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Abstract

AAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:ntibiotic treatment failure of infection is common and frequently occurs in the absence of

genetically encoded antibiotic resistance mechanisms. In such scenarios, the ability of bac-

teria to enter a phenotypic state that renders them tolerant to the killing activity of multiple

antibiotic classes is thought to contribute to antibiotic failure. Phagocytic cells, which special-

ize in engulfing and destroying invading pathogens, may paradoxically contribute to antibi-

otic tolerance and treatment failure. Macrophages act as reservoirs for some pathogens

and impede penetration of certain classes of antibiotics. In addition, increasing evidence

suggests that subpopulations of bacteria can survive inside these cells and are coerced into

an antibiotic-tolerant state by host cell activity. Uncovering the mechanisms that drive

immune-mediated antibiotic tolerance may present novel strategies to improving antibiotic

therapy.

Why do antibiotics frequently fail to clear infection?

Antibiotic resistance, defined as the genetically heritable capacity to grow in the presence of an

antibiotic, is continuing to evolve and spread and represents a major threat to global health

[1]. However, high rates of treatment failure are often attributed to antibiotic-tolerant cells,

rather than resistance [2,3]. Antibiotic tolerance is the ability of bacterial cells to survive for

extended periods in the presence of bactericidal antibiotics [4]. Antibiotic failure occurs in

approximately 1 in 5 patients with Staphylococcus aureus bloodstream infections, contributing

to more than 20,000 deaths annually [2]. Additionally, many bacterial infections respond to

antibiotic therapy only for relapse of infection to occur once treatment is ceased [3,5]. While

no singular mechanism underlying antibiotic tolerance has been established, evidence strongly

suggests that interactions with innate immune cells are major contributors to the phenomenon

in vivo [5–9]. Importantly, recent studies also demonstrate the emergence of antibiotic resis-

tance from antibiotic-tolerant reservoirs [10].

Identifying the cause of antibiotic failure in patients relies on further probing interactions

between the pathogen, host, and antibiotic. Antimicrobial chemotherapy and bacterial patho-

genicity have generally remained separate areas of study that has limited our understanding of
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how our antibacterials are working, or not working, in the context of the host immune

environment.

How well do antibiotics kill in vivo?

Antibiotics have been used to treat patients since the 1940s [11], but how antibiotics kill bacte-

ria in vivo and facilitate infection clearance is still not fully understood. Antibiotics are fre-

quently described as bacteriostatic or bactericidal [12]. Bacteriostatic antibiotics inhibit

bacterial growth without causing cell death and hence rely on the immune system to eliminate

the infection. BAU : PleasecheckwhethertheeditstothesentenceBactericidalantibioticscandirectlyinduce:::arecorrect; andprovidecorrectwordingifnecessary:actericidal antibiotics can directly induce bacterial cell death and most work by

corrupting active processes: β-lactams causing a futile cycle of peptidoglycan synthesis and

autolysis [13]; aminoglycosides cause mistranslation, resulting in toxic peptides [14]; and fluo-

roquinolones inhibit the religation step of DNA replication, causing double-strand breaks

[15]. A drug is deemed bactericidal if it kills more than 99.9% of an exponential phase popula-

tion of bacteria during overnight incubation [12]. In that sense, the designation is somewhat

arbitrary and is established under in vitro conditions that bear little resemblance to the in vivo

host environment. Stresses that slow or stop bacterial processes such as protein synthesis can

limit the damage caused by a bactericidal drug, resulting in antibiotic tolerance and effectively

reducing bactericidal drugs into static drugs (Fig 1) [16,17]. We find that “bactericidal” antibi-

otics, such as vancomycin and rifampicin, frequently fail to reduce the bacterial load in mouse

Fig 1. Bactericidal drugs may be static in vivo. In the absence of stress, when bacterial cells are undergoing replication, the bactericidal antibiotic fluoroquinolone

binds to its target (DNA gyrase and topoisomerase IV) and prevents the religation step during DNA synthesis. This leads to double-strand breaks and cell death.

