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A B S T R A C T

COVID-19 pandemic is a global threat to human health and economy that requires urgent prevention and
monitoring strategies. Several models are under study to control the disease spread and infection rate and to
detect possible factors that might favour them, with a focus on understanding the correlation between the
disease and specific geophysical parameters. However, the pandemic does not present evident environmental
hindrances in the infected countries. Nevertheless, a lower rate of infections has been observed in some coun-
tries, which might be related to particular population and climatic conditions.

In this paper, infection rate of COVID-19 is modelled globally at a 0.5∘ resolution, using a Maximum Entropy-
based Ecological Niche Model that identifies geographical areas potentially subject to a high infection rate. The
model identifies locations that could favour infection rate due to their particular geophysical (surface air tem-
perature, precipitation, and elevation) and human-related characteristics (CO2 and population density). It was
trained by facilitating data from Italian provinces that have reported a high infection rate and subsequently
tested using datasets from World countries’ reports. Based on this model, a risk index was calculated to identify
the potential World countries and regions that have a high risk of disease increment.

The distribution outputs foresee a high infection rate in many locations where real-world disease outbreaks
have occurred, e.g. the Hubei province in China, and reports a high risk of disease increment in most World
countries which have reported significant outbreaks (e.g. Western U.S.A.). Overall, the results suggest that a
complex combination of the selected parameters might be of integral importance to understand the propagation
of COVID-19 among human populations, particularly in Europe. The model and the data were distributed
through Open-science Web services to maximise opportunities for re-usability regarding new data and new
diseases, and also to enhance the transparency of the approach and results.

1. Introduction

The spread of the COVID-19 pandemic, caused by the SARS-CoV-2
virus, is significantly afflicting both society and the global economy,
and urgently calls for the development of systems capable of monitoring
and predicting the risk of infection. The modelling of SARS-CoV-2
spread is being approached with heterogeneous methodologies, ranging
from pure time series analysis to ecological models using climatic
parameters, especially temperature and humidity (Giuliani et al., 2020;
Nickbakhsh et al., 2020; Sajadi et al., 2020; Wang et al., 2020). How-
ever, the pandemic seems to be spreading in all World cities without
evident environmental hindrances. Nevertheless, some countries are
experiencing a lower rate of disease cases that might be related to their
particular population and climatic conditions, but the exact effect of
these conditions on infection rate is still unclear (Roser et al., 2020).

Several approaches have been used to estimate the potential spatial
outreach of the virus and the geophysical and climatic data that may
foster disease transmission. Ecological Niche Models (ENMs) have been
extensively and effectively used in this context (Costa and Peterson,
2012; Davison, 2007; Misra and Kalita, 2010; Wahlgren, 2011; Zhang
et al., 2019). ENMs’ aim is to predict the presence of a particular species
in a geographical area by correlating species-specific occurrence re-
cords in its native habitat (presence records) with specific environ-
mental parameters (Elith and Leathwick, 2009). The species’ niche can
be defined as the space within a hypervolume of numerical vectors -
corresponding to environmental parameter ranges - which is correlated
with the species’ presence, and that fosters population persistence
(Hutchinsonian ecological niche). Accuracy in the identification of this
hypervolume can also be enhanced if the species’ absence information
is included in the model, as either expert-estimated or mathematically
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simulated information (Chuine and Beaubien, 2008; Coro et al., 2016;
2015b; Pearson, 2012; Peterson et al., 2011). ENMs have heterogeneous
approaches and implementations, for example they can explicitly model
a species’ environmental preferences and physiological limits (me-
chanistic models), or they can automatically estimate the correlation
between the parameter vectors and the species’ presence (correlative
models). Once the model has estimated the species’ ecological niche, it
can then project the niche characteristics across the native geographical
area to reproduce the actual species’ distribution, and subsequently
extrapolate across another area (even at the global scale) to discover
new potential suitable places for the species’ persistence. Most ENMs
that predict virus’ spread use correlative approaches implemented as
machine-learning or statistical models. These models can reach a high
prediction accuracy on disease outreach because viruses and pandemics
are known to be supported by particular geophysical characteristics
and, potentially, by ecological and socioeconomic changes (Carlson
et al., 2016; Earn et al., 2000; Morse et al., 2012; Scheffer, 2009;
Scheffer and Van Nes, 2018). ENMs have been extensively used to
discover these characteristics directly, or indirectly by tracing viruses’
principal vectors (Fuller et al., 2013; Linden, 2006; Medley, 2010;
Peterson et al., 2006; Samy et al., 2016; Signorini et al., 2014; Tachiiri
et al., 2006; Valiakos et al., 2014; Walton et al., 2010; Zhu and
Peterson, 2014). In particular, the Maximum Entropy model (MaxEnt)
has been often used as an ENM due to its flexibility to work with both
presence and presence/absence data scenarios (Coro et al., 2015b;
2013; Elith et al., 2011; Phillips et al., 2004). Also, MaxEnt can estimate
the influence of each parameter on the identification of the niche, i.e.
the most important parameters to understand a virus’ preferred con-
ditions. For these reasons, MaxEnt has often been used to trace the
ecological niche of a virus based on pure geophysical parameters or
human-related parameters (e.g. population density and urbanised
area), and also to understand how climate change might foster the
virus’ spread (Koch et al., 2016; Miller et al., 2012; Peristeraki et al.,
2006; Samy and Peterson, 2016).

