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Abstract

Many solid tumors metastasize to bone, but only prostate cancer has bone as a 
single, dominant metastatic site. Recently, the FGF axis has been implicated in cancer 
progression in some tumors and mounting evidence indicate that it mediates prostate 
cancer bone metastases. The FGF axis has an important role in bone biology and 
mediates cell-to-cell communication. Therefore, we discuss here basic concepts of 
bone biology, FGF signaling axis, and FGF axis function in adult bone, to integrate these 
concepts in our current understanding of the role of FGF axis in bone metastases.

Introduction

Development of metastases is a complex and demanding 
process cancer cells must overcome to successfully 
colonize remote organ sites (Sethi & Kang 2011). Stephen 
Paget’s 1889 work proposed that metastasis depends on 
the crosstalk between cancer cells (the ‘seeds’) and specific 
organ microenvironments (the ‘soil’). This hypothesis has 
been used to account for the non-random and cancer-
specific distribution of metastases. Prostate cancer is one 
of the most striking examples of the selectivity of cancer 
cells for specific sites of metastasis. Indeed, more than 80% 
of advanced prostate cancer will develop bone metastases 
and the majority will be bone forming (Loberg et al. 2005). 
Also, targeting bone metastases in prostate cancer with a 
bone homing α-emitting radiopharmaceutical lengthens 
survival (Parker et  al. 2013). Thus, these observations 
suggest that bone metastases play a central role in prostate 

cancer progression. In contrast, other malignancies have a 
lower incidence of bone metastases (e.g. breast (50–60%)  
(Hess et  al. 2006), renal (35%), lung (35%), liver (13%), 
and rectal (10%) carcinoma (Hess et  al. 2006, Freeman 
et  al. 2015)) and only prostate cancer has bone as a 
single, dominant metastatic site (Hess et  al. 2006). 
Additionally, multiple myeloma, a B cell malignancy, is 
the second most common haematological malignancy 
and, characteristically, involves bone during progression 
(Panaroni et al. 2017).

The contribution of bone metastases to the clinical 
morbidity of solid tumors has prompted efforts to better 
understand the mechanism of cancer metastases to bone. 
As a result, many factors implicated in bone metastases 
have been identified. Prominent among these areas of 
study is the fibroblast growth factor (FGF) signaling axis, 
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which has been shown to be central to the metastatic 
progression in bone of some tumors (e.g. prostate cancer).

The FGF axis has an important role in bone 
biology. This axis mediates cell-to-cell communication 
physiologically in several systems. Therefore, the role of 
FGF axis in cancer metastases needs to be studied with an 
understanding of its function in bone and cell biology. 
This will enable a more rational design of therapies. We 
will, therefore, introduce basic concepts of bone biology 
and FGF/FGF receptor (FGFR) axis function, followed by 
a discussion of evidences implicating this pathway in the 
pathogenesis of bone metastases in different malignancies.

Bone development and normal bone biology

In the embryo, bone formation involves the conversion 
of preexisting mesenchyme into bone tissue. Briefly, 
skeletogenesis starts with mesenchymal condensation 
in all prospective bones. The bone tissue is then formed 
by two different mechanisms: endochondral (axial and 
appendicular bones) and intramembranous ossification 
(flat bones of the face, most of the cranial bones, 
and the clavicles). During endochondral ossification, 
condensation leads to the formation of a complete 
cartilaginous skeleton that will eventually be replaced 
by bone (Rodan 2003). In intramembranous ossification, 
mesenchymal condensation is followed directly by 
ossification centers. Cells then assume osteoblastic 
features and start depositing bone matrix that will go on 
to mineralize and form the bones. Osteoblasts embedded 
in the bone matrix become osteocytes (Rodan 2003, 
Dallas et  al. 2013). The commitment of mesenchymal 
stem cells and differentiation into osteoblasts requires 
Runt-related transcription factor 2 (RUNX2) and osterix, 
master transcription factors that regulate several genes, 
such as type I collagen, bone sialoprotein, osteopontin 
(OPN), transforming growth factor beta (TGFβ), and 
osteocalcin. The regulation of bone formation involves 
several factors, including TGFβs, bone morphogenetic 
proteins (BMPs), FGFs, and Wnt signaling, all of which 
were shown to regulate cell differentiation and survival 
in a spatiotemporal manner (Berendsen & Olsen 2015, 
Ornitz & Marie 2015). In summary, a network of signaling 
molecules governs bone morphogenesis. Among them, 
FGF and their receptors were identified as relevant players 
in bone formation, and some functional redundancies 
and complementary roles between different FGFRs  
throughout osteogenesis have been determined 
(Karuppaiah et al. 2016).

