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Electrocorticography (ECoG) has been demonstrated as a promising neural signal source for developing brain-machine interfaces
(BMIs). However, many concerns about the disadvantages brought by large craniotomy for implanting the ECoG grid limit the
clinical translation of ECoG-based BMIs. In this study, we collected clinical ECoG signals from the sensorimotor cortex of three
epileptic participants when they performed hand gestures. The ECoG power spectrum in hybrid frequency bands was extracted
to build a synchronous real-time BMI system. High decoding accuracy of the three gestures was achieved in both offline analysis
(85.7%, 84.5%, and 69.7%) and online tests (80% and 82%, tested on two participants only). We found that the decoding
performance was maintained even with a subset of channels selected by a greedy algorithm. More importantly, these selected
channels were mostly distributed along the central sulcus and clustered in the area of 3 interelectrode squares. Our findings of
the reduced and clustered distribution of ECoG channels further supported the feasibility of clinically implementing the
ECoG-based BMI system for the control of hand gestures.

1. Introduction

Brain-machine interfaces (BMIs) havepotential capabilities to
bypass the interrupted motor pathways caused by neurologi-
cal disorders or amputation and to build a direct communica-
tion between the brain and external devices by interpreting
brain acitivities [1]. With this emerging technology, the
paralyzed and amputated are able to perform simple actions
through the external prosthesis and improve their ability of
daily life [2].

Electrocorticography (ECoG) has been widely exploited
to localize the seizure foci of the patients with intractable
epilepsy for decades. Since ECoG signal could be collected
through epidural or subdural electrodes placed on the surface
of the cortex, it provides higher signal quality and spatial

resolution than noninvasive neural signals, such as EEG sig-
nals [3]. Compared with neuronal ensemble recording, the
implantation of ECoG recording is less invasive and reduces
the clinical risks as well as ensures a long-term stability [4].
Therefore, ECoG has attracted considerable and extensive
interest in BMI studies recently because of its good trade-
off between performance and reduced invasiveness. ECoG
has also been used to reconstruct high-dimensional arm
movement [5, 6], predict movement directions [7] and single
finger flexion [8–11], and classify hand gesture type [12, 13]
as well as detect gross grasp movement [14, 15] with less
training [16]. These studies demonstrate that the signal-to-
noise ratio and the temporal-spatial resolution of the ECoG
signals are sufficient to represent multiple hand gestures and
provide commands to control a robotic hand in real time.
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Although ECoG has been proven to be a good candidate
of signal sources for BMI control, safety and reliability
issues together in BMI field must be carefully considered
before being applied into clinical practice. One of the main
open challenges in this field is related to the minimization
of the cortical area. Conventional intracranial ECoG elec-
trodes are arranged in grids or strips covering a large area
of the cortex surface aiming to simultaneously monitor
brain regions and localize the seizure onset zone. Some
studies pointed that the number and locations of elec-
trodes which were chosen exclusively for clinical purposes
did not exactly agree with the requirements in a BMI area.
The large extent of the conventional implantation of
ECoG grids exerts a great effect on the brain, which signif-
icantly increases the surgery and the postoperative recov-
ery risks [17]. For these reasons, BMI users prefer a
smaller but less invasive configuration of electrode grid
without sacrificing decoding performance. By decreasing
both the electrode diameter and the interelectrode dis-
tance, some studies customized micro-ECoG (4mm
center-to-center spacing) to realize a less invasive proce-
dure and dectect movement intent with very local cortical
activity. However, the optimal interelectrode distance is
still uncertain and needs further study [18]. Beyond that,
decreasing the number of channels on the premise of cer-
tain decoding accuracy could also reduce the area for grid
covering. Different strategies have been proposed to opti-
mize the number of ECoG electrode channels for the
purpose of reducing the number of input features of the
decoder and improve both decoding accuracy and compu-
tational speed. Among them, Milekovic et al. restricted
electrode channels in a limited cortical region using neigh-
boring channels to decode arm movement [19]. And
Zhang et al. decoded visual stimuli using a single ECoG
channel [20]. However, to our knowledge, few studies have
investigated the optimal number of electrode channels in
hand gesture discrimination and the corresponding ana-
tomical distribution of these functional channels.