In this paper, MaxEnt is used to estimate a global-scale distribution of
SARS-CoV-2 high infection rate, and consequently of potential COVID-19
high spread rate. Differing from the other cited works, this model
concentrates on infection rate rather than on absolute spread numbers.
Further, the proposed model uses a complex combination of parameters
to identify locations that could favour infection due to their particular
geophysical- and human-related characteristics. As a result, it predicts a
high probability of infection increase in many actual known infection
areas, e.g. the Hubei province in China. The presented ENM is trained
based on locations in Italy that have reported a high rate of new in-
fections. Also, it facilitates geophysical (surface air temperature, pre-
cipitation, and elevation) and human-related (carbon dioxide and po-
pulation density) data-vectors associated with these locations. The
implemented model produces a probability map where higher values
indicate a correlation with high infection rate; lower non-zero values
indicate a lower correlation, and zero indicates unsuitable conditions
for infection increase. A risk index is also calculated out of the produced
probability distribution and identifies most World countries, with
known high COVID-19 spread rate, as high-risk zones. Overall, the
present work suggests that the involved parameters may play a key role
in monitoring COVID-19 spread rate. The research question answered
by the present work is: Given the climatic, geophysical, and human-related
parameters that other studies have individually correlated with a high
COVID-19 infection rate, and that are publicly accessible, can we infer their
overall weights and predict infection rate with high accuracy?

This paper is organised in the following way: Section 2 describes the
used data and the modelling approach and subsequently Section 3 re-
ports performance evaluation metrics, model’s parametrisation, and
performance at predicting global high-infection-rate zones. Section 4
discusses results and conclusions, reporting the possible applications
and future extensions of the presented model.

2. Material and methods

2.1. Data

2.1.1. Data selection methodology and data availability
The methodology presented in this paper aims to be repeatable,

reproducible, and re-usable for experiments on COVID-19 and other
diseases. For this reason, only data which met the principles of find-
ability, accessibility, interoperability, and re-usability were used (FAIR
data). Geospatial data accessible through representational standards,
published on public geospatial services, were preferred in order to
maximise their usage in the implemented model and further experi-
ments. All used data (Table 1) were post-processed and transformed
into gridded raster files, and were made available through the Zenodo
open-access repository (Coro, 2020a) and the Unidata Thredds service
of the D4Science e-Infrastructure (Coro, 2020b) while respecting their
primary sources’ citation requirements. The model used an annual data
set so as not to be limited to the last winter/spring season.