During adulthood, bone undergoes continuous 
remodeling via resorption and replacement at basic 
multicellular units (BMUs). This process of bone remodeling 
is critical for bone homeostasis in response to structural 
and metabolic demands and is strictly controlled through 
a complex cell communication network involving signals 
between cells of the osteoblastic and osteoclastic lineages 
at each BMU (Sims & Martin 2014). In this process, the 
multifunctional osteocytes regulate osteoblasts and 
osteoclasts function, therefore, having key roles in bone 
homeostasis (Dallas et al. 2013). Many factors mediating 
stimulatory and inhibitory signals contribute to coupling 
the processes of bone formation and resorption, including 
oncostatin M, parathyroid hormone-related protein 
(PTHrP), sclerostin, matrix-derived TGFβ, insulin growth 
factor 1 (IGF-1), cardiotrophin-1, semaphorin 4D/3B, 
sphingosine 1-phosphate, ephrinB2 and ephrinB4, 
receptor activator of nuclear factor kappa-B ligand 
(RANKL), WNT5a, osteoprotegerin, and T cell-derived 
interleukins (ILs).

More recently, evidence indicates that bone-forming 
mature osteoblast and bone-resorptive mature osteoclast 
functions are also regulated via direct cell–cell contact 
between these cell types (Furuya et al. 2018).

These pathways and bona fide cell-to-cell interactions 
in bone are hijacked by cancer cells during the metastatic 
process. Depending on the specific interaction that occurs 
between cancer cells and bone cells, bone metastases can 
be osteoblastic (e.g. prostate cancer) or osteolytic (e.g. 
multiple myeloma). However, in the majority of bone 
metastases both components (osteolytic and osteoblastic) 
are present at different levels.

Fibroblast growth factor, fibroblast growth 
factor receptor family

The FGF axis is a highly conserved complex signaling 
pathway, composed of various FGFs, classified as follows: 
canonical (paracrine), hormone-like (endocrine), and 
intracellular (intracrine). The canonical subfamily 
comprises 15 known receptor-binding ligands  
(FGF1–10,16–18, 20, and 22) (Li et al. 2016) that interact 
with four tyrosine kinase membrane receptors, FGFRs. 
This interaction in the paracrine signaling requires 
heparan sulfate (HS), which leads to activation of the 
FGFR kinases. Current evidence indicates that FGFR 
kinase activation is followed by phosphorylation of 
FGFR substrate 2α (FRS2α), recruitment of phospholipase 
Cγ (PLCγ), and activation of downstream cascades and 

https://doi.org/10.1530/ERC-19-0472
https://erc.bioscientifica.com © 2020 The authors

Printed in Great Britain
Published by Bioscientifica Ltd.

This work is licensed under a Creative Commons 
Attribution 4.0 International License.

https://doi.org/10.1530/ERC-19-0472
https://erc.bioscientifica.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


R257E Labanca et al. FGF axis in bone metastasis 27:7Endocrine-Related 
Cancer

networks (e.g. mitogen activated protein kinase (MAPK), 
phosphatidylinositol-3-kinase (PI3K)/protein kinase B 
(AKT), and signal transducer and activator of transcription 
(STAT)) (Fig. 1) (Ornitz & Itoh 2015). FGFR signaling can 
be modulated by different mechanisms including negative 
regulators (e.g. Sprouty) and receptor internalization and 
degradation (Ornitz & Itoh 2015).

In addition to the paracrine canonical FGFs, there 
are three FGFs, namely FGF19, 21, and 23, that function 
as endocrine factors and are believed to require protein 
cofactor αKlotho, βKlotho, or the Klotho-related protein, 
for receptor binding and activation due to their lower 
affinity for HS (Fig. 2) (Ornitz & Itoh 2015). Also, the 
intracrine FGF subfamily, FGF11–14, encodes intracellular 
FGFs, which are non-signaling proteins that serve as 
cofactors for voltage-gated sodium channels and other 
molecules (Ornitz & Itoh 2015).

The complexity of this axis is further increased 
by FGFRs alternative splicing, producing isoforms 
with differential ligand specificity and spatial lineage 
expression, as well as the complexity of HSs (Li et al. 2016). 
Lastly, an additional member of the family is FGFR-like 1 

(FGFRL1) or FGFR5, which lacks the cytoplasmic tyrosine 
kinase domain (Kahkonen et al. 2018).

