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Abstract

Activation of the forkhead box transcription factor FoxO is suggested to be involved in dopaminergic (DA)
neurodegeneration in a Drosophila model of Parkinson’s disease (PD), in which a PD gene product LRRK2 activates FoxO
through phosphorylation. In the current study that combines Drosophila genetics and biochemical analysis, we show that
cyclic guanosine monophosphate (cGMP)-dependent kinase II (cGKII) also phosphorylates FoxO at the same residue as
LRRK2, and Drosophila orthologues of cGKII and LRRK2, DG2/For and dLRRK, respectively, enhance the neurotoxic activity of
FoxO in an additive manner. Biochemical assays using mammalian cGKII and FoxO1 reveal that cGKII enhances the
transcriptional activity of FoxO1 through phosphorylation of the FoxO1 S319 site in the same manner as LRRK2. A
Drosophila FoxO mutant resistant to phosphorylation by DG2 and dLRRK (dFoxO S259A corresponding to human FoxO1
S319A) suppressed the neurotoxicity and improved motor dysfunction caused by co-expression of FoxO and DG2. Nitric
oxide synthase (NOS) and soluble guanylyl cyclase (sGC) also increased FoxO’s activity, whereas the administration of a NOS
inhibitor L-NAME suppressed the loss of DA neurons in aged flies co-expressing FoxO and DG2. These results strongly
suggest that the NO-FoxO axis contributes to DA neurodegeneration in LRRK2-linked PD.
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Introduction

PD, one of the most common movement disorders, is

characterized by age-dependent impairments of several nervous

systems including the midbrain DA system. The degeneration of

DA neurons in the substantia nigra produces the prominent motor

symptoms of PD. Postmortem inspections and studies with

neurotoxin-based PD models suggest a multifactorial etiology

involving inflammation, mitochondrial dysfunction, iron accumu-

lation and oxidative stress. NO, a free gaseous signaling molecule,

has also been implicated in PD [1,2]. The signaling function of

NO is dependent on the dynamic regulation of its synthase, NOS.

There are three types of NOS, neuronal NOS (nNOS), endothelial

NOS (eNOS) and inducible NOS (iNOS), in humans whereas the

Drosophila genome has only a single orthologue, dNOS. High levels

of nNOS and iNOS have been reported in the substantia nigra of

PD patients [3,4] and animal models of PD [5,6]. Overproduction

of NO is suggested to cause DNA damage, protein modifications

and cell toxicity mainly mediated by the reactive species

peroxynitrite, which may be generated with dopamine metabolism

in DA neurons. In the etiology of PD, overproduction of NO could

be caused either by upregulation of iNOS in activated glia cells

[3,5] or by an increase in intracellular calcium, for example, after

glutamate excitotoxicity [7].

The discovery of genes linked to rare familial forms of PD has

provided vital clues to understanding the cellular and molecular

pathogenesis of the disease. Missense mutations in the Leucine-rich

repeat kinase 2 (LRRK2)/Dardarin gene cause autosomal dominant

late onset familial PD as well as sporadic PD [8,9,10]. The clinical

symptoms and pathology caused by LRRK2 mutations closely

resemble those of the sporadic form of PD, suggesting that the

LRRK2 pathogenic pathway may underlie the general PD

etiology. The LRRK2 gene encodes a large protein with multiple

domains including a GTPase domain and a kinase domain [8,9].

Several amino acid substitutions are identified as pathogenic

mutations linked to PD [11]. Mutations in the kinase domain of

human LRRK2 such as G2019S and I2020T have been reported

to produce enhanced kinase activity in vitro, suggesting that gain-of-

function mutations of LRRK2 cause neurodegeneration

[12,13,14]. However, how these mutations present in the LRRK2

gene lead to the progressive loss of DA neurons and other

associated pathologies is still unknown.
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Because various key signaling pathways are conserved between

humans and Drosophila, genetic and functional studies using

Drosophila models for familial PD have revealed crucial signal

transductions that affect the pathogenesis of PD [15]. We have

previously reported that a Drosophila LRRK2 orthologue, dLRRK

phosphorylates Drosophila FoxO (dFoxO) at Ser259, which

stimulates the expression of a pro-apoptotic dFoxO target, hid,

and leads to neurodegeneration in Drosophila [16]. The event was

further enhanced by transgenic expression of pathogenic dLRRK

proteins such as dLRRK I1915T (corresponding to I2020T in

humans). However, a kinase-dead form of dLRRK (dLRRK 3KD)

did not completely suppress a synergic effect caused by the co-

expression of dFoxO with dLRRK, suggesting that some other

factor(s) modulates this pathway. Here, we report that cGKII also

phosphorylates FoxO and activates FoxO-transcriptional activity

in the same manner as LRRK2/dLRRK by using biochemical

studies of mammalian cGKII and FoxO1. Moreover, by using

Drosophila models, our data suggest that NO signaling and its

downstream effector cGKII/DG2 contribute to DA neurodegen-

eration.

Results

cGK genetically interacts with FoxO and activates FoxO
activity

We previously reported a genetic interaction between FoxO and

LRRK2/dLRRK in Drosophila [16]. To identify components of the

LRRK2-FoxO signaling pathway, we screened for modifiers (Fig. 1

and Fig. S1A). Kinases reported to affect the activity of FoxO were

expressed with dFoxO in the Drosophila eye. As reported,

transgenic expression of AKT suppressed FoxO-mediated devel-

opmental defects in the eye. The expression of MST/Hippo

resulted in extensive degeneration, which did not appear to be

dependent on FoxO (Fig. 1). Expression of one of the Drosophila

cGMP-dependent kinases (cGKs), DG2, leads to strong optic

degeneration in conjunction with dFoxO (Fig. 1 and Fig. S2A),

while the other kinases had little effect on the developmental

defects caused by FoxO (Fig. 1). Removal of one copy of the dg2

gene improved the defects, suggesting that endogenous DG2

activity contribute to the dFoxO-mediated neurodegeneration

(Fig. 2H compared with B).

