OE-PheNAC3
plants. (B) Leaves detached from plants in (A). G1–G3, three groups of leaves divided according to the senescence status and the method of Fan et al.
(2015). G1, the first to the sixth leaves which were dry. G2, Leaf yellowing of OE3-15 lines started at an early stage compared with OE3-10 lines, OE3-
14 lines and wild-type. Moreover, after 5 weeks of growth, the 13 or 14 leaves of OE3-15 lines started to turn yellow from tip of leaf. So, the seventh to
the 14 leaves which were withered or turned yellow from the tip of leaf were classfied into G2 group. G3, the 15th to the last rosette leaves were G3
group. (C) Chlorophyll content in leaves from 5-week-old plants in (A) and (B). (D and E) Relative expression of two senescence marker genes,
including SAG12 and CAB1, in G2 group of 5-week-old WT and OE-PheNAC3 plants.WT, wild-type Arabidopsis; OE3-10, OE3-14 and OE3-15,
three independent lines. All experiments were repeated three times, with similar results. Asterisks indicate the significant difference betweenWT and
OE-PheNAC3 (�P < 0.05 and ��P < 0.01); error bars indicate the ± SE. Full-size DOI: 10.7717/peerj.8716/fig-4
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The expression profiles of senescence-specific marker genes AtSAG12 and AtCAB1
were analyzed with qRT-PCR during leaf senescence between OE-PheNAC3 and Col-0
plants (Figs. 4D and 4E). The results showed that AtSAG12 was upregulated and AtCAB1
was downregulated compared with Col-0. These results suggested that PheNAC3 acted as
a positive regulator of leaf senescence.

Based on the analysis of the promoter region of PheNAC3 in PlantCARE, we found that
seven ABRE cis-elements were contained in this region (Table S2). The relative expression
level of PheNAC3 was upregulated (over 4 fold) in detected leaves of moso bamboo
after ABA treatment. Furthermore, AtNCED3, AtRD29A and AtRD29B related to ABA
biosynthesis and/or response genes were obviously upregulated in OE-PheNAC3 lines
compared with those in Col-0 under normal conditions (Fig. S9).

PheNAC3 overexpression enhanced drought and salt tolerance of
Arabidopsis
ONAC011/OMTN4 may negatively regulate drought tolerance of rice (Fang, Xie & Xiong,
2014). In order to examine whether PheNAC3 affects drought and salt tolerance in
transgenic Arabidopsis, we examined the germination rate and growth of Col-0 and
OE-PheNAC3 lines after 200 mM mannitol and 150 mM NaCl stress treatments (Figs. 5
and 6). The results showed that 3 days after germination, there was no significant
difference in the germination rate (100%) and root length between wild-type and
transgenic lines on 1/2 MS (Figs. 5 and 6; Fig. S10). On 1/2 MS with 150 mM NaCl, the
germination rate of both Col-0 and OE-PheNAC3 lines was obviously decreased. However,
the germination rate and root length of OE-PheNAC3 were significantly higher than
that of wild-type (Figs. 5 and 6; Fig. S10). Approximately 90% of OE-PheNAC3 seeds
germinated after 4 days, but only 60% of wild-type seeds germinated (Fig. 5). After 10 days,
the average length of taproot of OE-PheNAC3 was greater than 0.79 ± 0.05 cm, while the
WT was 0.27 ± 0.08 cm (Fig. 6; Fig. S10). At the same time, germination tests were
also performed in the presence of 200 mM mannitol. The germination rates of
OE-PheNAC3 were significantly higher than that of wild-type on the 2 and 3 days.
The number of lateral roots were also significantly higher than those of the wild-type.
After 10 days. The average numbers of lateral roots per in taproot of were OE-PheNAC3
and WT over 4.38 ± 0.46 and 1.71 ± 0.65, respectively, p < 0.004 (Fig. 6; Fig. S10).
These results provided evidence that PheNAC3 positively regulates drought and salt
resistance in Arabidopsis.

DISCUSSION
PheNAC3 is a candidate senescence-related gene
NAC TFs play important and multiple roles in plant development, stress response
and senescence regulation (He et al., 2005; Kim et al., 2009; Nakashima et al., 2012;
Nuruzzaman, Sharoni & Kikuchi, 2013). In Arabidopsis, AtNAC2 is involved in the salt
stress response, lateral root development, and senescence regulation (He et al., 2005;
Balazadeh et al., 2010). AtNAP negatively regulated the salt stress response and leaf
senescence (Guo & Gan, 2006; Seok et al., 2017). In rice, OsNAC2 and OsNAP exhibited a