The FGF pathway plays a central role in various 
processes that include embryonic and organ development, 
wound healing, and carcinogenesis (Teven et  al. 2014). 
FGF signaling regulates mitogenesis, differentiation, 
angiogenesis, survival, and motility/invasiveness, among 
other cellular biological processes, and is integral to 
normal bone development and function (Ornitz & Marie 
2015, Li et al. 2016).

Role of FGF in bone homeostasis

The discovery that FGFR mutations are associated with 
specific skeletal abnormalities in humans has established 
the relevance of this pathway in bone development 
and homeostasis (Ornitz & Marie 2015). However, 
the effects of FGF/FGFR signaling in osteogenesis are 
complex, as they depend on which FGFs and FGFRs are 
expressed, the stage of maturation of the target cells, 
and the microenvironment (e.g. availability of HS).  

Figure 1
Paracrine FGF signaling pathways. A ternary 
FGF-FGFR-HS complex results from the binding of 
canonical FGF to FGFR with HS. This complex then 
activates the FGFR intracellular tyrosine kinase 
domain by phosphorylation of specific tyrosine 
residues. The FRS2α, a major FGFR kinase 
substrate, is phosphorylated by the activated FGFR 
kinase. Phosphorylated FRS2α then recruits the 
RAS/MAPK pathway. MAPK activates members of 
the ETS transcription factor family and negative 
regulators of the FGF signaling pathways. 
Phosphorylated FRS2α also recruits the enzyme 
PI3K, which then phosphorylates AKT. AKT has 
multiple activities including the activation of 
forkhead box protein O1 (FOXO1) transcription 
factor. Activated FGFR kinase recruits and activates 
the enzyme PLCγ as well, which produces inositol 
triphosphate (IP3) and phosphatidylinositol 
bisphosphate (PIP2). Also, FGFR kinase activates 
STAT1, 3, and 5, which mostly regulate gene 
expression in the nucleus. Copyright held by, and 
used with permission of, The University of Texas 
MD Anderson Cancer Center.
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Genetically engineered mice (GEM) studies shed some 
light on the role of the FGF axis in bone biology.

Both genes, Fgfr1 and Fgfr2, are expressed in the 
mouse osteoprogenitor lineage. Fgfr1 knockout in mature 
osteoblasts resulted in increased bone mass and osteoblast 
number in mice (Jacob et al. 2006, Zhang et al. 2014). Fgfr1 
deletion in osteochondro-progenitors results in increased 
proliferation and delayed differentiation of osteoblasts 
(Jacob et al. 2006). The collective data suggest that FGFR1 
promotes the differentiation of mesenchymal progenitors, 
while inhibiting the proliferation of mesenchymal 
progenitors into preosteoblasts. Also, FGFR1 is thought to 
inhibit the maturation and mineralization of osteoblasts 
(Jacob et al. 2006, Su et al. 2014).

Congenital FGFR2 mutations in humans are 
associated with craniosynostosis (Karuppaiah et al. 2016) 
and bent bone dysplasia among other skeletal disorders, 

implicating this receptor in bone development (Neben 
et al. 2017). Conditional knockout studies targeting Fgfr2 
in mice suggest that this receptor is also involved in 
postnatal bone growth (Karuppaiah et al. 2016). However, 
the mechanism underlying the decreased bone growth 
observed in the Fgfr2 gene inactivation studies is not clear.

Fgfr1 and Fgfr2 genes have considerable overlap in their 
expression patterns in mice. To study possible functional 
redundancies, a double (Fgfr1 and Fgfr2), osteoblast-
specific, conditional knockout mouse was generated. These 
mice appear normal at birth, but show severe postnatal 
growth defects and impaired longitudinal bone growth, 
suggesting an important role for FGF signaling in bone 
formation after birth (Karuppaiah et  al. 2016). Further, 
reduction of Fgfr1/2 expression in osteoblasts resulted in 
upregulation of Fgf9, Fgf18, and parathyroid hormone-like 
peptide (Pthlh) genes, which led to increased expression 