Next we examined whether DG2 is an upstream kinase of

dLRRK, or whether DG2 acts independently of dLRRK by

means of a combination of genetic interaction tests, reporter assays

for FoxO and in vitro kinase assay. Co-expression of dLRRK

harboring a PD-related mutant I1915T together with DG2

dramatically enhanced the toxicity of dFoxO (Fig. 2D compared

with C). However, expression of dLRRK 3KD or removal of the

dLRRK gene did not suppress the eye phenotype caused by

dFoxO-DG2 at all (Fig. 2E and J compared with C). Co-

expression of DG2 and dLRRK I1915T produced a normal eye,

suggesting that the phenotype is dependent on the level of dFoxO

protein (Fig. 2I compared with D).

Co-expression of dFoxO with DG2, but not GFP or DG1, in

Drosophila eyes caused appearance of a slower migrated dFoxO

protein in western blot analysis (Fig. 3A), which indicates

phosphorylation of dFoxO [16]. Consistent with the result,

knockdown of DG2 decreased a phosphorylated form of

endogenous dFoxO in Drosophila brain tissue (Fig. 3B). In Drosophila

S2 cells, transient expression of DG2 together with 8-bromogua-

nosine-39, 59-cyclic monophosphate (8-Br-cGMP), a membrane

permeable analogue for cGMP, also stimulates phosphorylation of

endogenous dFoxO (Fig. 3C, lane 3).

Two groups of cGKs, the soluble type I (cGKI a and b) and the

membrane-bound type II (cGKII), have been reported in

vertebrates. In Drosophila, there are two genes encoding cGK,

namely dg1 and dg2 [17]. As reported [18], the gene products DG1

and DG2 are located in the cytoplasm and at the cytoplasmic

membrane, respectively (Fig. 3E and F). Interestingly, expression

of DG1 had little effect on the degeneration of the eye mediated by

dFoxO, suggesting that DG1 and DG2 have different roles in vivo

(Fig. S1B, S2B and S2C). Although predictions of amino acid

sequence indicate that DG2 is more similar as a cGKI a/b
homologue [19], their subcellular distribution suggests that DG2 is

functionally more similar to cGKII (Fig. 3G–J) [18,20,21].

Consistent with the idea, transgenic expression of human cGKII

exacerbated eye degeneration by dFoxO (Fig. 2G compared with

B) whereas expression of cGKII alone did not affect the eye

development (Fig. 2F). Interestingly, cGKII appeared to recruit

FoxO1 to the cytoplasmic membrane of human cultured cells

(Fig. 3K–M) while there was no evidence that cGKI associates

with cGKII in vivo (Fig. S3). In addition, we observed that cGKII is

Figure 1. Screening of kinases that affect the eye phenotypes caused by dFoxO. Drosophila orthologues of reported FoxO kinases were
expressed with (upper row) or without (lower) dFoxO in Drosophila eyes using the GMR-GAL4 driver. GFP served as a control. The Drosophila DG2 is
presumably functionally equivalent to the vertebrate cGKII. Reported phosphorylation sites and newly identified sites that are phosphorylated by
cGKII (S152–155 and S319) in human FoxO1 are indicated by black and red lines, respectively. FHD, forkhead domain; NLS, nuclear localization signal;
NES, nuclear export signal; TA, transactivation domain. Overexpressing lines used for crosses are: UAS-GFP (GFP), UAS-AKT1 (AKT), UAS-DG2 (DG2),
UAS-hippo (MST), UAS-CDK1-Myc (CDK1), UAS-CDK2-Myc (CDK2), UAS-dLRRK (dLRRK), CkIaEP1555 (CK1a), mnbEY14320 (DYRK1), UAS-bsk (JNK), UAS-dIKKß
(IKKb).
doi:10.1371/journal.pone.0030958.g001

Nitric Oxide Signaling Modulates FoxO in Neurons
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Figure 2. DG2 as well as dLRRK additively enhances FoxO-mediated developmental defects in the Drosophila eye. (A–J) SEM images of
the eye of flies expressing the indicated genes. The genotypes are: GMR-Gal4 (A), GMR-Gal4/UAS-EGFP (B), UAS-DG2; GMR-Gal4, UAS-dFoxO (C), UAS-DG2;
GMR-Gal4, UAS-dFoxO; UAS-dLRRK I1915T (D), UAS-DG2; GMR-Gal4, UAS-dFoxO; UAS-dLRRK 3KD (E), GMR-Gal4; UAS-cGKII (F), GMR-Gal4, UAS-dFoxO; UAS-
cGKII (G), GMR-Gal4, UAS-dFoxO/DG2k04703 (H), UAS-DG2; GMR-Gal4; UAS-dLRRK I1915T (I), UAS-DG2; GMR-Gal4, UAS-dFoxO; e03680/e03680 (J).
doi:10.1371/journal.pone.0030958.g002

Figure 3. DG2 modulates FoxO in vivo. (A) dFoxO and the indicated transgenes were expressed in the Drosophila eyes using the GMR-GAL4
driver. Extracts from brain tissues were subjected to western blot analysis. dFoxO-P; a phosphorylated form of dFoxO. (B) DG2 RNAi or GFP RNAi
constructs were expressed in the Drosophila brain using the elav-GAL4 driver. Western blot analysis for endogenous dFoxO was carried out as in (A).
(C) Drosophila S2 cells were transfected with or without C-terminally Myc-tagged DG2 (DG2-Myc). Thirty-six hrs post transfection, cells were treated
with or without 10 mM 8-Br-cGMP for 30 min. Cell lysate were then subjected to western blot analysis. (D) Human 293T cells were transfected with or
without cGKII-Myc, and were treated with 8-Br-cGMP as in (C). Phosphorylation of the S319 site in endogenous FoxO1 was detected with phospho-
specific antibody. (E, F) S2 cells expressing DG2-Myc (E) or DG1-Myc (F) were visualized with anti-Myc antibody (green), by counterstaining with DAPI
(blue color). (G–J) HeLa cells expressing AKT-PH-GFP (green) along with cGKII-Myc (G, H) or cGKI-Myc (I, J) were visualized with anti-Myc antibody
(red), by counterstaining with DAPI (blue color). AKT-PH-GFP was used for a marker protein of the plasma membrane [62]. (K–M) Flp-In T-REx-293
cells harboring EGFP-FoxO1 gene were transiently transfected with cGKII-Myc, and EGFP-FoxO1 was induced with doxycycline. Enlarged views of the
plasma membrane regions in cGKII-positive (Box1) and negative (Box2) cells are also shown in (M). Accumulation of FoxO1 along with cGKII in the
plasma membrane is indicated by arrowheads. Scale bars = 5 mm for (E, F), 25 mm for (G–J) and 10 mm for (K–M).
doi:10.1371/journal.pone.0030958.g003
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abundantly expressed in DA neurons in the substantia nigra of

mice (Fig. S4). We then focused on mammalian cGKII as a cGK

that might be associated with the pathology of PD. Reporter assays

for FoxO transcriptional activity revealed that cGKII stimulated

FoxO activity in cultured mammalian cells and that co-expression

of hLRRK2 with cGKII caused a 3-fold increase in FoxO activity

(Fig. 4A). A kinase-dead form of hLRRK2 (hLRRK2 3KD) did

not suppress the activation of FoxO by cGKII to the control level.