In this work, we aimed to analyze the ECoG representa-
tion in the sensorimotor cortex during the execution of hand
gestures and reduce the area for electrode grid covering. The
channels selected by single channel selection showed a cluster
distribution during a hand gesture discrimination task and
the greedy selection [21] was employed to further select the
best electrode subset. The electrodes chosen by greedy selec-
tion were observed locating around the central sulcus and
gathered in the area of three interelectrode squares. Notably,
these selected electrodes were informative in distinguishing
hand gesture types with high decoding performance in both
offline and online real-time BMI system. Overall, these

results contribute to our exploration of minimized invasive-
ness and help to further promote the clinical translation of
BMIs into practice applications.

2. Materials and Methods

2.1. Participants and Implantation. All three participants in
this study were suffering from intractable epilepsy and
required surgical treatment for epileptic seizure control.
The clinical subdural electrodes were surgically implanted
in the sensorimotor cortex for clinical monitoring and local-
ization of the seizure foci. The configuration and location of
the electrodes, as well as the duration of the implantation,
were determined by clinical requirements. The clinical elec-
trodes were platinum electrodes with a diameter of 4mm
(2.3mm exposed) spacing at 10mm and generally implanted
only for a period ranging from several days up to 2 weeks.The
key information of the participants and their implantation
sites are shown in Table 1.

All procedures were followed from the guide and
approved by the Second Affiliated Hospital of Zhejiang
University, China. Participants gave written informed con-
sent after detailed explanation of the potential risks of the
research experiment.

2.2. Cortical Mapping. Postoperative computed tomography
(CT) scans were used to confirm the location of the elec-
trodes. All three participants went through the clinical
examination routine of the motor, sensory, language func-
tion, and so on through cortical stimulation mapping
(CSM), which helped to further and functionally localize
the electrodes. None of the hand motor areas of all the partic-
ipants was seizure onset zone in our study.

2.3. Behavioral Tasks. Participants were instructed to per-
form one of three hand gestures (“scissors,” “rock,” and
“paper”) or relax their hands in a rest position according to
the cues presented on the screen in front of them.

In the rest position, participants were asked to relax their
task hands and flex the fingers slightly with palms facing up.
A trial began with a verbal cue “ready”meanwhile a cross dis-
played on the center of the screen, indicating participants to
keep task hands in the rest position and be prepared. This
was the “baseline period” (2-2.5 s randomly). After the base-
line period, the cross was replaced by a gesture picture (“go”
cue (GC)), which randomly displayed one of the three
gestures. Participants were informed to perform the gesture
instantly and hold on it until a red circle (“stop” cue (SC))
appeared. The gesture displayed 2 to 3.5 s randomly. After
SC, participants could release the gesture and return to the

Table 1: Participant overview and grid location.

Participant Gender Age Handedness (task hand) Implanted grids Seizure onset zone

P1 Female 28 Right (right) Left hemisphere: temporal, parietal, occipital lobe Anterior temporal lobe

P2 Male 22 Right (left)
Right hemisphere: frontal medial, dorsal surface,

parietal lobe
Anterior frontal lobe

P3 Male 22 Right (left) Right hemisphere: temporal, occipital lobe Right temporal lobe
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rest position. At the end of each trial, a verbal feedback, that
is, “correct” or “wrong,” was given by the experimenter to
inform the subjects whether it was a successful trial or not.
The entire course of a task is illustrated in Figure 1(a). The
trials were failed and excluded from the final dataset if partic-
ipants were not able to hold on the gestures until SC
appeared or forgot to release the gestures. Before the ECoG
electrode implantation, participants were trained to acquaint
themselves with the task until they fully understood the
processes and requirements.

Each session was composed of 3 blocks, and each block
was composed of 50 trials (5 sessions for P1, 5 sessions for
P2, and 3 sessions for P3). Participants would have a short
break between the blocks. In practice, the number of trials
and the duration of each break depended on the medical
condition and the willingness of the participants.