Figure 2
FGF23 endocrine and autocrine/paracrine actions. 
In osteoblasts/osteocytes, activation of FGFR1 by 
formation of a ternary complex with LMW-FGF2 
and HS in the membrane (or FGF23 binding to 
intranuclear FGFR1, not shown) induces FGF23 
expression. FGF23 in the kidney forms a ternary 
FGF23-FGFR-Klotho complex, leading to activation 
of the FGFR tyrosine kinase and inhibition of 
phosphate reabsorption and reduction of 
circulating levels of 1,25-dihydroxyvitamin D. 
1,25-dihydroxyvitamin D in turn induces FGF23 
production by osteoblasts. FGF23 is also thought 
to inhibit PTH production by the parathyroid 
gland. Finally, FGF23 regulates OPN secretion in 
osteoblastic cells, which is a potent regulator of 
the mineralization process. For brevity, the figure 
depicts osteoblasts only. Copyright held by, and 
used with permission of, The University of Texas 
MD Anderson Cancer Center.
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and signaling of Fgfr3 in growth plate chondrocytes and 
suppression of chondrocyte proliferation (Karuppaiah 
et al. 2016). Together, these results suggest that, in mice, 
Fgfr3 is expressed in proliferating and prehypertrophic 
chondrocytes and functions to inhibit postnatal 
chondrogenesis (Ornitz & Marie 2015). The inhibitory 
activity of FGFR3 on growth plate chondrocytes explains 
the pathogenic consequences of gain-of-function 
mutations in FGFR3 in suppressing pre-pubertal skeletal 
growth in achondroplasia and related chondrodysplastic 
disorders. Although much is known about the signals 
downstream of FGFR3 in chondrocytes, the mechanisms 
that regulate FGFR3 expression and activation and that 
coordinate osteogenesis and chondrogenesis are poorly 
understood (Ornitz & Marie 2015).

Subsequent studies using conditional inactivation 
of Fgfr1 and Fgfr2 in osteoblasts showed that 6- and 
12-week-old mice lacking both receptors or only FGFR1 
had an increased bone mass phenotype accompanied 
with impaired material properties. This phenotype was 
found to be preceded by a remarkable decrease in viable 
osteocytes and a parallel activation of the Wnt/β-catenin 
signaling pathway. Similar findings were observed after 
conditional inactivation of Fgfr1 and Fgfr2 in osteocytes. 
These data suggest that FGFR1 and/or FGFR2 expression 
in mature osteoblasts/osteocytes is required for osteocyte 
survival and regulation of bone mass during postnatal 
bone growth (McKenzie et  al. 2019). A previous report 
indicated that conditional knockout of Fgfr1 in osteocytes 
in mice results in decreased osteocyte-specific gene 
expression but no overt skeletal phenotype (Xiao et  al. 
2014). This discrepancy suggests that, in osteocytes, 
FGFR1 and 2 cooperate for these cells’ survival.

The specific roles of FGF ligands in bone biology 
post birth are not completely understood. Cell-based and 
GEM studies implicate FGF2 (one of the most studied FGF 
ligands) in osteogenesis (Montero et  al. 2000, Su et  al. 
2014). However, different FGF2 isoforms (low molecular 
weight (LMW) and high molecular weight (HMW)) seem 
to have opposite effects on bone mass (Xiao et al. 2010, 
2018). Briefly, LMW-FGF2 induces bone mass in mice by 
modulating the Wnt/β-catenin signaling pathway (Xiao 
et al. 2009). In contrast, HMW-FGF2 is a negative regulator 
of osteoblast differentiation and matrix mineralization 
(Xiao et al. 2013, Homer-Bouthiette et al. 2014).

Both, LMW- and HMW-FGF2 induce Fgf23 promoter 
activity, but through different mechanisms: by activating 
cell surface and intranuclear FGFR1, respectively (Han 
et al. 2015). FGF23 is expressed mainly by osteoblasts and 
osteocytes (Martin et  al. 2011) and controls phosphate 

homeostasis and bone mineralization via endocrine actions 
in its main target organ, the kidney, after formation of the 
ternary FGF-FGFR-Klotho complex (Quarles 2012, Feng 
et al. 2013). FGF23 inhibits renal phosphate reabsorption. 
Also by its effect in the kidney, excess FGF23 reduces 
circulating levels of 1,25-dihydroxyvitamin D (Quarles 
2012). There is also evidence suggesting the existence of a 
parathyroid hormone (PTH)–bone feedback loop in which 
PTH stimulates FGF23 expression in bone and FGF23 
inhibits PTH production by the parathyroid gland (Fig. 
2) (Quarles 2012). Finally, FGF23 also locally regulates 
bone mineralization acting through FGFR3 in a Klotho-
independent manner. In this case, FGF23 regulates OPN 
secretion in osteoblastic cells, which is a potent regulator 
of the mineralization process (Fig. 2) (Murali et al. 2016).