Similarly, a kinase-dead form of cGKII (cGKII KD) failed to

suppress FoxO’s activation by LRRK2 (Fig. 4B). The results of the

genetic interaction tests and the reporter assays suggested that

cGKII and LRRK2 have additive effects on the regulation of

FoxO activity.

cGK directly phosphorylates FoxO in vitro
Previously, we have demonstrated that LRRK2 phosphory-

lates, and enhances the neurotoxic activity of, FoxO. Using in

vitro kinase assays, we tested whether cGKII stimulates the kinase

activity of LRRK2 through phosphorylation, or whether cGKII

directly activates FoxO as shown in a study on LRRK2 [16]. We

transfected HEK293 cells with a FLAG-tagged cGKII or FLAG-

cGKII KD plasmid and affinity-purified these proteins using

anti-FLAG columns (Fig. 5B). We observed that cGKII WT but

not KD specifically phosphorylated GST-FoxO1 in the presence

of cGMP (Fig. 5C), and that cGKII targeted at least two sites of

FoxO1, which were in FoxO-N and FoxO-C (Fig. 5A and D). A

previous report has shown that cGKIa phosphorylates the

human FoxO1 forkhead domain mainly at S152–155 and S184,

by which the DNA-binding activity of FoxO1 is abolished [22].

We found that cGKII also phosphorylates FoxO1 at S152–155

and that these residues are major sites of phosphorylation in

FoxO-N (Fig. S5A and B). However, the replacement of serine

with alanine at S152–155 had little effect on the FoxO-

transcriptional stimulation by cGKII and the binding to 14-3-

3e protein, which regulates the cytosolic localization of FoxO, in

this context (Fig. S5C and D). Next, we determined phosphor-

ylation sites in FoxO-C. Experiments with several truncated

FoxO1 mutants narrowed down the phosphorylation sites in

FoxO-C and identified S319 as a major phospho-residue

targeted by cGKII (Fig. 5E and F). We also confirmed that

overexpression of cGKII in the presence of 8-Br-cGMP

stimulates the phosphorylation of the FoxO1 S319 site in human

cultured cells (Fig. 3D, lane 2). Although cGKIa also

phosphorylated GST-tagged full-length FoxO1 in vitro, the

S319 site did not appear to be a major phosphorylation site

(Fig. S6). The S319 site was also targeted by LRRK2 as shown

previously (Fig. 5F) and co-incubation of cGKII and LRRK2

enhanced phosphorylation of the FoxO-C fragment in in vitro

kinase assays (lane 5 compared with lane 1 in Fig. 5G). In

contrast to the phosphorylation of FoxO at S152–155, the

replacement of serine with alanine at S319 suppressed FoxO-

transcriptional activity and abolished cGKII-mediated stimula-

tion of FoxO, suggesting that phosphorylation at S319 has a

major effect on the activity mediated by cGKII as well as

LRRK2 (Fig. 4C) [16].

Figure 4. cGKII stimulates FoxO-transcriptional activity. (A, B) cGKII and LRRK2 additively stimulate FoxO-transcriptional activity. FoxO-
transcriptional activity was measured in extracts prepared from 293T cells transfected with the indicated plasmids and a plasmid for FoxO1, a FoxO
reporter plasmid containing Firefly luciferase, and a plasmid for Renilla luciferase to monitor the transfection efficiency. The relative FoxO-
transcriptional activity (Firefly luciferase activity) normalized to Renilla luciferase activity is presented. Data are presented as the mean 6 SE for three
independent experiments. b-galactosidase (Mock) served as a transfection control. (C) Introduction of the S319A (SA) mutation in FoxO1 reduced
FoxO activity. Data are presented as the mean 6 SE for three independent experiments. *, p,0.05; **, p,0.01. Co-transfection of kinase-dead forms
of cGKII and LRRK2 also sitmulated FoxO (#, p,0.05 vs. Control in B).
doi:10.1371/journal.pone.0030958.g004
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Figure 5. cGKII phosphorylates FoxO1 in vitro. (A) The recombinant FoxO1 proteins used as substrates. GST, GST-tag. Numbers indicate
corresponding amino acid residues of FoxO1. (B) FLAG-tagged cGKII and FLAG-cGKII KD were immunoprecipitated from FLAG-tagged cGKII or FLAG-
cGKII KD-transfected 293T cells as kinase sources. Western blotting confirmed that the amounts of the two proteins obtained were similar. (C, D) In
vitro kinase assays of cGKII using recombinant GST-FoxO1 as a substrate. In the presence of cGMP, cGKII WT but not cGKII KD phosphorylated GST-
FoxO, GST-FoxO-N, and GST-FoxO-C. Autoradiography (P32) and Coomassie brilliant blue (CBB) staining of the gels are shown. Note cGKII proteins by

Nitric Oxide Signaling Modulates FoxO in Neurons
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cGK phosphorylates LRRK2, but does not affect the
kinase activity of LRRK2 in vitro

To examine the possibility that cGKII activates the kinase

activity of LRRK2, or that LRRK2 activated cGKII, we further

performed in vitro kinase assays using 4E-BP1 and FoxO-N as

substrates (Fig. 5H). As reported [14], LRRK2 specifically

phosphorylated 4E-BP1, which is not dependent on cGMP, while

cGKII failed to do so (lanes 4 and 5 compared with lane 2 in

Fig. 5H). cGKII and cGKII KD had little effect on the kinase

activity of LRRK2 toward 4E-BP1 (lanes 6 and 7 vs. lanes 4 and 5

in Fig. 5H). cGKII but not cGKII KD or LRRK2 effectively

phosphorylated FoxO-N (lane 9 compared with lanes 10 and 11 in

Fig. 5H). Again LRRK2 had little effect on the kinase activity of

cGKII toward FoxO-N (lane 12 compared with lanes 9 and 13 in

Fig. 5H). However, cGKII also appeared to phosphorylate

LRRK2 without modifying the kinase activity of LRRK2 (lane 6

vs. lanes 5, and lane 12 vs. lane 11 in Fig. 5H and Fig. S7). The in

vitro observation that cGKII and LRRK2 act independently was

consistent with the results of the genetic test (Fig. 2) and the

reporter assay (Fig. 4).