2.1.2. Training and test data
The Italian Civil Protection Department - the national body that

deals with emergency events - publishes daily updates on the number of
people infected, recovered, and mortalities from COVID-19 per region
and province (Italian Civil Protection Department, 2020). Data up to
the end of March 2020 (Fig. 1-a), i.e. the period of maximum infection
rate in Italy, were used as a reference to identify locations with high
infection rates on the basis of the derivative of the values. Among all
available COVID-19 global reports, Italian data are particularly ap-
plicable to train an ENM because (i) Italy has been the first European
country to be both heavily impacted by the virus and to study the virus,
and (ii) infections in Italy have been reported on the basis of tens of
thousands blanket tests. In Italy, a correlation between temperature and
humidity increase and COVID-19 spread has been assessed (Italian
Ministry of Health, 2020; Scafetta, 2020; Tuscany Regional Health
Agency, 2020), in agreement with studies on other areas
(Section 2.1.3). Indeed, despite the easing of the lockdown to lower
levels and the consequential increase of human interactions, the disease
spread has been decreasing from May 2020 (GEDI, 2020). At the end of
April 2020, the Italian Prime Minister presented a plan of progressive
lockdown level reduction, which also included possible regional re-
strictions in the case of a localised disease rate increase
(Italian Government, 2020). However, significant increments were not
observed and thus special regional restrictions were not applied. To
better understand this phenomenon, Italy has started national projects
to investigate the cause and effect relationships between the lockdown,
environmental factors, and tourism, and to publish data and results
under FAIR principles (CNR, 2020). Due to this range of considerations,
Italy presents an optimum scenario to apply the proposed analysis.
However, other countries are experiencing a high infection rate but
have climatic conditions that are very different from the European ones.
The identification of all these conditions would require more significant
research and data collection initiatives.

Table 1
Summary of all used data along with their primary sources. Details about how
these data were accessed and post-processed are given in the article.

Data Primary Source

Infection per Italian Province Italian Civil Protection Department
World Infections John Hopkins University
Surface Air Temperature NASA Earth Exchange Platform
Precipitation NASA Earth Exchange Platform
Elevation United Stated National Geophysical Data Center
Carbon Dioxide Copernicus Atmosphere Monitoring Service
World Population Density Center for International Earth Science

Information Network
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For the scopes of the presented experiment, Italian locations with a
high virus infection rate were selected, by first calculating average rates
of infected people per province and then by studying the distribution of
these quantities. A total of 54 provinces was selected by applying this
approach (the detailed table is available in Coro (2020a)). A Chi-
squared test confirmed that the distribution of infection rates could be
approximated by a log-normal distribution. Consequently, provinces
with a high infection rate were identified and selected as those with
infection rates over the geometric mean of the rates. These data were
used as reference observations of the modelled phenomenon to train an
ecological niche model. It is worth noting that using average infection
rate instead of absolute infection counts helps reducing a data bias due
to the number of undetected cases of infection in Italy.

John Hopkins University publishes daily updates regarding COVID-
19 infections and mortality statistics by collecting reports from the
World countries (Dong et al., 2020). Data are given at a national scale
for most countries, and at a regional scale for other countries (e.g.
China, U.S.A., and Canada) (Fig. 1-b). Unfortunately, reports from
different countries are poorly comparable between them, given the
different countries approaches to disease identification and monitoring
(Reuters, 2020). Thus, mixing these data with Italian province data was
not optimal for modelling. Nevertheless, global data were used as a
reference to test the prediction performance of an aggregated risk index
built upon the model’s output (Section 2.3). To this aim, the countries/
regions with the highest infection rates were selected using the same
statistical analysis applied to Italian data, which resulted in 72 locations
(the detailed table is available in Coro (2020a)).

2.1.3. Input parameters
Surface air Temperature and Precipitation
The NASA Earth Exchange platform hosts long-term daily forecasts

between 1950 and 2100 at a 0.25∘ resolution for minimum and max-
imum surface air temperature and precipitation at the surface (NASA-
NEX, 2020). Forecasts come from 20 weather models developed by the
Coupled Model Intercomparison Project Phase 5 (CMIP5, 2019). The
D4Science e-Infrastructure hosts these data sets averaged in time and
space, for 2018 and at a 0.5∘ resolution as gridded NetCDF-CF files
(Coro and Trumpy, 2020a). In particular, data of average surface air
temperature and precipitation (Figs. 1-c and -d) were used due to their
correlation with COVID-19 and similar viruses (Casanova et al., 2010;
Chan et al., 2011; Chaudhuri et al., 2020; Ficetola and Rubolini, 2020;
Ma et al., 2020; Oliveiros et al., 2020; Qi et al., 2020; Wang et al., 2020;
Wu et al., 2020), and their general coupled involvement in virus eco-
logical niche models (Carlson et al., 2016; Fuller et al., 2013; Patz,
1998; Valiakos et al., 2014). Additionally, precipitation was also used
as a surrogate of humidity (Baskerville and Cobey, 2017; Chen et al.,
2012; Masunaga, 2012). Italian provinces present a high variability of
surface air temperature and precipitation. At the same elevation, there
are temperature differences as high as 7∘ and precipitation differing of
more than one order of magnitude. This variability increases the re-
presentativeness of Italian provinces as a training set.