Combined in vitro and in vivo studies suggest that 
coordinated FGF and extracellular signal-regulated 
kinases 1/2 (ERK1/2) signaling regulates the expression 
of dentin matrix acidic phosphoprotein 1 (Dmp1) in 
osteocytes. DMP1 is abundantly expressed in osteocytes 
and plays a critical role in osteocyte differentiation and 
mineralization. Furthermore, DMP1 constitutes an added 
regulatory mechanism of FGF23 systemic levels and, in 
turn, of phosphate metabolism (Kyono et al. 2012).

Once activated, FGF signaling can be regulated by 
receptor internalization and degradation. This mechanism 
involves the interaction of activated FGFR with multiple 
proteins, including the docking protein FRS2α and the 
ubiquitin ligase c-CBL, an adaptor protein that mediates 
FGFR ubiquitination after ligand binding. This mechanism 
of down-regulation of activated FGFR signaling is 
prevalent in osteoblasts, highlighting the important role 
of c-CBL in the control of osteoblastogenesis (Ornitz & 
Marie 2015).

FGF signaling interacts with other pathways involved 
in osteogenesis, most notably with BMPs and the Wnt 
canonical pathway. Briefly, in vitro and in vivo studies 
indicate that FGFs enhance canonical BMP2 signaling and 
induce β-catenin nuclear accumulation in osteoblasts, thus 
regulating the fate and differentiation of mesenchymal 
stem cells (Miraoui & Marie 2010, Ornitz & Marie 2015).

Furthermore, FGF2 is necessary for the positive effects 
of PTH on osteoblast proliferation and differentiation 
(Ornitz & Marie 2015). In turn, PTH stimulates Fgf2, Fgfr1, 
and Fgfr2 in osteoblasts.

The FGF axis controls bone remodeling by regulating 
osteoclast activation and function as well. FGF2 induces 
osteoclast precursor proliferation and stimulates bone 
resorption through the activation of FGFR1 and MAPK. 
FGF18 can induce RANKL and cyclooxygenase-2 

https://doi.org/10.1530/ERC-19-0472
https://erc.bioscientifica.com © 2020 The authors

Printed in Great Britain
Published by Bioscientifica Ltd.

This work is licensed under a Creative Commons 
Attribution 4.0 International License.

https://doi.org/10.1530/ERC-19-0472
https://erc.bioscientifica.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


R260E Labanca et al. FGF axis in bone metastasis 27:7Endocrine-Related 
Cancer

expression in osteoblasts, which in turn will induce 
osteoclast formation and function. In vivo studies 
indicate that FGFR1 and FGFR3 contribute to osteoclast 
activity (Ornitz & Marie 2015). Further, mice with Fgfr1 
inactivation in osteoclast and osteoclast precursors are 
normal at birth but have abnormal bone remodeling and 
increased bone mass (Lu et al. 2009).

In summary, the FGF axis is a key player in osteogenesis 
and its function is multifaceted and context dependent, 
with the effects of particular components, as well as 
interacting proteins, varying according to the specific 
microenvironment and stage of bone development. 
Numerous downstream signaling cascades triggered by 
the interaction between FGFs and FGFRs in association 
with other pathways regulate the different steps in  
osteoblast maturation.

Overall, the previously mentioned studies emphasize 
the complexity of bone formation dynamics, which 
require a tight, regulated, fine-tuned coordination of 
pathways and processes, including the fundamental 
role of the FGF axis and its crosstalk with other  
signaling cascades.

Finally, FGF signaling mediates angiogenesis and 
osteogenesis, two closely related processes of bone 
formation (Shahi et al. 2017). Hence, the relevance of its 
therapeutic application in cancers involving bone.

Cancer progression to established 
bone metastases

Following local progression, cancer cells may acquire traits 
that allow them to escape the local site and disseminate 
via the blood stream (circulating tumor cells (CTCs)). 
Once they reach a distant site (disseminated tumor 
cells (DTCs)), they may get mechanically trapped in the 
capillary beds (passive arrest) or may specifically stay in 
certain organs by, for example, receptor-mediated tropism 
(active arrest). It is worth noting that normal bone houses 
the hematopoietic stem cell (HSC) niche, comprised by 
hematopoietic and mesenchymal cell populations, which 
provide homing signals to HSCs and regulate HSC self-
renewal (Taichman et al. 2010). It has been suggested that 
DTCs can precondition the metastatic niche and compete 
with and occupy the HSC niche to facilitate metastasis 
(Decker et al. 2016).

Arrested cancer cells at organ sites (DTCs) may 
undergo a period of dormancy prior to the development of 
metastases. The mechanism that makes cancer cells leave 
the dormant state and start growing is ill-defined and a 

subject of intense study. It has been proposed that there 
are signals and factors from the metastatic/HSC niche, 
including FGF2, that can play a role in exiting dormancy 
(Decker et al. 2016).