Phosphorylation of FoxO by DG2 as well as dLRRK causes
DA neurodegeneration

We next examined the pathological consequence of the

phosphorylation of FoxO by DG2 and dLRRK in Drosophila.

Ubiquitous or pan-neuronal expression of DG2 or dFoxO using

GAL4 drivers for constitutive expression caused death. We then

employed the mifepristone-inducible GAL4 system (GeneSwitch-

GAL4) that drives the tissue-specific expression of upstream

activating sequence (UAS)-constructs in post-mitotic cells. Pan-

neuronal co-expression of dFoxO with DG2, but not the

expression of either dFoxO or DG2 alone, caused significant

neuronal loss in the PPM1/2 cluster Tyrosine hydroxylase (TH)-

positive neurons of the adult brain (Fig. 6A). Expression of

dLRRK I1915T exacerbated the neurotoxicity mediated by

dFoxO and DG2 co-expression (Fig. 6A). In this context, the

introduction of the S259A mutation, which corresponds to S319A

in human FoxO1, attenuated the toxic interaction of dFoxO with

DG2 (Fig. 6B). Consistent with the viability of TH-positive

neurons, the motor activity of the flies expressing dFoxO and DG2

was impaired (Fig. 6C). Co-expression of dLRRK I1915T further

worsened the motor dysfunction (Fig. 6C). Treatment with 1 mM

L-3,4-dihydroxyphenylalanine (L-DOPA) significantly improved

the locomotor activity of dFoxO and DG2-coexpressing flies

(Fig. 6D), suggesting that the reduction in motor activity reflects

DA degeneration. The expression of only DG2 mildly affected

lifespan (Fig. 6E), whereas the co-expression of DG2 and dFoxO

significantly shortened lifespan (Fig. 6E). However, the dFoxO

S259A mutation failed to suppress the decrease in lifespan caused

by the co-expression of dFoxO and DG2, suggesting that the toxic

interaction of DG2 with dFoxO that affects lifespan is produced by

a different mechanism rather than phosphorylation at S259 by

DG2 (Fig. 6F). We then examined whether endogenous dFoxO

contributes to DG2-mediated toxicity in Drosophila (Fig. 7A and B).

Pan-neuronal expression of DG2 alone by the GeneSwitch-GAL4

driver caused mild motor defect (Fig. 7A). Removal of one copy of

functional FoxO allele had little effect on the motor function

(Fig. 7A) and lifespan (Fig. 7B) whereas it partly suppressed DG2-

mediated motor dysfunction (Fig. 7A) and reduction in lifespan

(Fig. 7B). These results suggested that endogenous dFoxO is also

involved in neurodegeneration by DG2.

NO signal leads to DA neurodegeneration through DG2-
FoxO

The activation of cGK requires cGMP. cGMP is generated by

the NO-mediated activation of sGCs as well as ligands-mediated

activation of receptor GCs [23,24,25]. However, as NO generated

by NOS has been implicated in PD, the role of NOS-sGC was

investigated via functional assays in Drosophila. We tested whether

the Drosophila NO signal components dNOS and sGC are indeed

involved in FoxO and DG2-mediated DA neurodegeneration in

Drosophila (Fig. 8). Genetic interaction tests showed that co-

expression of dNOS enhances the FoxO-mediated degeneration in

the eye (Fig. 8B). In contrast, knockdown of sGC a or b subunits

partially improved the phenotype of dFoxO expression (Fig. 8C

and D). Moreover, knockdown of sGCa or removal of one copy of

the DG2 genes improved the eye degeneration caused by co-

expression of dFoxO with dNOS (Fig. 8E and F compared with B).

In the context of pan-neuronal expression of FoxO and DG2 in

Drosophila, treatment with a NOS inhibitor, Nv-Nitro-L-Arginine-

Methyl-Ester (L-NAME), but not the inactive D-enantiomer D-

NAME, significantly suppressed loss of the PPM1/2 and PPL1

cluster DA neurons (Fig. 9A–E). In this setting, L-NAME

treatment specifically reduced phosphorylation of dFoxO

(Fig. 9F). The endogenous function of dNOS-DG2 signaling in

DA neurodegeneration was estimated by survival assays of DG2 or

dNOS mutant flies administrated with a PD-related toxin,

paraquat, where both mutant lines showed significant resistances

to paraquat (Fig. 9G). These results suggested that DG2/cGKII

activated by NO signal could affect the survival of DA neurons

through FoxO.