2.4. Neural Signals and Behavioral Data Recording. Clinical
ECoG signals collected by subdural electrode grids were
recorded by NeuroPort system (128 channels, Blackrock
Microsystems, Salt Lake City, UT). The ECoG signals were
firstly low filtered with a cutoff frequency of 500Hz and
stored continuously during the whole task at the sampling
rate of 2 kHz. The channels which contained a high level of
noise were excluded by visual inspection. The timestamps
of external events, such as “go” cues and “stop” cues, were
synchronized with recorded ECoG signals by acquiring time-
stamps from NeuroPort system. The behavioral data were
collected by a 5DT data glove with 14 sensors (5DT Inc.,
USA). Each sensor simultaneously yielded flexion values for
posture detection. Figure 1(b) shows the flexion values of
three sensors on ring, index, and thumb, respectively. The
data were collected when P2 performed the scissor gesture,
and the curves were smoothed by a Savitzky-Golay filter

(3 orders, 101 points). We defined the occurrence of a
movement onset when five first derivative of the flexion
values consecutively exceeded a specific threshold.

2.5. Neural Signal Analysis. Offline data processing was
performed on a MATLAB platform (Natick, MA). First, a
spatial filter, that is, common average reference, was applied
to all the remaining channels after visual inspection to
remove common noise.

2.5.1. Feature Extraction. ECoG feature was the power spec-
trum captured in different frequency ranges. By analyzing
its dynamical spatiotemporal pattern, we could characterize
the neural features associated with different movement status
and hand gesture types. To obtain the time-resolved power
spectrum of ECoG signals, the ECoG time series of an entire
session were segmented into 300ms width windows with an
overlap of 200ms. Then, a 3 order multitaper spectral estima-
tion was employed to calculate the power spectrum Ŝ f , T in
each individual window of all the selected channels. Spe-
cifically, this approach applys a set of orthogonal tapers:
ak t , k = 1,…, K to time series and minimizes variance
by averaging all the tapered and independent spectra:

Ŝk f , T = 〠
N−1

t=0
x t ak t e−2πjf t

2

, 1

where N is the length of x t and T = T1,…, Tm denotes
the time index corresponding to each 300ms window.
Then, the averaged spectrum is given:

S f , T = 1
K
〠
K

k=1
Ŝk f , T 2
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Figure 1: The behavioral task and recordings. (a) Hand grasp experimental paradigm. The trial was initiated by a red cross displayed on the
center of the screen with a verbal cue “ready.” After a random delay ranging from 2 to 2.5 s, the red cross disappeared and the gesture cue
appeared on the screen, indicating the participant to replicate the gesture shown and hold on it until the red dot came out 2-3 seconds later.
The correction of the trial was fed back by another verbal cue at the end of the trial. Three types of the gestures were displayed randomly and
equally. (b) The flexion of the data glove sensors on ring finger, index finger, and thumb. Purple dash line represented the timing when
visual cue was displayed.
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Whereas due to the fact that the power spectrum of brain
signals decreases with increasing frequency, known as a
“power law,” the changes in low frequency will dominate
over the whole frequency range. A normalization in each fre-
quency bin of the spectrum is very necessary to eliminate this
phenomenon for the observation of the power spectrum var-
iation in high frequency. Therefore, baseline power spectrum
Sbaseline f was calculated by averaging the power spectrum
obtained during the baseline period before the visual cue
across trials. Then, the frequency-resolved power spectrum
Snorm f , T during the period of task execution was normal-
ized by dividing averaged baseline power spectrum:

Snorm f , T = S f , T
Sbaseline f

3

2.5.2. Decoding.We used the Matlab Libsvm package to build
a multiclass SVM classification model and realize gesture
type classification [22]. The input features of this classifier
were the frequency-resolved power spectrum across specific
frequency bins, time bins, and channels. The corresponding
target outputs were the labels of gestures (“scissors”=1,
“rock”=2, and “paper”=3). Among them, the frequency
bins = frequency band width/frequency resolution. And time
bins spanned from [T , T +ΔT ,… , T +9ΔT], in which T was
the time of movement onset and ΔT was one time bin at the
time step of 100ms. We chose 10 time bins for the reason
that both high gamma frequency band (70–135Hz) and
low-frequency band (4–12Hz) were observed highly active
during this period as shown in Figure 2. Therefore, the
features formed a 3-dimensional matrix, where channels, fre-
quency bins, and time were the three dimensions. The final
feature of each trial was later reshaped into a 1∗n (n=num-
ber of channels∗frequency bins∗10 time bins) vector.