Elevation
The United States National Geophysical Data Center (NGDC) hosts a

global dataset of elevation and depth at a 0.33∘ resolution (ETOPO2,
NOAA (2001)), which includes localised correction and integration of

Fig. 1. Visual comparison of the global-scale data used in the presented model: (a) number of infections in Italian provinces (31 March 2020), (b) global infections
(31 March 2020), (c) surface air temperature, (d) precipitation, (e) elevation, (f) carbon dioxide, (g) World population.
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satellite, ocean sounding, and land data. Elevation has been used in
several ecological niche models for viruses (Miller et al., 2012; Peterson
et al., 2006; Valiakos et al., 2014) and thus was included in this ex-
periment. The D4Science e-Infrastructure hosts a FAIR ETOPO2 dataset
as a gridded NetCDF-CF file (Coro and Trumpy, 2020a; 2020b) down-
sampled at a 0.5∘ resolution (Fig. 1-e).

2.1.4. Human-related parameters
The Copernicus Atmosphere Monitoring Service hosts a global-scale

uniform distribution of carbon dioxide (CO2) flux with monthly esti-
mates (CAMS, 2019) deriving from both human and natural activity. A
FAIR dataset of averaged data from January 1979 to December 2013
with a 0.5∘ spatial resolution is hosted by D4Science (Coro and
Trumpy, 2020a) as a gridded NetCDF-CF file (Fig. 1-f). This dataset
aims at combining CO2 values preceding the higher industrialisation
rate of the last decades with the natural presence of CO2 in the soil. It
summarises both natural emission and the evolution of human emission
(Coro and Trumpy, 2020b). For the scope of this paper, this dataset was
used as a surrogate of air pollution and human-related activity, which
are generally correlated with virus spread and may foster COVID-19
spread (BBC, 2020; Clay et al., 2018; Godzinski and Suarez Castillo,
2019; Han et al., 2020; ISPRA, 2020; Lam et al., 2016; Liu et al., 2019;
Tasci et al., 2018; Ye et al., 2016). Alternative parameters of CO2,
correlated with air pollution, were also tested but produced more ad-
verse results (Section 3.2).

Population Density
Studies on complex systems’ dynamics have highlighted that epi-

demics happen only beyond a critical threshold of population density
that depends on infectivity, recovery, and mortality rates (Earn et al.,
2000; Scheffer, 2009). The Center for International Earth Science In-
formation Network openly publishes up-to-date population density data
as gridded datasets with resolutions ranging from30″ to 1∘

(Warszawski et al., 2017). For the scopes of this paper, the Gridded
Population of the World dataset - Version 4, was used at a 0.5∘ re-
solution (Fig. 1-g) to include population density factors that could be
correlated with infection rate.

2.2. Modelling

The experiment presented required training of MaxEnt models with
several alternative parametrisations in order to identify the model with
the highest performance and the best combination of parameters
(Section 2.3). To this aim, the gCube DataMiner cloud computing plat-
form was used. This is an open-source system that is able to process big
data and offers over 400 free-to-use processes as-a-service from mul-
tiple domains (Assante et al., 2019; Coro et al., 2015a). This platform
maximises the re-usability of processes through a standard Web Pro-
cessing Service (WPS) interface (Coro et al., 2017). Further, DataMiner
parallelises the training of models on a network of 100 machines while
choosing the best computational configuration among a range of
powerful multi-core virtual machines (Ubuntu 14.04.5 LTS x86 64 with
16 virtual CPUs, 16 GB of random access memory and 100 GB of storage
capacity). Additionally, the system stores all trained models and their
respective parametrisations under the standard and exportable Prov-O
ontological format (Lebo et al., 2013). This representation allows to
recover the complete set of input/output data and metadata which
enable any other authorised user to reproduce and repeat an experi-
ment (provenance of the computation). The Open Science concepts of re-
usability of processes, and of reproducibility and repeatability of the
experiments, allow the implementation of a methodology that can, in
principle, be extended to analyse other diseases (Section 4). To this aim,
DataMiner hosts a MaxEnt model as-a-service (CNR, 2019; Phillips
et al., 2019), which can work on textual input files (CSVs) - that include
pairs of coordinates related to a certain phenomenon - and FAIR input
geospatial data. The WPS interface allows (i) inclusion of this service in
complex workflows through a wide range of workflow management

systems which support this standard (Berthold et al., 2009; QGis, 2011;
Wolstencroft et al., 2013), and (ii) re-use of the service across multiple
domains (Coro et al., 2015b; 2013; Coro and Trumpy, 2020b; Coro
et al., 2018).