Discussion

We have previously demonstrated that dLRRK/LRRK2

phosphorylates and stimulates FoxO, which confers neurotoxic

activity to FoxO, activating the expression of pro-apoptotic

proteins such as Bim/Hid [16]. Searching for LRRK2-FoxO

signaling components, we found that Drosophila cGK DG2 also

exacerbates FoxO-mediated neurotoxicity. The current study

suggests that cGKII/DG2 activates FoxO similar to, but

independently of, LRRK2. However, in spite of the similar

activation mechanism, the genetic results suggested that the Hid-

DIAP-Dronc pathway is not a major cause of the optic

degeneration by DG2-FoxO (Fig. S8A–D). Supporting this result,

a quantitative RT-PCR analysis showed that DG2 or DG2/

dFoxO does not effectively stimulate FoxO-mediated transactiva-

tion of hid as well as 4E-BP (Fig. S8E and F). We attempted to

determine downstream effector(s) of DG2-dFoxO using a

combination of microarrays, real-time PCR and Drosophila genetic

screening, but could not identify any candidate genes, suggesting

CBB staining were difficult to detect in spite of the presence of autophosphorylation signals of cGKII (cGKII in P32) (E) cGKII and LRRK2 phosphorylated
the P3 but not P4 or P5 protein. Autophosphorylation signals of cGKII and LRRK2 are also shown (cGKII and LRRK2 in P32). The mock
immunoprecipitate (Mock) served as a control. (F) In vitro kinase assay using P3 and a series of P3 mutants where the candidate phosphorylation
residues are replaced with alanine (refer to [16] for information on the mutated residues). The phosphorylation by cGKII or LRRK2 was decreased in
the P3 S319A mutant. (G) Co-incubation of cGKII and LRRK2 enhanced GST-FoxO-C phosphorylation. (H) cGKII failed to stimulate LRRK2 kinase
activity and LRRK2 failed to stimulate cGKII kinase activity. His-tagged 4E-BP1 and GST-FoxO-N served as LRRK2-specific and cGKII-specific substrates,
respectively.
doi:10.1371/journal.pone.0030958.g005

Nitric Oxide Signaling Modulates FoxO in Neurons
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Figure 6. Neuronal activation of dFoxO by DG2 affects the maintenance of DA neurons in Drosophila. (A) The number of protocerebral
posterior medial (PPM) 1/2 clusters of Tyrosine hydroxylase (TH)-positive DA neurons in 24-day-old adult flies. Neuron-specific expression of dFoxO,
dLRRK I1915T and/or DG2 was induced following the administration of the activator RU486 (25 mg/mL) in the elav-GeneSwitch-GAL4 (elav-GS)
crosses. elav-GS/+ served as a control. Data are presented as the mean 6 SE for three repeated experiments (*, P,0.05; **, p,0.01). (B) Co-expression
of the dFoxO S259A (SA) mutant with DG2 suppressed the loss of PPM 1/2 TH-positive neurons. Flies were treated as in (A). (C) Adult aged flies
expressing dFoxO and DG2 under the control of elav-GS showed motor defects, while the expression of dFoxO alone had little effect. The values
represent means 6 SE for 20 trials in six independent experiments (*, p,0.05; ***, p,0.001). (D) Treatment with 1 mM L-DOPA in phosphate-buffered
saline (PBS), but not with PBS alone, for 4 days rescued the loss of climbing ability in dFoxO and DG2-expressing flies. dFoxO served as a control. The
values represent means 6 SE for 20 trials in six independent experiments (**, p,0.01). (E) Flies from each genotype were subjected to survival assays
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that DG2 has more complex functions in gene regulation. For

example, DG2 might modulate another transcription regulator

through phosphorylation along with dFoxO.

Activation of the NOS-sGC pathway leads to increased cGMP

levels [26], which in turn has physiological consequences by

regulating cGMP effector proteins such as cGMP-regulated ion

channels, cGMP-regulated phosphodiesterases, and cGKs [25,27].

It is widely appreciated that cGKs have a variety of roles in tissues,

and in the central nervous system. For instance, cGKs regulate

neurotransmitter release/uptake and receptor trafficking, neuronal

differentiation and axon guidance, synaptic plasticity and memory

through the phosphorylation of substrates [27,28,29]. There are

two cGK isoforms, cGKI a/b and cGKII, in vertebrates. While

cGKI a/b is cytosolic and mainly found in the cerebellum,

cerebral cortex, hippocampus, hypothalamus, and olfactory bulb

of the brain, cGKII is located in the cellular membranes and

widely distributed in the brain [30,31,32]. Here, we demonstrated

that cGKII is abundantly expressed in DA neurons in the

substantia nigra of the murine midbrain, suggesting that cGKII

has a pathogenic role similar to DG2.

What signal mediates stimulation of cGMP synthesis and

subsequent cGKII activation in PD remains unclear. The

activation of microglia is believed to be one of the pathological

processes [33,34], which might begin with the release of

aggregated proteins such as oligomeric a-synuclein from neurons

into the extracellular space [35]. Inflammation will be amplified by

microglial activation and the release of proinflammatory cytokines

and inducible NOS [5]. Similarly, dNOS, the only NOS

orthologue in Drosophila, is involved in an immune response [36].

Thus, inducible NOS responding early to inflammation could be a

trigger of the cGKII-FoxO-mediated neurotoxic pathway in

humans. In this context, pathogenic LRRK2 with increased

kinase activity might potentiate the above pathogenic mechanism.

We found that cGKII physically interacts with LRRK2 (Fig. S9),

and that they are co-localized at the endosomes (Fig. S10)

although our current study suggests LRRK2 and cGKII act

independently in the context of FoxO activation. However, we

observed that co-expression of cGKII KD and LRRK2 3KD

partially stimulates FoxO (Fig. 4B). These kinases have been

reported to form a dimmer when activated [29,37,38]. Thus

overexpression of kinase-dead forms of cGKII and LRRK2 may

accidentally recruit and activate the endogenous kinases in 293T

cells although we could not detect the endogenous expression of

cGKII in this cell line.

The involvement of NO signaling in PD has been suggested by

the findings of higher levels of nNOS and iNOS in the

nigrostriatal region and basal ganglia in post mortem PD brains

[3,4]. The emerging evidence for pathogenic roles of microglia

and astrocytes in PD now supports the idea that glia-induced

inflammation and NO production promote the disease’s devel-

opment. However, most studies with post mortem samples or PD

models showed only that NO could be a generator of oxidative

stress since NO is a free radical involved in a wide range of

physiologic events [39]. A very recent study on rodent models of

PD have shown that specific inhibition of sGC-cGMP signaling

improves basal ganglia dysfunction and motor symptoms,

suggesting that NO signaling could act specifically on PD etiology

[40]. Our study here provides the possibility that NO signaling

downstream to cGK along with FoxO has a pathogenic role in

PD.