In offline decoding, we pooled all the trials of each indi-
vidual participant and applied a 3-fold cross validation to
the data set. The decoding performance was the average of
the percentage of correct predictions using testing data 50
times. Besides, the chance level was the result of the 95th
percentile of the decoding accuracy distribution which
contained 10,000 results generated from the testing data with
randomly shuffled labels. We used a t-test as the significance
test and calculated the p values.

2.5.3. Channel Selection Strategies. We used the single
channel selection and the greedy selection to progressively
select the n best channels offline in our study.

In the single channel selection, we first calculated the
decoding performance of each individual channel. The n best
channels were the channels achieving the n highest decoding
performances on single channel level, constituting the input
vector of SVM for training and testing.

In the greedy selection, we first picked out the channel
which yielded the best single channel performance from the
total number of channels. Then, in the next round, the
second best channel was selected which could improve the
decoding performance most when paired with the first chan-
nel. The n best channels were selected successively by repeat-
ing the process and then constituted the input vector of SVM

for training and prediction. The decoding performance satu-
rated with n channels when there was no significant increase
in decoding performance using n+1 best channels.

In this study, we also compared the decoding perfor-
mance using most neighboring 4 and 9 channels.

2.6. Real-Time Prosthetic Hand Control. The last sessions of
P1 and P2 were used to evaluate the real-time performance
of this ECoG-based prosthesis control system. The first two
blocks were used to train the SVM decoder model, and the
last block (50 trials) to evaluate the performance. This system
managed to extract the neural signal data every 100ms from
the buffer of the neural signal processing and compute the
features immediately at the time point receiving the visual
cue. Codes were written in C language. The features were
normalized by the baseline power in training data set then
translated by SVM classifier into one of the three gesture
types without cross-validation. Finally, gesture type was
interpreted into control commands sent to an artificial
hand through a serial port. The artificial hand stood by
until the commands arrived and then executed the corre-
sponding gesture in one second. This artificial hand was
designed to duplicate the human hand movements with
6 DC which drive six degrees of freedom in the artificial
hand (five fingers and the wrist).

3. Results

The data set analyzed in this study was collected from three
participants (see Materials and Methods). The trials were
selected only when they successfully met the task require-
ments stated in the Materials and Methods. Figure 3 shows
the locations of each electrode grid on the cortical surface
which were confirmed by the postoperative CT scans.

3.1. Time-Frequency Analysis and Decoding Performance.
The time-frequency plots illustrating the normalized and
averaged power spectrum of three different gestures recorded
by one representative channel of P1 are illustrated in
Figure 2(a). The time-frequency plots were aligned with the
“go” cue. The power spectrum of ECoG signals showed a
movement-related modulation during hand movement. The
power increased from the movement beginning to the
end in both high gamma frequency band (>70–135Hz)
and low-frequency band including theta frequency band
(4–8Hz) and alpha frequency band (8–12Hz). This task-
related modulation existed in similar frequency bands (high
gamma and low-frequency bands) across participants.
However, the modulation patterns of the power spectrum
in these frequency bands varied with different gesture types,
indicating that the modulation patterns might contain
exclusive information of each gesture type. Therefore, it
was highly possible to distinguish the gesture types using
power modulation patterns in specified high gamma and
low-frequency bands.

The decoding performances of all three participants are
shown in Figure 2(b). ECoG features were extracted from
low-, high gamma, and hybrid frequency bands of all chan-
nels, respectively. The offline decoding performances of all
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Figure 2: Time frequency plots of the ECoG signals and decoding performance obtained from all channels and selected channels.
(a) Normalized power spectrum of ECoG signal from a representative channel 35 over sensorimotor cortex of P1 which was averaged and
aligned with visual cue (time = 0). The frequency increases in log scale, and the color bar gives the scale of the spectrum amplitude values.
The gestures from left to right are scissor, rock, and paper, respectively. Vertical magenta bars in the subplot indicate the frequency bands
used in decoding (high gamma frequency band (70–135Hz) and low-frequency band (4–12Hz)). Black solid lines represent the averaged
grasping onset across trials, and the grey dash lines represent the averaged end timing of grasping. (b) The decoding performance of
different frequency bands (low-, high-, and hybrid frequency band, from left to right) using all channels (left column). The performances
of hybrid frequency band are significantly higher than that of high frequency band in P1 and P2 (p value < 0.01), and both the
hybrid and high frequency decoding results are higher than low frequency in all participants. The black dash line represent the
chance level.
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participants in different frequency bands were significantly
above the chance level, and the performance could reach to
nearly 90% of both P1 and P2. The hybrid decoding results
significantly outperformed the other two frequency bands,
and high-frequency decoding results significantly outper-
formed the low-frequency performance in all the conditions
except the performance of all channels in P3 (t-test, p < 0 01).