As previously mentioned, bone metastases can be 
osteoblastic, osteolytic, or mixed blastic-lytic. Osteoblastic 
metastases involve the aberrant formation of new bone 
by osteoblasts. Among the factors/pathways mediating 
this process are IGFs, BMPs, FGF, endothelin 1, and WNT 
ligands secreted by tumor cells. Even though osteoblastic 
lesions are characterized by the aberrant formation of 
bone, osteolysis is always present. Therefore, the release of 
factors embedded in the bone matrix (e.g. IGF, TGFβ) by 
the bone resorption process will in turn favor the growth 
of tumor cells. This process is known as the ‘vicious-cycle’ 
theory (Ell & Kang 2012), which describes a positive 
feedback loop between cancer cells and bone, as a means 
of survival and growth in the bone microenvironment.

Osteolytic metastases are characterized by increased 
bone resorption due to enhanced osteoclast activation. 
Among the factors implicated in osteoclast activation by 
cancer cells, either directly or via activation of osteoblasts, 
are RANKL, PTHrP, and IL-6. Here, as well, a vicious cycle 
theory explains a positive feedback loop between cancer 
and bone, in which cancer cells induce the release of 
factors from the bone matrix that promote tumor cell 
proliferation and survival (Ell & Kang 2012).

FGF axis in bone metastases

Alterations in the FGF/FGFR axis found in cancer result 
either from activating mutations of receptors or from 
overexpression of ligands or receptors.

Prostate cancer

Prostate cancer is the second leading cause of cancer-
related death in men in the United States (Siegel et  al. 
2017). Patients with advanced metastatic prostate cancer 
have effective treatment options, but none of them are 
curative. Androgen deprivation is the most effective 
therapy, but cancer growth resumes over time in most 
cases and the disease becomes castration resistant (Watson 
et al. 2015). Bone is the primary site of castration-resistant 
prostate cancer (CRPC) progression and the main cause 
of morbidity and mortality of the disease. The underlying 
mechanisms of progression of metastatic CRPC are 
diverse and include FGF axis activation (Corn et al. 2013).  
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FGF axis abnormalities in prostate cancer have been 
associated with receptor or ligand overexpression (Wang 
et al. 2019), but mutations of FGF axis components have 
been detected in only a small fraction of prostate cancers.

Overall, 80% of advanced prostate cancers metastasize 
to bone, where they typically form osteoblastic lesions. 
However, an osteolytic component is always present 
(Bubendorf et al. 2000). Previous and emerging evidence 
implicates the FGF signaling axis in prostate cancer bone 
growth. Given the role of the FGF axis in bone biology, 
aberrant FGF signaling activation in bone cells would 
upset the bone homeostasis. It has been reported that 
expression of FGF8 and FGF9 is significantly increased 
in human prostate cancer bone metastases compared 
with the primary site (Valta et  al. 2006, Li et  al. 2008). 
Further, ectopic expression of FGF8 and FGF9 in prostate 
cancer cells promotes, while blocking FGF9 reduces, the 
growth of prostate cancer cells in bone (Li et  al. 2008, 
Valta et  al. 2008, Huang et  al. 2015). These findings 
implicate FGF8 and FGF9 in the pathogenesis of prostate 
cancer bone growth. Subsequent studies identified the 
FGF axis as a candidate target for therapy and suggested 
that FGF signaling mediates a positive feedback loop 
between prostate cancer cells and bone cells (Wan et al. 
2014). It was also shown that blockade of FGFRs with 
dovitinib (TKI258, Novartis Pharma), a receptor tyrosine 
kinase inhibitor (TKI) with potent activity against FGFR 
and vascular endothelial growth factor (VEGFR), has 
clinical activity in a subset of men with CRPC and bone 

metastases (Fig. 3) (Wan et  al. 2014). A recent study 
confirmed the role of the FGF axis in the pathogenesis of 
metastatic prostate cancer (Bluemn et al. 2017).