Macrophage-produced stresses (such as ROS/RNS or acid stress) may down-regulate cellular processes targeted by antibiotics. In the absence of replication, the

fluoroquinolone may bind to its target but does not cause double-strand breaks or cell death. This leads to antibiotic tolerance. Figure created using BioRender. RAU : AnabbreviationlisthasbeencompiledforthoseusedthroughoutFig1:Pleaseverifythattheentryiscorrect:OS/

RNS, reactive oxygen and nitrogen species.

https://doi.org/10.1371/journal.ppat.1009660.g001
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models of infection [6,18]. Additionally, many studies report equivalent efficacy of bacterio-

static and bactericidal drugs in patients [12,19,20], which further suggests that bactericidal

drugs often may not be “cidal” in vivo. The factors in the infection environment that inhibit

bactericidal activity remain poorly understood. Bactericidal activity of antibiotics in vitro at

low, physiologically achievable concentrations can rapidly kill bacteria in culture, and, if this

cidality were realized in vivo, it could have a major impact on antibiotic treatment duration

and efficacy.

Is the immune response responsible for poor antibiotic efficacy?

Immune cells evoke a plethora of stresses (nutritional immunity, reactive oxygen and nitrogen

stress, acid stress, antimicrobial peptides, and proteases) to eliminate invading pathogens, but

there is mounting evidence that components of the innate immune response are antagonistic

to antibiotics [5–7,9]. It’s been shown that bacterial populations that survive within immune

cells are enriched for antibiotic tolerance [6,9]. Multiple pathways to tolerance appear to exist,

and the relevance of these pathways vary by pathogen. MAU : PleasecheckwhethertheeditstothesentenceMacrophagesinduceantibiotictoleranceof :::arecorrect; andprovidecorrectwordingifnecessary:acrophages induce antibiotic toler-

ance of internalized S. aureus through reactive oxygen species (ROS) that cause collapse of the

tricarboxylic acid (TAU : PleasenotethatTCAhasbeendefinedastricarboxylicacidinthesentenceMacrophagesinduceantibiotictoleranceof ::::Pleasecheckandcorrectifnecessary:CA) cycle an entrance to a low ATP state [6]. Additionally, activation of

the stringent response has also been shown to contribute to S. aureus intracellular tolerance

[7], while neutrophil interaction as well as acid stress have also been shown to induce antibiotic

tolerance in S. aureus abscess patient isolates [21]. In Salmonella Typhimurium, antibiotic-tol-

erant persister subpopulations are induced intracellularly through acid stress, nutritional dep-

rivation, and the activation of toxin–antitoxin modules [9]. Studies in Mycobacterium
tuberculosis (MAU : Pleasenotethat“Mtb”hasbeendefinedas“Mycobacteriumtuberculosis”inthesentence“StudiesinMycobacteriumtuberculosisðMtbÞsuggestthat:::”:Pleasecheckandcorrectifnecessary:tb) suggest that antibiotic tolerance is predominantly mediated through nitro-

sative stress and is increased following cytokine activation of macrophages or immunization of

mice [5].

How can we improve antibiotic efficacy in vivo?

Identifying the stresses encountered by bacteria, as well as the bacterial response to these

stresses, during infection that prevent lethality of antibiotics may be key to improving their

therapeutic potential during infection [22]. Several studies, by us and others, have shown that

antibiotic efficacy against S. aureus is improved by reducing phagocytic burst: S. aureus was

more susceptible to antibiotics in Ncf1−/− and Nox2−/y mice deficient in oxidative burst [6,23]

and within polymorphonuclear leukocytes (PMNs) isolated from patients with chronic granu-

lomatous disease (CGD) [24]. In addition, Mtb was more susceptible to antibiotics in macro-

phages lacking an inducible nitric oxide synthase (Nos2−/−) gene [23]. These studies are crucial

to determining the mechanism of antibiotic tolerance during infection and may point toward

intervention strategies to improve antibiotic efficacy.

Studies that employ strategies such as treatment with antioxidants [6,25–27] and immuno-

modulation [28,29] to improve antibiotic efficacy against a variety of pathogens suggest that

combining antibiotic treatment with host-targeted therapies has promising therapeutic poten-

tial. Immunomodulatory strategies, both stimulation and repression of the innate immune

response, have been shown to potentiate antibiotic killing of different pathogens. PPARy ago-

nists that lead to M2-like skewing of macrophages improve immune-mediated clearance of S.

aureus [30]. As decreased ROS production is associated with M2-like macrophages [31] and

ROS induce antibiotic tolerance in S. aureus [6], antibiotic treatment in combination with

M2-skewing compounds may represent a viable therapeutic strategy to both improve

immune-mediated clearance of S. aureus, while also increasing antibiotic susceptibility.