3.2. Channel Selections and Anatomical Patterns. In this
study, the single channel selection was first employed to intu-
itively select the channels with highest decoding accuracy
(see Materials and Methods). Figure 4 plots the decoding
performances varied with channel numbers based on single
channel selection, and they are saturated with 9, 10, and 8
channels in each respective participant. It could be found that
using single channel selection, many plateau points occur
before the decoding performance reached to a saturated
point, indicating that there is some movement-related infor-
mation redundancy among these selected channels. Figure 5
maps these selected channels to the implanted electrode
grids. Except for a few channels, the general distributions of
these channels present a pattern which can be categorized
as clustered.

To reduce the redundancy brought about by single chan-
nel selection and select the most contributive channels, we
further tried the greedy selection. Decoding performance of
all the participants displayed a trend of fast increase at the
beginning and then saturated after a certain number of chan-
nels were added as shown in Figure 4 using greedy selection.
Notably, the decoding performance using four best channels
selected by the greedy algorithm reached to their saturated
points in all three participants, which were 85.7%, 84.5%,
and 69.7%, respectively. Although their performances were
slightly lower than those obtained from all the channels,
the decoding performances were no longer significantly
improved when much more additional channels were added
into the subsets. Furthermore, the greedy selection showed

significantly higher and stable performance than the single
channel selection algorithm did when the same number of
channels was used for the neural decoding. It inferred that
the greedy selection algorithm was much more appropriate
and effective for selecting the minimal number of channels
than the single channel selection. Furthermore, we found that
most of these selected channels are clustered together and
distributed along the central sulcus (shown in Figure 5).
For P1 and P2, the selected channels situated mainly in
the precentral gyrus except one in the postcentral gyrus.
All of the channels were next or very close to the central
sulcus at the maximal distance of two electrodes spacing.
For P3, all selected channels were located at the site of
precentral gyrus and group together except one channel
away from the others.

3.3. Decoding Performance Using Nearest Neighboring
Channels. In the above results from all three participants,
we found that the saturated decoding performance could be
achieved by only a few number of the best channels selected
by the greedy algorithm. This saturated performance is very
close to that obtained with the neural signals from all chan-
nels. It is worth noting that the best three or four channels
selected by the greedy algorithm are spatially close to each
other and most of them were located near to the central
sulcus. It suggested that the ECoG signals from these neigh-
boring channels along the central sulcus might contain the
most information about the difference between three types
of gestures. Therefore, we tried to investigate whether such
a subset of neighboring electrodes from a small subregion
of ECoG grid could provide enough neural signals for
distinguishing three gestures by evaluating the decoding per-
formance of the nearest neighboring 4 and 9 channels.
Figure 6(a) illustrates the highest decoding performances
with different channel selection strategies (neighboring 4,
neighboring 9, and greedy algorithm). All three strategies
for channel selecting achieved promising performance,

Upper limb area (motor) Upper limb area (sensory)
Selected channels Central sulcus

3P2P1P

Figure 3: The locations of the subdural ECoG electrodes and their results of cortical electrical stimulation. Red dots indicate the
locations of electrodes over primary motor cortex. Green dots indicate the locations of upper limb areas over primary sensory cortex.
Purple circles represent the channels selected by greedy algorithm (see Channel Selections and Anatomical Patterns). Blue dash lines
mark the central sulcus.
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which was significantly higher than the chance level. In P1
and P2, the decoding performances of three strategies were
all above 82% and very close to each other. No significant
difference was found among three strategies in P2. Although
the decoding performance of the greedy algorithm is signifi-
cantly higher than that of the neighboring 4 selection in P1,
the difference between them was less than 4.0%. A general
spatial pattern emerges, as Figure 6(b) shows that most of
the channels selected by the greedy algorithm and by the
neighboring 4 channels are also included in the square of
optimal neighboring 9 channels and the channels are distrib-
uted along the central sulcus.