The relationship between the NO signal and FoxO has been

pointed out in a report on a tail suspension-induced model of

muscle atrophy, where nNOS-NO is suggested to induce muscle

atrophy by upregulating the muscle-specific E3 ubiquitin ligases

MuRF-1 and atrogin-1/MAFbx through FoxO activation. Since,

the AKT signal is not involved in this mechanism, the molecular

mechanism by which FoxO is regulated by nNOS-NO remains

unknown [41]. Considering our finding regarding neurodegen-

eration, cGK may regulate FoxO as a mediator of the NO signal

in the atrophic muscles as well. Studies have shown that cGK

Figure 7. Reduction of endogenous dFoxO activity suppresses DG2-mediated toxicity. (A) The climbing activity was measured as in
Figure 6C. The values represent means 6 SE for 20 trials in three independent experiments (*, p,0.05). (B) Survival assays of female adults (n = 105–
106) were performed as in Figure 6E. DG2 vs. DG2, dFoxO (+/2), p,0.01; DG2, dFoxO (+/2) vs. Control, p,0.01. The genotypes are: elav-GS/+
(Control), UAS-DG2; elav-GS (DG2), elav-GS/dFoxO21 (dFoxO (+/2)), UAS-DG2; elav-GS/dFoxO21 (DG2, dFoxO (+/2)).
doi:10.1371/journal.pone.0030958.g007

at 29uC. elav-GS/+ served as a control. Female adults (n = 119–121) were fed yeast paste containing 25 mg/mL_ RU486. Expression of DG2 shortened
lifespan compared with the control (DG2 vs. Control, p,0.01; dFoxO, DG2 vs. Control, p,0.0001). (F) Flies from each genotype (n = 119–122) were
subjected to survival assays as in (E). Pan-neuronal expression of dFoxO SA alone had no significant effect on lifespan when compared with that of
dFoxO. Co-expression of dFoxO SA with DG2 failed to attenuate the effect of dFoxO-DG2 combination on lifespan (dFoxO SA, DG2 vs. dFoxO, DG2;
p = 0.485).
doi:10.1371/journal.pone.0030958.g006
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indirectly activates FoxO4 through activation of the JNK

pathway [42,43], which provides anti-tumor effects in colon

cancer cells. Although the proposed sites of phosphorylation by

JNK do not appear to be conserved in dFoxO, there is

substantial evidence that JNK-FoxO regulates different cellular

processes including anti-aging and cell death in Drosophila

[44,45,46]. Thus, DG2 could also stimulate the JNK pathway

in conjunction with FoxO, widely affecting a variety of cellular

mechanisms. This idea could explain why the FoxO SA mutant

failed to suppress the DG2-mediated decrease in lifespan of

Drosophila (Fig. 6E and F).

Although more studies are needed in mammalian systems, our

finding of a novel link between the NO signal and FoxO in

neurodegeneration suggests that appropriate pharmacological

control of the NO pathway would prevent or diminish

pathological problems in PD.

Materials and Methods

Drosophila genetics
The Drosophila cultures and crosses were performed on standard fly

food containing yeast, cornmeal and molasses, and flies were raised

at 25uC unless otherwise stated. General fly stocks and GAL4 lines

were obtained from the Bloomington Drosophila stock center. These

flies have been described previously: UAS-dFoxO [47], UAS-dFoxO

S259A [16], UAS-DG1 [18], UAS-DG2 [18], UAS-dNOS [48], UAS-

hLRRK2 WT [49], UAS-hLRRK2 I2020T [49], UAS-dLRRK WT [14],

UAS-dLRRK I1915T [14], UAS-dLRRK 3KD [14], e03680 (dLRRK

null) [14], elav-GeneSwitch [50], UAS–hipo/MST [51], UAS-dIKKß

[52], UAS-CKIa RNAi [53], dFoxO21 [54], dNOSD15 [55], UAS-AKT1

(Bloomington stock #8191), UAS-CDK1-Myc (#6642), UAS-CDK2-

Myc (#6634), UAS-bsk/JNK (#6407), mnbEY14320/DYRK1EY14320

(#21430), CkIaEP1555 (#17009, [56]), DG2k04703 (#10382), UAS-

sGCa99BRNAi (#28748), UAS-sGCb100BRNAi (#28786), hid1 (#631),

DIAP1 (#618), and UAS-Dronc RNAi (NIG-fly 8091R-2 III). UAS-

human cGKII was generated in the Davies lab.

Antibodies
The anti-a-Tubulin (DM1A), anti-b-Tubulin (Tub2.1) and anti-

FLAG (M2) antibodies were purchased from Sigma-Aldrich. The

anti-FoxO1 (#9454) antibody was obtained from Cell Signaling

Technology. The anti-Myc (4A6), anti-Actin (MAB1501) and anti-

phospho-FoxO1 (Ser319, 51136-1) antibodies were purchased

from Millipore, Chemicon and Signalway, respectively. The rabbit

anti-Drosophila TH and anti-dFoxO polyclonal antibody has been

described previously [16,57]. Anti-cGKII [30] and anti-cGKIa
[31] were kindly provided by Drs. M. Hoffmeister and P.

Weinmeister, respectively. The rabbit anti-hLRRK2 polyclonal

antibodies were raised against GST-hLRRK2 (823–1004 aa) and

(1868–2138 aa) produced in E. coli BL21(DE3)pLysS (Novagen).

Plasmids
cDNA for human cGKIa and rat cGKII, kindly provided by

Drs. S. Lohmann and A. Smolenski, was subcloned into pcDNA3-

Myc or pcDNA3-FLAG. A plasmid for EGFP-FoxO1 was a kind

gift from Dr. T. Unterman. A plasmid for AKT-PH-GFP was

from Addgene. Plasmids for FLAG-hLRRK2 and FLAG-dLRRK

[14], mouse FoxO1, and human 4E-BP1 and the luciferase

reporter plasmid for FoxO (TK.IRS3) have been reported

elsewhere [58]. The plasmid for DG2 was also reported previously

[18]. Mutations were introduced using the QuikChange II XL

Site-directed mutagenesis kit (Stratagene). Although we used

mouse FoxO1 cDNA as a mammalian FoxO gene, the numbering

is based on the human sequence to avoid confusion. Thus,

Ser149–152, Ser181 and Ser316 in mouse FoxO1 correspond to

Ser152–155, Ser184 and Ser319 in human FoxO1, respectively.

The kinase-dead form of rat cGKII (cGKII KD) was generated by

replacing Asp549 with alanine, which corresponds to bovine

cGKIa D501A mutation described in [59].