2.2.1. Model description
MaxEnt is a machine learning model commonly used in ecological

niche modelling (Baldwin, 2009; Coro et al., 2015b; 2018; Phillips
et al., 2006; Phillips and Dudik, 2008; Phillips et al., 2004). It simulates
a probability density function x( ¯) defined on real-valued vectors of
parameters x̄ taken at locations where a species occurs in its native
habitat (Coro et al., 2018; Pearson, 2012). The advantage of MaxEnt
with respect to other models is that it can learn from positive examples
only. Thus, it does not necessarily need absence data, which are instead
automatically estimated. Considering the high-infection-rate of Italian
provinces as species occurrences, the parameters associated with these
areas were treated as a positive example of input vectors to train the
model. One drawback of MaxEnt, is that its prediction performance is
very sensitive to data quality (Elith and Leathwick, 2009), an additional
consideration for using only Italian data and not combining data from
other countries (Reuters, 2020).

The MaxEnt training algorithm adjusts the model’s internal vari-
ables so that (i) the simulated density function x( ¯) is compliant with
pre-calculated mean values at training-set locations and (ii) the entropy
of the density function =H x x( ¯) ln( ( ¯)) is maximum for these
locations (Elith et al., 2011). MaxEnt maximises the entropy function
for training locations divided by the entropy values of the parameters of
random points taken in the training-set area (background points,
Phillips et al. (2006)). The model involves a linear combination of the
input parameters, whose coefficients reproduce the influence of each
variable on the prediction of the training set locations (percent con-
tribution). Further, the model estimates the dependency of the perfor-
mance on the permutation of each parameter in the training vectors
(permutation importance).

In this experiment, MaxEnt uses the data vectors x̄ of Italian high-
infection-rate provinces (and of background points in Italy) to estimate
the probability density =x P high infection rate x( ¯) ( | ¯) that a loca-
tion would foster a high infection rate. To this aim, the model estimates
the ratio between the probability density f x( ¯) of the vectors across Italy
and the probability density in the high-infection-rate locations f x( ¯)1 .
The Bayes’ rule defines the relation between
P high infection rate x( | ¯), f x( ¯), and f x( ¯)1 :

=P high infection rate x
f x P high infection rate

f x
( | ¯)

( ¯) ( )
( ¯)

1

with P high infection rate( ) being the prior distribution of high-in-
fection-rate zones in Italy (prevalence), fixed to 0.5 by default (i.e. no
prior assumption is given). MaxEnt hypothesises that the optimal f x( ¯)1
distribution is the closest distribution to f x( ¯), because without any
training-set location there would be no expectation about certain con-
ditions over the others (i.e. f x( ¯) is a null model for f x( ¯)1 ). Also, the
model constraints f x( ¯)1 to reflect the observations on the training set,
i.e. f x( ¯)1 should estimate high probability on parameters’ values close to
the parameters’ means over the training set. The model uses Kullback-
Leibler divergence (relative entropy) to measure the distance between
the two functions:

=d f x f x f x log
f x
f x

( ( ¯), ( ¯)) ( ¯)
( ¯)
( ¯)x

1
¯

1 2
1

The aim of the training algorithm is to minimise this distance under the
above constraints, which in turn maximises the entropy of the target
probability density. It can be demonstrated that this characterization
uniquely determines f x( ¯)1 as belonging to the following family of Gibbs
distributions (Phillips et al., 2006):
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=f x f x e( ¯) ( ¯)1
x( ¯)

with = +x h x( ¯) ( ¯); α being a normalization constant that makes
f x( ¯)1 sum to 1; h being an optional transformation of the vectors x̄ that
possibly models complex relationships between parameters; β being the
vector of coefficients that reports the percent contribution of each para-
meter. Thus, the ratio f x f x( ¯)/ ( ¯)1 is equal to e ,x( ¯) i.e. MaxEnt needs to
solve a log-linear model based on the background and training vectors
to estimate the α and β parameters, which can be implemented through
a penalised maximum likelihood algorithm (Phillips and Dud, 2008).