The results of both greedy and neighboring channel
strategies consistently demonstrate here that the channels
for hand gesture decoding could be restricted to the area
of 3∗ 3 square (approximately 4 cm∗ 4 cm) when using
clinical subdural electrodes with a high decoding accuracy.

3.4. Synchronous Real-Time Prosthetic Hand Control. In
order to further assess the feasibility of this online grasping
BMI, we applied the real-time ECoG-based control system
using an artificial hand to P1 and P2. The system collected
the neural data every 100ms from the Neuroport System
buffer, extracted, and decoded features in real time on a
personal computer (see Materials and Methods). A SVM
classifier with the selected channel subset, hybrid frequency
bands, and time lag learned from the offline analysis was
trained using the first two blocks in that session and pre-
dicted gesture type in the last block. Classification results

were interpreted into commands and sent to the artificial
hand by a serial port communication protocol. A representa-
tive epoch of the prosthetic hand status of P1 containing 7
trials is depicted in Figure 7. The decoding accuracy in that
entire block was 82% (41/50). And the decoding accuracy
in P2 achieved 80% (40/50).

4. Discussion

Clinical ECoG signals from the sensorimotor cortex have a
good temporal and spatial resolution to represent and
discriminate hand gesture types. However, instead of long-
term chronic implantation, most of the existing ECoG elec-
trode grids for signal recording are customized mainly for
epileptic focus localization and implanted temporarily. In
the current study, satisfying decoding performance could be
achieved by only a few and clustered channels from a small
area rather than all channels on the grid in all three par-
ticipants. And a real-time ECoG-based prosthesis control
system was implemented with a small subset of channels.

Many previous studies have demonstrated that high ges-
ture decoding performance could be achieved by using ECoG
signals [12–14]; only a few of them considered the possibility
of striking a balance between decoding performance and the
number of channels when decoding hand gesture types.

In the 2D arm movement decoding, Milekovic et al. [19]
tried the channel selection strategy of paired channels, neigh-
boring three or four channels to search for the maximum
decoding accuracy in a subregion of grids. They pointed
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Figure 4: The decoding performance varies as a function of the number of channels. The green curves represent the decoding performance
using the channels selected by greedy selection, and the red curves represent the result of the channels selected by single channel selection. The
performance of greedy selection significantly yields higher performance than that of single channel selection when the same number of
channels was used. The upside-down triangles indicate that the greedy selection performance is significantly higher than the single
channel selection performance. The yellow stars indicate that the decoding performance obtained from the channel subset reaches the
saturated point in the greedy selection. No significant improvement of decoding performance was found after adding more channels into
the subset.
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out that it was sufficient to extract and decode the movement
information with the recorded neural signals only from a
rather small relevant cortical region.

In this study, we first examined the relationship between
the decoding performance and the number of channels for
decoding in two channel-selecting strategies. The decoding
curves of the single channel selection and the greedy selection
both show a rising beginning. Then, the decoding perfor-
mances were saturated after a small subset of channels was
progressively added. These trends are significantly obvious
for the greedy algorithm in all three participants. Our results
demonstrated that in the hand gesture decoding, a small
subset of channels could also achieve high decoding perfor-
mance close to that of all channels.

To further examine the spatial layout of the channels
selected by two strategies, we mapped the channels to the
electrode grids placed on cortical surface. A general spatial
layout emerged that the selected channels clustered in a small
group and distributed along the central sulcus. Our results
are consistent with the findings of Chao et al. [4] who also
found that the best decoding performance of muscle activity
and that of the hand trajectory are efficiently generated by the
electrodes close to the central sulcus. This result also supports

the findings of Milekovic et al. and expands their application
to the hand gesture decoding by using ECoG signals from a
rather small relevant cortical region.