In vitro phosphorylation assay
FLAG-cGKII, FLAG-hLRRK2, and mock fractions immuno-

purified from transfected and mock-transfected 293T cells were

used as kinase sources. The same batches of kinase fractions were

used throughout the experiments, and their quality and quantity

was confirmed by western blot as shown in Fig. 5B and S6. Five

micrograms of GST-FoxO1, mutant forms of GST-FoxO1 and

His-4E-BP1 were incubated with the kinase sources in a kinase

reaction buffer containing 20 mM HEPES (pH7.4), 15 mM

MgCl2, 5 mM EGTA, 0.1% Triton X-100, 0.5 mM DTT,

1 mM b-glycerolphosphate, and 2.5 mCi [c-32P]-ATP in the

presence or absence of 30 mM cGMP for 30 min at 30uC. The

reaction mixture was then suspended in SDS sample buffer and

subjected to SDS-PAGE and autoradiography.

Cell culture, immunopurification and western blotting
Transfection of human embryonic kidney 293T and Drosophila

Schneider 2 (S2) cells, immunopurification from the transfected

cell or mouse brain lysate, and western blotting were performed as

described previously [16,60,61]. Flp-In T-REx-293 cell line

Figure 8. NO signal is involved in FoxO-mediated neurode-
generation. (A–D) SEM images of the eyes of flies expressing the
indicated genes. The genotypes are: GMR-Gal4/UAS-dNOS (A), GMR-
Gal4, UAS-dFoxO/UAS-dNOS (B), GMR-Gal4, UAS-dFoxO; UAS-sGCa99BRNAi

(C), GMR-Gal4, UAS-dFoxO; UAS-sGCb100BRNAi (D), GMR-Gal4, UAS-
dFoxO/UAS-dNOS; UAS-sGCa99BRNAi (E), GMR-Gal4, UAS-dFoxO/UAS-
dNOS, DG2k04703 (F).
doi:10.1371/journal.pone.0030958.g008
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harboring doxycycline-inducible EGFP-FoxO1 gene was generat-

ed according to the manufacturer’s instructions (Invitrogen).

Scanning Electron Microscopy (SEM)
Adult flies were processed as described previously [14]. SEM

images were obtained at The Biomedical Research Core of

Tohoku University Graduate School of Medicine.

Lifespan and survival assays
Twenty female adult flies per vial were maintained at 29uC,

transferred to fresh fly food vials containing 250 ml of yeast paste

and 25 mg/ml of RU486, and scored for survival every 4 days. To

control for isogeny, all fly lines were backcrossed to the w2 wild-

type background for six generations or were generated on the w2

background, and thus have matched genetic backgrounds.

Survival assays of flies treated with 2 mM paraquat were

performed as described previously [14].

Climbing assay
The climbing assay was performed as described previously [14].

Briefly, twenty flies were placed in a plastic vial (18.6 cm in

height63.5 cm2 in area) and gently tapped to bring them down to

the bottom of the vial. Flies were given 18 s to climb and the

number of flies more than 6 cm from the bottom was counted.

Twenty trials were performed for the same set of flies. Flies at 20

days of age were left untreated or treated with 1 mM L-DOPA for

4 days, then subjected to climbing assays.

Whole-mount immunostaining
Total number of TH-positive neurons were calculated following

whole-mount immunostaining of brain samples as described

previously [57]. All immunohistochemical analyses were per-

formed using a Carl Zeiss laser scanning microscope system.

Statistical analysis
The one-way repeated measures ANOVA was used to

determine significant differences between multiple groups unless

otherwise indicated. If a significant result was achieved (p,0.05),

the means of the control and the specific test group were analyzed

using the Tukey-Kramer test. For lifespan assays, a Kaplan-Meier

analysis with the log-rank test was performed.

Supporting Information

Figure S1 Evaluation of mnb and dg1 expression in
mnbEY14320 and UAS-DG1 fly lines in the presence of the
GAL4 driver. Total RNA was extracted from the Da-Gal4

crosses. The mnb, an orthologue of mammalian DYRK1, dg1 and

rp49 transcript levels were measured by real-time PCR. mnb (A) or

dg1 (B) transcript levels normalized to those of rp49 are presented.

(TIF)

Figure 9. Inhibition of NO signal improves DG2-dFoxO-
mediated DA neurodegeneration. (A) Newly eclosed normal w-
flies (Control) or transgenics harboring elav-GS.UAS-dFoxO/UAS-DG2
(n = 22 in each) were fed a yeast paste containing 50 mg/mL_ RU486
with or without 10 mM L-NAME or D-NAME every 4 days at 29uC. The
graph presents the number of PPM 1/2 and PPL1 clusters of TH-positive
neurons in 20-day-old adult flies. PPM1 and PPM2 clusters were
counted together. Data are presented as the mean 6 SE for three
experiments (*, p,0.05 vs. Control). PPL, the protocerebral posterior
lateral. Non; RU486 only. (B) A representative image of TH-positive

PPL1, PPM1, PPM2 (upper circle) and PPM3 (lower circle) neurons of a
wild-type w- adult fly. Arrowheads indicate a pair of PPM1 neurons.
Bar = 50 mm. (C–E) Representative images of TH-positive neurons
treated as in A. (F) Brain tissues of dFoxO transgenic flies treated with
L-NAME or D-NAME were subjected to western blot analysis with anti-
dFoxO. dFoxO SA mutant was also included as a non-phosphorylated
control. Transgenes were expressed by the elav-GS driver. (G) Reduction
of dNOS and DG2 activities confers stress resistance against 2 mM
paraquat treatment. dNOS (2/2) vs. Control, p,0.0001; DG2 (+/2) vs.
Control, p,0.01. The genotypes are: w- (Control), dNOSD15/dNOSD15

(dNOS (2/2)), DG2k04703/+ (DG2 (+/2)).
doi:10.1371/journal.pone.0030958.g009
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Figure S2 DG1 does not exacerbate dFoxO-mediated
eye degeneration. Transgenic expression of DG2 alone did not

produce eye degeneration, and DG1 had little effect on the eye

phenotype caused by expression of dFoxO (when compared to

Figure 2B). (C) The numbers of ommatidia per fly eye (from 5 flies)

were quantified. *, p,0.05; N.S., non-significant. The genotypes

are: UAS-DG2; GMR-Gal4 (A), GMR-Gal4, UAS-dFoxO; UAS-DG1

(B), GMR-Gal4/UAS-EGFP (EGFP), GMR-Gal4, UAS-dFoxO/UAS-

EGFP (dFoxO, EGFP), GMR-Gal4, UAS-dFoxO; UAS-DG1 (dFoxO,

DG1) (C).