After the training phase, the parameters’ percent contribution can be
used to select the most influential parameters for the model. This po-
tentially allows to use MaxEnt as a filter to select those parameters
carrying the highest quantity of information (Coro et al., 2015b; 2013;
2018). A MaxEnt model trained on 0.5∘ resolution parameters can be
reasonably used to produce probability distributions at the same re-
solution. Given the semantics of the selected training locations, the
model produced a distribution function that could be interpreted as a
global-scale probability distribution for SARS-CoV-2 high infection rate.

2.3. Evaluation metrics

The model training phase estimates the average Area Under the
Curve (AUC), i.e. the integral of the Receiver Operating Characteristic
(ROC) curve that plots sensitivity (

+
True Positives

True Positives False Negatives
) against 1-spe-

cificity ( +1 True Negatives
True Negative False Positives ). AUC values closer to 1 indicate high

classification performance of training sites. Reference cut-off thresholds
on π were also calculated during the training phase (Phillips et al.,
2019) and represent (i) the value balancing omission rate
(

+
False Negatives

True Positives False Negatives
) and sensitivity (balanced threshold), (ii) the value

at which sensitivity and specificity are equal, and (iii) the minimum
threshold at which all training locations are correctly classified as high-
infection-rate areas.

In order to numerically estimate the prediction performance of the
trained model, a risk index was also calculated, defined as the normal-
ised density of non-zero MaxEnt probability locations (Coro et al., 2018;
McGeoch et al., 2006) for all countries/regions reported in the global
dataset of infection rates (Section 2.1). High-risk zones were identified
as those with a risk index higher than the geometric mean of the risk
values. Accuracy on the correct identification of high-infection-rate
countries/regions as high-risk zones was calculated as
n of high infection rate areas identified

overall n of high infection rate areas
.

.
. Moreover, agreement between high-risk

zones’ classification and high-infection-rate country/region reports was
calculated using Cohen’s Kappa (Cohen et al., 1960). This statistical
coefficient estimates the agreement between the two classifications
with respect to purely random classifications (agreement by chance).
An overall interpretation of this value was assigned using Fleiss’ tables
(Fleiss, 1971).

3. Results

3.1. Global-scale distribution and performance

The MaxEnt model was trained using different combinations of
parameters associated with Italian locations reporting a high rate of
infections up to the end of March 2020 (Section 2.1). Training the
model on all parameters produced the highest AUC and optimal esti-
mates for the three model’s thresholds (Table 2-a). When the model was
trained with any other parameter subset, AUC resulted lower. This
property indicates that all parameters bring useful information to es-
timate training set locations correctly. Nevertheless, the percent con-
tribution and permutation importance of carbon dioxide, surface air
temperature, and precipitation are much higher than the ones of ele-
vation and population density (Table 3). The model using all para-
meters also indicates a correlation with high infection rate for

particular parameter ranges (i.e. the boundaries of the niche hypervo-
lume): CO2 has the highest correlation around 0.03 (0.01;0.08)
g C m day2 1 (moderate-high), air temperature around 11.8 (8.0;16.0)
∘C (moderate-low), and precipitation around 0.3 (0.2;0.45) 10 4

kg m s2 1 (moderate).
The model was projected at the global scale to produce a global

infection-rate probability distribution at a 0.5∘ resolution (Fig. 2). For
each cell, this map reports the probability that the cell has suitable
conditions for infection increase. Locations with a value higher than the
balanced threshold ( x( ¯) 0.4) can be classified as high-infection-rate
locations, whereas the other two thresholds indicate medium infection-
rate ( <x0.1 ( ¯) 0.4) and low infection-rate ( <x0.008 ( ¯) 0.1) lo-
cations. Zero probability locations indicate unsuitable areas for an in-
fection rate increase.

As a qualitative evaluation, it can be observed that the model cor-
rectly and precisely identifies the locations of real World high infection
rates, e.g. the Hubei Chinese region, Western United States, and most of
Europe. Instead, wrongly classified places are, for example, Peru and
Brazil, that have parameter ranges out of the niche hypervolume. The
identification of the climatic/geophysical parameters fostering infec-
tion rate increase in these countries would require further research,
based on a more extensive and globally shared data collection
(Section 3.3).