A previous report showed that Fgf2 expression 
is increased in tumor-associated bone cells in an 
experimental model (Wan et  al. 2014). Results of a 
recent study indicate that high FGF2 levels in osteoblasts 
(secondary to Tgfβ receptor 2 (Tgfβr2) loss) promote 
prostate cancer bone metastases in mice (Meng et  al. 
2018). Prostate stromal cells express biologically relevant 
levels of FGF2, and therefore the increase in FGF2 in the 
bone microenvironment may promote prostate cancer 
cell growth by providing a prostate-like environment 
(Kwabi-Addo et al. 2004, Pecqueux et al. 2018). Together 
these studies suggest that loss of Tgfβr2 expression in 
osteoblasts enables FGF2-mediated crosstalk with prostate 
cancer cells and promotes bone metastasis (Meng et  al. 
2018). In support of these studies, it has been shown 
that loss of TGFβR2 occurs in the bone marrow of 77% 
of bone-involved prostate cancer cases examined. Further, 
knockout of Tgfβr2 in mouse stromal fibroblasts results 
in earlier tumor development in intratibial injections in 
mice (Li et al. 2012).

Lastly, a recent study using experimental systems 
indicates that depletion of FRS2α (a main signal 
transducer of FGF signaling) in human or mouse prostate 
cancer cells results in reduced angiogenesis and impaired 
tumor growth in bone (Liu et  al. 2016). These results 
are in alignment with the known role of the FGF axis 

Figure 3
Proposed role of the FGF axis in the progression 
of prostate cancer cells in bone. FGFR1 expression 
in prostate cancer cells favors their growth in 
bone. At the cellular level, soluble factors (e.g. 
FGF8, FGF9) released by FGFR1-expressing 
prostate cancer cells mediate an autocrine 
positive loop as well as paracrine signals to 
osteoblasts. Tumor-associated osteoblasts 
express FGFR1 and FGF2, the latter mediating 
autocrine and paracrine signals, thus constituting 
a positive feedback loop between prostate cancer 
cells and osteoblasts. Copyright held by, and used 
with permission of, The University of Texas MD 
Anderson Cancer Center.
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in angiogenesis attributed to the mitogenic effect on 
endothelial cells.

Together the evidence discussed suggests that FGF 
signaling mediates autocrine and paracrine signals 
between prostate cancer cells and bone cells.

Based on the knowledge outlined, clinical trials with 
FGFR inhibitors in men with metastatic prostate cancer are 
ongoing. However, based on prior experience on clinical 
trials of inhibitors targeting aberrantly activated pathways 
in CRPC, long-term treatment responses occurred in only 
a subpopulation of patients and predictors of treatment 
response have yet to be validated (Zafeiriou et al. 2016). 
Therefore, it might be expected that a monotherapy 
with an FGFR inhibitor may not accomplish the desired 
significant control of prostate cancer progression, and it 
is essential to identify combination therapies that may 
optimize efficacy.

Breast cancer

Breast cancer is the most common malignancy among 
women worldwide. Breast cancer is classified into different 
molecular subtypes based on expression of hormone 
receptors (HR): estrogen receptor and/or progesterone 
receptor and human EGF receptor 2 (HER2), also known 
as receptor tyrosine-protein kinase erbB-2 (Horton et  al. 
2018). Among the five major subtypes are estrogen receptor-
positive and triple-negative (HR-negative and HER2/neu-
negative (TNBC)). Bone metastases occur in about 70% of 
cases and are the most common site of disease recurrence, 
negatively impacting patient survival, morbidity, and 
quality of life (Weilbaecher et al. 2011). Breast cancer bone 
metastases generally produce an osteolytic phenotype by 
secreting factors that activate the bone-resorbing cell, the 
osteoclast. It has been suggested that FGFs, among other 
growth factors (e.g. TGFβ, IGF), are released from the bone 
matrix during bone resorption, which contributes to the 
vicious cycle process, originally defined in the context of 
breast cancer bone metastasis (Guise 2002). FGFR1 gene 
amplification, which occurs mainly in estrogen receptor-
positive breast cancer, represents the most frequent 
genomic aberration of the FGF axis, whereas amplification 
of FGFRs and FGFR-activating mutations are uncommon 
(Perez-Garcia et  al. 2018). However, the status of these 
genomic alterations and the role of the FGF axis in breast 
cancer bone metastases has not been studied.

Experimental studies indicate that the incidence 
of bone metastases and growth of osteolytic breast 
cancer cells is impaired in osteoclast-specific Tgfβr2 
knockout mice, and this phenotype is rescued by FGF2.  

Subsequent correlative analysis of human samples 
indicate association between the expression of TGFβR2, 
pSMAD-2, and FGFR1 in breast cancer cells and 
osteoclasts (Meng et al. 2016). Accordingly, it was shown 
that secreted FGF ligands from breast cancer cells can 
promote differentiation of osteoclasts, that breast cancer 
cells enhance osteoclast function in an FGFR-dependent 
manner, and that this effect is reduced when FGFR is 
inhibited (Aukes et al. 2017). It is worth noting that the 
experimental studies outlined have been done mainly 
using TNBC cancer models. It remains to be seen if this 
holds true when using models of other breast cancer 
subtypes such as estrogen receptor-positive.