Xie et al. (2020), PeerJ, DOI 10.7717/peerj.8716 11/20

http://dx.doi.org/10.7717/peerj.8716/supp-12
http://dx.doi.org/10.7717/peerj.8716/supp-9
http://dx.doi.org/10.7717/peerj.8716/supp-10
http://dx.doi.org/10.7717/peerj.8716/supp-10
http://dx.doi.org/10.7717/peerj.8716/supp-10
http://dx.doi.org/10.7717/peerj.8716/supp-10
http://dx.doi.org/10.7717/peerj.8716
https://peerj.com/


higher degree of sequence similarity to AtNAC2 and AtNAP, respectively (Chen & Ding,
2013; Liang et al., 2014;Mao et al., 2017). OsNAC2 is involved in leaf senescence regulation
and negatively regulates rice abiotic stress reactions (Luo et al., 2016; Mao et al., 2017).
OsNAP can increase the resistance to high salinity, drought, and low temperature stress
and promote leaf senescence (Chen & Ding, 2013; Liang et al., 2014). Thus, it is generally
acknowledged that homologous proteins with similar domains among different species
may have the same or similar functions.

ONAC011/OMTN4 is upregulated during natural senescence, which can promote
leaf senescence and accelerate heading time in rice (Mannai et al., 2017). Furthermore,
ONAC011 was strikingly reduced under drought stress conditions and increased under high
salinity stress, and exhibited negative drought stress tolerance (Fang, Xie & Xiong, 2014).

Moso bamboo, as a perennial, lignified, and herbaceous plant, has great ecological,
economic, and cultural value. There is a lack of systematic research on the mechanism of
senescence regulation in moso bamboo because of the plant’s longevity. Thus, our study

Figure 5 Seed germination of wild-type and PheNAC3-overexpressing Arabidopsis under mannitol
or NaCl stress. (A–C) Seeds were germinated on 1/2 MS agar plates with or without mannitol or
NaCl; photographs were taken 10 days after mannitol or NaCl treatment. (D–F) The germination rate
was determined at 2–4 days after mannitol or NaCl treatment. (A and D) 1/2 MS agar plates; (B and E)
1/2 MS agar plates + 150 mM NaCl; (C and F) 1/2 MS agar plates + 200 mM Mannitol. WT, wild-type
Arabidopsis; OE3-10, OE3-14 and OE3-15, three independent lines. The experiments were repeated three
times with similar results. Asterisks indicate the significant difference between WT and OE-PheNAC3
(�P < 0.05 and ��P < 0.01); error bars indicate the ± SE. Full-size DOI: 10.7717/peerj.8716/fig-5
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was focused on moso bamboo in order to find a novel NAC member of moso bamboo that
can regulate senescence.

In this study, a senescence-induced NAC gene, was isolated from the senescent leaf
cDNA library of moso bamboo and subsequently named PheNAC3. Sequence analysis
revealed that PheNAC3 encoded an NAC1-like NAC protein. The amino acid sequence of
PheNAC3 protein is 88.74% similar to that ONAC011 protein. Based on transient
expression and transcriptional activation analysis, PheNAC3 was determined to be a
nuclear protein and exhibited transcriptional activation activity in yeast. These data
indicated that PheNAC3 might function as a transcription factor and had a function
similar to that of ONAC011.

PheNAC3 participates in multiple senescence processes
To explore the function of PheNAC3 in senescence regulation, its expression pattern was
initially analyzed during natural senescence, after treatment with ABA, MeJA, SA, NaCl
and PEG, and during dark-induced leaf senescence. During natural leaf senescence,

Figure 6 Phenotypic analysis of roots of wild-type (WT) and PheNAC3-overexpressing Arabidopsis under mannitol or NaCl stress. (A–C) 1/2
MS agar plates; (D–F) 1/2 MS agar plates + 150 mM NaCl; (G–I) 1/2 MS agar plates + 200 mM Mannitol. WT, wild-type Arabidopsis; OE3-10,
OE3-14 and OE3-15, three independent lines. Photographs were taken 10 days after mannitol or NaCl treatment. Bar = 1 cm.

Full-size DOI: 10.7717/peerj.8716/fig-6
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accumulation of PheNAC3 mRNA levels was similar to the relative expression pattern of
ONAC011, which demonstrated that PheNAC3 could respond to senescence signals of
age-dependent pathways (Mannai et al., 2017). Expression of PheNAC3 was significantly
upregulated during ABA and NaCl treatments (Fig. 3). In addition, the promoter of
PheNAC3 contained seven ABA-responsive elements (ABREs) and three stress-related
elements (MBS: MYB drought inducibility; STRE: activation by heat shock, osmotic stress,
low pH and nutrient starvation) (Table S2). These results indicated that PheNAC3
might be involved in the ABA-senTF module and NaCl-senTF module. At the same time,
PheNAC3 was also upregulated during post-harvest senescence of bamboo shoots.
The transcript level was positively correlated with the rate of loss of moisture, peroxidase
activity, and catalase activity, and negatively correlated with lipoxygenase activity and
phenylalanine ammonia-lyse activity (Li et al., 2019). Therefore, PheNAC3 participates in
the regulation of post-harvest senescence of bamboo shoots. Taken together, these results
suggest that PheNAC3 might be a senescence regulator during multiple senescence
processes of moso bamboo.