(TIF)

Figure S3 cGKII does not form a stable complex with
cGKIa or FoxO1. Lysate from 293T cells transfected with

cGKII-FLAG together with or without FoxO1-Myc or cGKIa-

Myc was immunoprecipitated with anti-FLAG antibody (FLAG-

IP). Immunoprecipitates and total soluble lysates (Lysate) were

analyzed by western blotting.

(TIF)

Figure S4 cGKII is expressed in DA neurons of the
murine midbrain. Immunolocalization of cGKIa (green in A,
C), cGKII (green in B, D) and TH (red) in coronal sections of the

substantia nigra (A, B) and striatum (C, D) of the brain. Yellow in

B indicates the expression of cGKII in TH-positive neuronal

processes (arrow heads) as well as cell bodies (arrows). The right

columns of each panel show high-magnification images of the

boxes in the left columns. Scale bars = 20 mm.

(TIF)

Figure S5 Mutations of cGKII phosphorylation sites
localized in FoxO1-N do not affect the FoxO-transcrip-
tional activity. (A) Reported phosphorylation sites in FoxO1 by

cGKI are depicted [22]. Phospho-resistant mutants, where the

indicated Ser or Thr residues are replaced with alanine, are also

shown. (B) The phospho-signal by cGKII was decreased in GST-

FoxO-4M compared with GST-FoxO-N WT (lane 3 vs. lane 2),

but was no longer decreased in GST-FoxO-5M (data not shown),

suggesting that S184 is not a major phosphorylation site by cGKII.

(C) The FoxO1 4M mutation had little effect on FoxO-

transcriptional activity stimulated by cGKII and/or LRRK2. (D)

Effects of the 4M mutation on physical interaction between FoxO1

and 14-3-3e were estimated in 293T cells. FoxO1-Myc-6x His was

pulled down with Ni-NTA beads from the lysate of cells expressing

the indicated transgenes.

(TIF)

Figure S6 The Ser319 site of FoxO1 is not a major target
of cGKI in vitro. In vitro kinase assay was performed as in Fig. 5.

P3 SA; a P3 mutant in which the Ser319 residue is replaced with

alanine. Autophosphorylation signals of cGKII and cGKI are also

shown in the upper panel.

(TIF)

Figure S7 cGKII phosphorylates LRRK2. (A) cGKII WT

but not cGKII KD phosphorylates LRRK2 3KD (lane 9) as well

as LRRK2 WT (lane 6) in in vitro kinase assay. In vitro kinase assay

was performed as in Fig. 5. (B) Western blot analysis with anti-

FLAG indicates similar amounts of FLAG-LRRK2 WT and

FLAG-LRRK2 3KD were used in the kinase assay.

(TIF)

Figure S8 Hid is not a major gene responsible for FoxO-
DG2-mediated optic degeneration. Introduction of loss-of-

function alleles of a pro-apoptotic gene hid (B) or anti-apoptotic

DIAP (C), or knockdown of Dronc, a caspase downstream of Hid

(D), had little effects on the eye phenotype by co-expression of

dFoxO and DG2 (A). The genotypes are: UAS-DG2; GMR-Gal4,

UAS-dFoxO (A), UAS-DG2; GMR-Gal4, UAS-dFoxO; hid1 (B), UAS-

DG2; GMR-Gal4, UAS-dFoxO; DIAP1 (C), UAS-DG2; GMR-Gal4,

UAS-dFoxO; UAS-DroncRNAi (D). (E) Real-time RT-PCR analysis

for hid and 4E-BP was performed using total RNA from S2 cells

expressing the indicated gene combinations. Values are presented

as the mean 6 SE for three repeated experiments. *, p,0.05 vs.

Control.

(TIF)

Figure S9 cGKII is associated with LRRK2. (A) Lysate

from 293T cells transfected with FLAG-tagged LRRK2 with or

without Myc-cGKII was immunoprecipitated with anti-FLAG

antibody (FLAG-IP). Immunoprecipitates and total soluble lysates

(lysate) were analyzed by western blotting. (B) The diagram

represents LRRK2 and the mutants used to determine the cGKII-

binding domain. Numbers in parentheses indicate corresponding

amino acid residues of LRRK2. LRR, leucine-rich repeat; ROC,

Ras in complex proteins; COR, C-terminal of Roc; Kinase,

protein kinase domain; WD40, WD40 domain. (C) Immunopre-

cipitation-western blot analysis as in (A) revealed cGKII to be

associated with LRRK2-C. (D) cGKII associates strongly with

LRRK2-C3, and weakly with LRRK2–C1 and –C2. (E) Endog-

enous interaction of cGKII but not cGKIa with LRRK2 in brain

tissue. Mouse brain tissues were lysed as described [60], then the

supernatant fractions were immunoprecipitated (IP) with anti-

cGKII or anti-cGKIa antibodies. The co-precipitated LRRK2

was detected by western blotting using anti-LRRK2 antibody.

293T lysate expressing FLAG-LRRK2 or FLAG-cGKII served as

a positive control.

(TIF)

Figure S10 cGKII is co-localized with LRRK2 at the
endosomes. (A) Immunolocalization of cGKII and LRRK2 in

293T cells expressing FLAG-LRRK2 and Myc-cGKII. cGKII

and LRRK2 were visualized with anti-Myc (green) or anti-

LRRK2 antibody (red). LRRK2 is localized at the Rab-positive

endosomes (data not shown). cGKII is localized at the cytoplasmic

membrane and partly in the cytoplasmic compartments. cGKII

and LRRK2 were co-localized at the Rab-positive endosomes

(yellow). Scale bar = 10 mm. (B–E) Immunolocalization of cGKII

(red) in 293T cells expressing Myc-cGKII and EGFP-tagged Rabs

(green). Cytosolic cGKII is located mainly at Rab4- and Rab5-

positive endosomes, and partially at Rab7- or Rab11-positive

endosomes.

(TIF)
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