In order to quantify the prediction accuracy of the map, the risk
index was used to select high-risk zones and compare them with global
reports of high infection rates (Fig. 3 and Table 2-b). Accuracy at pre-
dicting high-infection-rate countries/region reached 77.25%, and the
overall agreement (0.46) was good according to Fleiss’ classification.
This result indicates that most countries/regions are correctly and non-
randomly classified, and thus the model has extracted a correct char-
acterisation of the actual risk of infection increase based on the con-
sidered parameters.

3.2. The weight of the CO2 parameter

The high correlation of CO2 with high infection rate requires a
further investigation, starting from the correlation between air pollu-
tion and COVID-19 spread (Section 2.1.4). The Copernicus Atmosphere
Monitoring Service provides FAIR data correlated with greenhouse gas
concentration and fluxes, i.e. methane (CH4), nitrous oxide (N2O), and

Table 2
Report of (a) the performance and optimal thresholds of the trained MaxEnt
model, and (b) the performance of the risk index on the identification of global
high-infection-rate countries/regions.

Model Performance - a
AUC 0.994
Balanced omission-sensitivity threshold 0.4
Equal training sensitivity and specificity threshold 0.1
Minimum training presence threshold 0.008

Risk Index Performance - b
Accuracy 77.25%
Kappa 0.46
Kappa Interpretation Good

Table 3
Percent contribution and permutation importance of the parameters involved in
the presented experiment, as estimated by the optimal Maximum Entropy
model.

Parameter name Percent contribution Permutation importance (%)

Carbon Dioxide 87.2 52.8
Surface Air Temperature 7.6 40

Precipitation 5.3 6.9
Elevation 0.01 0.01

Population Density 0.01 0.2
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CO2 (CAMS, 2020). The CH4 and N2O influence on prediction perfor-
mance was evaluated by substituting these parameters to CO2 in the all-
parameter model (individual models), and then by using them together
with CO2 (mixed model). The aggregated data used for this analysis
were published as FAIR data on Zenodo (Coro, 2020a). Executing the
MaxEnt individual models revealed that CH4 and N2O have a much
lower percent contribution ( ~ 52% for both models) to infection rate
prediction than CO2 (87.2%). Furthermore, their individual models
reported a lower AUC (0.90 v.s. 0.994 of the CO2 model). However, in
these models, CH4 and N2O were always the parameters having the
highest percent contribution to infection rate prediction. This property
indicates that the parameters correlated with greenhouse gases con-
centration are of high importance for prediction accuracy, which con-
firms the correlation between air pollution and infection rate high-
lighted by other studies (Section 2.1.4). The mixed model further
confirmed this result because it gained the same performance as the
CO2 individual model to predict high risk zones (77.25%). However, the
mixed model reported a much higher percent contribution of CO2

(85.9%) than of CH4 (0.4%) and N2O (0.4%). This result indicates that
CH4 and N2O are not adding a substantially more predictive informa-
tion than CO2. Overall, this analysis indicates that CO2 is the correct
choice to represent air pollution in the experiment.

3.3. Training and input data completeness

In order to evaluate if Italian provinces were a sufficient re-
presentative training set for the reported experiment, the all-parameter
MaxEnt model was executed by incrementally adding more World areas
to the training set. First, the geographical areas of large cities correctly
predicted by the original model were added, i.e. Madrid, London,
Istanbul, Buenos Aires. This operation did not change the model’s risk
prediction performance (77.25%), which indicates that Italian pro-
vinces are strong representation of the correctly detected World cities.
As an additional step, World city areas that were wrongly predicted by
the original model were incrementally introduced, i.e. São Paulo, Lima,
Santiago de Chile, Guayaquil. This process produced a continuously

Fig. 2. Global-scale probability distribution of SARS-CoV-2 infection rate produced by the presented model, with Italy magnified at the lower-left hand side.