Ectopic expression of PheNAC3 can promote leaf senescence of
Arabidopsis
In rice, ONAC011 was previously identified as a senescence regulator (Mannai et al.,
2017). Here, the ectopic overexpression of PheNAC3 triggered premature senescence of
leaves in Arabidopsis. In Arabidopsis, AtSAG12 and AtCAB were considered to be
senescence marker genes (Lohman et al., 1994; Buchanan-Wollaston, 1994; Hensel et al.
1993) that were upregulated and downregulated during leaf senescence, respectively.
In this study, the expression of two marker genes was upregulated and downregulated in
OE-PheNAC3 transgenic Arabidopsis, respectively. This leads us to suspect that PheNAC3
promotes natural leaf senescence by regulating AtSAG12 and AtCAB in Arabidopsis.

Our results showed that ABA promoted senescence of moso bamboo detached leaves,
and PheNAC3 upregulated the expression during the senescence process. NCED3 is
known as a key enzyme in ABA biosynthesis (Ren et al., 2007), and overexpression of
NCED increases the ABA content (Tan et al., 1997; Hwang et al., 2010). In OE-PheNAC3
transgenic Arabidopsis, AtNCED3 was upregulated. AtABF4, AtRD29A and AtRD29B, as
ABA response genes, are upregulated by ABA (Yoshida et al., 2010; Cheong et al., 2010;
Jia et al., 2012). Among them, the regulation of AtRD29B expression is only via the
ABA-dependent pathway (Jia et al., 2012). In OE-PheNAC3 transgenic Arabidopsis,
AtRD29A and AtRD29B were upregulated in leaves of G2 stage. These results suggested
PheNAC3 might promote leaf senescence via ABA biosynthesis.

Ectopic expression of PheNAC3 can enhance abiotic stress tolerance
in Arabidopsis
ONAC011 negatively regulates drought tolerance in rice (Mannai et al., 2017). PeNAC1
may promote lateral root development and enhance tolerance to salinity and drought
stress (Wang et al., 2016). In our study, there was no significant difference in the growth,
root length, or number of lateral roots of PheNAC3 overexpressing in plants on 1/2 MS
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medium compared to wild-type Arabidopsis. This result is different from that of Wang
et al. (2016), which indicates that it is caused by the difference in the motif10 in the
N-terminus.

RD29A and RD29B were most frequently selected as stress-related downstream markers
in Arabidopsis (Xiong et al., 2002). RD29A is an abiotic stress-responsive gene (Yamaguchi-
Shinozaki et al., 1992; Yamaguchi-Shinozaki & Shinozaki, 1994) and enhanced the salt
tolerance of transgenic tobacco and Sophora japonica (Yamaguchi-Shinozaki & Shinozaki,
1994;Wang et al., 2009). RD29B was upregulated in transgenic Arabidopsis with GmProT1,
GmProT2 andMYB15, which increases tolerance to drought and/or salt (Ding et al., 2009;
Guo et al., 2016). In this study, the tolerance to drought and salt of OE-PheNAC3
transgenic Arabidopsis was increased, and the function of OE-PheNAC3 was similar to
that of PeNAC1 (Wang et al., 2016). Additionally, the expression levels of RD29A and
RD29B were upregulated in OE-PheNAC3 transgenic Arabidopsis compared with
wild-type Arabidopsis. Therefore, the overexpression of PheNAC3 can enhance the abiotic
stress tolerance of Arabidopsis.

CONCLUSIONS
The protein sequences of PheNAC3 and ONAC011 have high similarity and belong to
the NAC1 subfamily. PheNAC3 is determined to be a nuclear protein and exhibites
transcriptional activation activity in yeas, indicating that PheNAC3 might function as a
transcription factor. PheNAC3 is involved in the regulation of leaf senescence of moso
bamboo. Ectopic expression of PheNAC3 can promote leaf senescence and enhance abiotic
stress tolerance in Arabidopsis. In addition, the functional difference between PheNAC3
and PeNAC1 may be due to the fact that 15 additional bases at the 5′-end of PheNAC3 are
different from the CDS of PeNAC1 Our results suggest that PheNAC3 play the
multifaceted role in regulation of leaf senescence and abiotic stress responses.
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