Lung cancer

Of the two main types of lung cancer, small cell lung cancer 
(SCLC) and non-small cell lung cancer (NSCLC), which 
accounts for 85% of lung carcinomas, FGFR1 is amplified 
in 22% of squamous cell lung carcinomas, a subtype of 
NSCLC (Katoh & Nakagama 2014). Further, preclinical 
studies have shown FGFR-altered NSCLC cell lines 
respond positively to FGFR inhibitors (Hashemi-Sadraei & 
Hanna 2017). Lung cancer bone metastases, which occur 
in 30% to 40% of cases, are typically osteolytic, and the 
‘vicious cycle’ defined for other malignancies has also 
been implicated in this disease (D’Antonio et  al. 2014). 
The release of growth factors from the bone matrix in this 
context includes FGF ligands.

Multiple myeloma

Seventy percent of patients with multiple myeloma 
present with bone metastases at diagnosis and 90% will 
progress and develop bone lesions that are typically 
osteolytic (Bataille et al. 1989).

Fifteen percent of multiple myeloma patients 
present with a t(4:14) translocation that results in 
overexpression of FGFR3. Therefore, clinical trials 
targeting the FGF pathway have been under study. 
These included the receptor TKI, dovitinib (TKI258), 
which showed signs of increased progression-free 
survival and disease stabilization, but exhibited severe 
adverse effects on patients (Porta et  al. 2017). Other 
agents that could minimize these off-target effects 
by being more selective, including monoclonal 
antibodies (i.e. FGFR3-specific antibody MGFR1877S, 
hampering receptor dimerization) and more specific 
inhibitors (i.e. pan-FGFR inhibitor JNJ-42756493 
(Janssen pharmaceuticals) and NVP-BGJ398 (Novartis)), 

https://doi.org/10.1530/ERC-19-0472
https://erc.bioscientifica.com © 2020 The authors

Printed in Great Britain
Published by Bioscientifica Ltd.

This work is licensed under a Creative Commons 
Attribution 4.0 International License.

https://doi.org/10.1530/ERC-19-0472
https://erc.bioscientifica.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


R263E Labanca et al. FGF axis in bone metastasis 27:7Endocrine-Related 
Cancer

are currently under evaluation (Porta et  al. 2017).  
How these agents have direct beneficial effects in 
bone metastases in particular have not been described 
in detail, and the bone-specific research area in this 
context remains relatively unexplored. Thus far, one 
laboratory-based study has shown that the FGFR1 
inhibitor NVP-BGJ398 blocked cell growth and blocked 
the induction of RANKL in co-culture studies of multiple  
myeloma cells with neonatal mouse calvarie 
(Suvannasankha et al. 2015).

Bladder cancer

Urothelial or transitional cell carcinoma is the most 
common type of bladder cancer, and approximately 30% 
of its metastases are to the bone (Bellmunt et al. 2010). 
Alterations in FGFRs are frequent in bladder cancer. 
Primarily, FGFR3 mutations are found in non-invasive, as 
well as advanced, metastatic bladder cancer (di Martino 
et  al. 2016). Recently FDA approved an FGFR inhibitor 
to treat locally advanced or metastatic bladder cancer 
(Alhalabi et al. 2019).

High levels of FGF2 have been detected in invasive 
bladder cancers. Only a correlative study has aimed 
to explain the molecular mechanism (epithelial to 
mesenchymal transition, increased proliferation, and 
trigger of immune checkpoint) for FGF2-mediated poor 
prognosis (McNiel & Tsichlis 2017). Once again, it is 
worth noting that no studies have focused yet on the role 
of FGF specifically in bone metastases in this disease.

Conclusions

Cancer metastases to bone remain a therapeutic challenge 
in most cases. Therapy development for bone metastases 
requires a deep understanding of both bone biology, 
tumor biology, and the role of this interaction in the 
pathogenesis of cancer progression. The present review 
integrates our current knowledge of normal bone biology 
with that of the FGF axis in bone homeostasis and bone 
metastasis providing a conceptual framework to develop 
FGF blockade for cancer metastases in bone. This is 
particularly relevant given the morbidity and mortality 
associated with cancer metastasis to bone and the fact 
that new drugs targeting the FGF axis are now available.
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