Another study found that combinatorial treatment with the glucocorticoid dexamethasone
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and antibiotics led to improved outcome and decreased infection severity in a murine model

of S. aureus arthritis by decreasing macrophage recruitment and inflammation [28]. Glucocor-

ticoids are among the most commonly used anti-inflammatory therapies in medicine with

largely inhibitory effects on the immune system [28,32,33]. We also recently showed that Tem-

pol, a superoxide dismutase mimetic and potent antioxidant, improved antibiotic efficacy in a

systemic S. aureus infection [6]. However, differences in host genetics may profoundly affect

the success of immunomodulatory strategies [34].

Similar to S. aureus, host-derived reactive species have been shown to induce the formation

of Mtb persisters [5]. Additionally, high levels of oxidative stress are commonly found in

patients with tuberculosis (TB) [35]. The use of small molecule thiols, such as N-acetylcysteine

(NAC), has been shown to increase clearance of Mtb in the absence of antibiotics while also

preventing the formation of Mtb persisters [25–27]. In addition, natural killer (NK) cells

treated with NAC up-regulated the production of cytotoxic ligands that prevented growth of

Mtb in human monocytes [27]. NAC also reduces the production of reactive species by the

host [26] and improves antibiotic efficacy against Mtb [25], suggesting that it may broadly

improve antibiotic efficacy against other pathogens that exhibit tolerance following ROS

exposure.

Although the reduction of ROS appears to be advantageous for the clearance of Mtb and S.

aureus infection, this may not hold true for all pathogens. S. Typhimurium persisters repro-

gram the macrophage response from a pro-inflammatory to an anti-inflammatory state,

dampening the antimicrobial strategies of the macrophages and allowing slow-growing Salmo-
nella persisters to evade both antibiotic and immune-mediated killing [8]. As Salmonella per-

sisters are able to survive by shifting the macrophage response away from a pro-inflammatory

state, it reasons that restimulation of a pro-inflammatory immune response may improve kill-

ing of S. Typhimurium persisters.

Although a lot remains to be learned, targeting the host response to bacterial infection will

likely increase the efficacy of existing antibiotics, an intriguing strategy given the shortage of

new and effective antibiotics in development [36].

Discussion

Interactions between the innate immune system and bacterial pathogens have definite impacts

on antibiotic efficacy. This realization opens the door to using immunomodulators to maxi-

mize antibiotic efficacy to improve the treatment of infection. Ideally, a specific immunomod-

ulator would increase antibiotic susceptibility of a specific pathogen without any negative

impacts on the hosts’ ability to fight the infection. If antibacterial strategies associated with

activated immune cells are driving tolerance, is acute immunosuppressive therapy in combina-

tion with bactericidal antibiotics a viable treatment option for S. aureus and Mtb? Or in the

case of Salmonella, is amplification of the pro-inflammatory response a better treatment

strategy?

The potential of immunomodulatory strategies to improve antibiotic efficacy is appealing,

but immunomodulation during bacterial infection is certainly complicated and not without

risk. Although there is more work to be done to understand potential challenges and draw-

backs of immunomodulation, this strategy has been a game changer for patients living with

other diseases such as rheumatoid arthritis, psoriasis, ulcerative colitis, Crohn disease, and var-

ious types of cancers [37–39]. HUMIRA, developed by AbbVie, blocks tumor necrosis factor

alpha (TAU : PleasenotethatTNF � ahasbeendefinedastumornecrosisfactoralphainthesentenceHUMIRA; developedbyAbbVie::::Pleasecheckandcorrectifnecessary:NF-α) and reduces inflammation associated with many autoimmune disorders.

Despite the increased risk of respiratory infections and some cancers, HUMIRA remains the

top-selling drug in the United States due to its ability to elevate patients’ quality of life [40].
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Additionally, increased understanding of the tumor microenvironment has led to the coupling

of immunomodulatory therapies with chemotherapy (“chemoimmunotherapy”) for the treat-

ment of different cancers [41–43]. For example, squamous cell lung carcinoma represents up

to 30% of all non-small cell lung cancers, yet treatment options are limited and mostly ineffec-

tive [44]. Squamous cell lung carcinoma tumors are more resistant to immunotherapy, and

traditional chemotherapy treatments administered at the maximum tolerated dose are highly

toxic to the patient with little effect on the tumor [44]. However, recent clinical trials have

shown that coupling traditional chemotherapy with immunomodulatory therapy significantly

increased patient survival [44]. Following the preclinical and clinical success of immunomodu-

lation therapies for other diseases, it is possible that immunomodulation may be the break-

through strategy for unleashing the lethality of antibiotics.
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