Fig. 3. Overlap between estimated high-infection-rate risk zones (coloured countries/regions) and actual reported high-infection-rate countries/regions (circles).
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decreasing AUC, also if CH4 and N2O were used instead of CO2. When
involving these World cities, one major effect on the parameter ranges
was a change in the upper confidence limit, which increased for tem-
perature (from 16.0 to 18.8 ∘C) and precipitation (from 0.45 to 0.6 10 4

kg m s2 1) and the decreased for CO2 (from 0.08 to 0.05
g C m day2 1). The decreasing AUC, indicates that these ranges are not
able to make the model cover all the areas of the training set. This result
indicates that the used input parameters are insufficient to understand
the infection rate increase in these areas, independent of the use of
Italian provinces as the training set.

4. Discussion and conclusions

This paper has presented a methodology to estimate a geographical
probability distribution of high infection rate for SARS-CoV-2, based on
geophysical and human-related parameters. A risk index has been pro-
posed based on this probability distribution, to identify global countries
and regions that would mostly favour a high infection rate. A good
concurrence with country-reported data and a moderate-high accuracy
at predicting high-infection-rate countries/regions indicates that the
model was able to identify real conditions of increased infection rate in
many World areas. Generally, the model indicates a high infection rate
in areas characterised by an annual moderate-high level of CO2, mod-
erate-low temperatures, and moderate precipitation. The most notable
result is that, although the model was trained only with Italian cities, it
assigns a high-infection-rate probability and a high-risk classification to
most real World scenarios where a high infection rate has been actually
reported. Also, the results indicate that climatic parameters such as air
temperature and precipitation (or air humidity) play a critical role at
defining locations that may be subject to a high infection rate. The
model also indicates a temperature range which other studies have also
correlated with the spread of COVID-19 (Sajadi et al., 2020). Ad-
ditionally, estimated high-rates in moderate-precipitation regions might
be related to reduced transmission in high-humidity zones (Wang et al.,
2020). Carbon dioxide is the most influential parameter, which is cor-
related directly with pollution (which concurs with COVID-19 spread,
Han et al. (2020)) and indirectly with population density. Correlation
with population density could be one reason for the lower influence of
this parameter on prediction performance. However, the fact that all
parameters are necessary to achieve the optimal model performance
indicates that they all contain complementary information. Thus, po-
pulation density is not entirely covered by CO2. Indeed, it affirms the
complex system dynamics theory that if a population is vulnerable to a
virus and its density exceeds a threshold, an epidemic will occur
(Scheffer, 2009). In the case of SARS-CoV-2, the presented results in-
dicate a likely scenario where, after this threshold, population density
does not influence infection rate anymore. This observation is valid in
Italy, where provinces with population densities distant of almost two
orders of magnitude have reported similar infection rates for a long
period (e.g. Lucca and Naples). As for elevation, the model indicates
that this is not a discriminant feature, as also demonstrated by the
variability in the altitudes of high-infection-rate Italian provinces.
However, elevation brings some information to the model - probably
related to drier weather conditions - because without this parameter the
model’s AUC decreases.

Currently, the complete set of parameters correlated with COVID-19
infection rate increase remains unknown. The reported results indicate
that the used parameters are sufficient to predict the situation in Europe
and in many World countries, however there are additional unknown
factors to be investigated in the misidentified countries (e.g. Brazil,
Ecuador, and Peru). The identification of all these factors is a broader
question that goes beyond this paper and would require on-the-field
data collection and a global-scale effort, also to make data available
under FAIR principles.

The proposed Open Science-oriented methodology is quickly reu-
sable on new infections and epidemics, for example, to predict the risk

that a particular country will be subject to a high rate of cases of a new
infection. Also, the results may be the basis of other models that may
refine the resolution of the presented model and revise the parameters
used. One fundamental step is to collect and prepare FAIR data corre-
lated to infection rate as open-access standardised geospatial datasets.
The D4Science e-Infrastructure can be used freely and openly to this
aim. Moreover, the Maximum Entropy process was published as a free-
to-use service (CNR, 2019) intended for global health-care systems and
epidemic prevention organizations, and for possibly contributing to
COVID-19 spread control.

Overall, the presented results clearly indicate and identify that the
influence of geophysical, climatic, and human-related parameters on
COVID-19 infection rate should be further investigated. As a future
extension, the model will be enhanced by increasing the projection
resolution to 0.1∘ on specific areas to produce regional-scale distribu-
tions. The corresponding cloud computing service will be used to (i)
explore a more extensive set of parameters taken from open-access
repositories, (ii) understand the importance of climatic factors with
respect to human-related factors in COVID-19 infection rate, and (iii)
detect seasonal trends.
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