Furthermore, we found that most of the selected channels
were distributed along the side of the postcentral gyrus in two
participants. Pistohl et al., Chestek et al., and Wang et al.
also showed that high classification of gesture types could
be obtained from the channels on the postcentral gyrus
[12, 15, 23]. It is worth noting that Wang et al. managed to
decode 3D arm movement with the ECoG signals obtained
from the postcentral gyrus of a paralyzed participant, who
cannot move his limbs at all [24]. Therefore, it suggested that
the activation of the postcentral gyrus played an influential
role in hand movement. This phenomenon is probably due
to the motor control copy or the force-related feedback.
Moreover, we found that there were some adhesions between
the dura and skull above the primary sensory cortex in P3,
which brought difficulties in implanting the electrode grid.
Therefore, no electrodes were located in the postcentral
sulcus. It was also observed that the quality of the neural
signals was much noisier than those of the other two.
We suspected these above-mentioned facts led to inferior
decoding performance of P3. Besides, previous researchers
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showed that the activated cortex of the sensory-motor area
was clustered during the movement of different fingers and
wrist. But this kind of grouping tend to be varied with the
movement types. Our results showed that during the hand
gesture movement, the selected channels were clustered

along the central sulcus, especially in the postcentral area.
But further investigation was required to understand whether
it also applies to other complex movement tasks.

We also observed that the decoding results of the selected
channels (P1: 85.7%, P2:84.5%, and P3:69.7%) were slightly
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Figure 6: Topographies of decoding performance using neighboring 4 channels and the decoding performance comparison of different
channel selection strategies (neighboring 4, neighboring 9, and greedy) of all participants. (a) The color of each cell indicates the decoding
performance using the recordings from neighboring 4 channels. The color bars give the scale of decoding performance. The white dashed
outline marks out the channels with the highest decoding performance (marked with a white dashed circle), and the red dashed outline
marks out the neighboring 9 channels. Black dash line represents the central sulcus. (M=motor, S = sensory). (b) The decoding
performance with optimal channel subsets using different channel selection strategies of all the three participants.
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lower than the results of using all the channels in P1 (88.7%)
and P2 (87.6%) and even significantly higher in P3 (59.8%).
The small channel subset had a good approximation of
the performance obtained with all channels (shown in
Figures 2(b) and 6(b)) using greedy selection. These differ-
ences might be related to the fact that instead of calculating
all the possible combinations to search for a global optimum,
the greedy algorithm yields local optimum at each stage. In
this study, we used greedy selection and took the decoding
performance of the SVM-decoder as the evaluation criteria
to select clustered channels and minimize the electrode cov-
ering. In terms of greedy selection, this method works faster
and implements easier than other optimization methods
for no exhaustive operation on all data was needed. How-
ever, as far as multiclass SVM was concerned, more decoder
models could be employed and investigated to reduce the
dimensions of feature space for further optimizing the
decoding performance, such as sparse SVM. Most impor-
tantly, the number of electrodes could be reduced from 32
to 4 and the region could be restricted into a much smaller
area of 4 cm∗ 4 cm. This investigation could further benefit
the development of wireless Bluetooth devices for neural
signal transmission.

Features were extracted from hybrid frequency bands
(4–8Hz, 8–12Hz, and 70–135Hz) in this study. The hybrid
frequency bands yielded higher decoding accuracies than
either high- or low-frequency band in both P1 and P2, indi-
cating that both low- and high-frequency bands contained
different movement-related information. It was also found
that the high-frequency band significantly outperformed
low-frequency band in all participants, which suggested that
high frequency played a much more important role in hand
gesture classification. However, the decoding performance
in high gamma band dropped dramatically in P3. This result
might also be explained by the much noisier signals of P3
since the high-frequency signal was much more sensitive to
the noise. As shown in Figure 2(a), the movement-related
frequency range was not just limited to the selected frequency
range. The frequency range could extend to 200Hz in P2 and

P3 and even up to 300Hz in P1, consistent with the charac-
teristic of board band in the previous research findings
[25]. Although the ultrahigh frequency bands are not
included in our decoding system, they might contain addi-
tional useful information and be useful to decode the finer
hand movements. On the other hand, the beta frequency
band ranging from 12 to 30Hz shows a movement-related
power suppression in our study. Although this band is less
specific to hand gesture types as previous studies showed
[13], its movement-related activation could be potentially
employed in movement onset detection. The further and
detailed analysis on the movement-related features would
help to design a more advanced BMI. In addition to the fea-
tures in frequency domain above, the features in the time
domain, such as local motor potential [6] or simply averaged
ECoG, have been widely supported by accumulated evidence
that they might be promising neural features in BMI. It is
worth for further examinations before they are applied to
the ECoG-based prosthetic hand control.

Additionally, as displayed in Figure 3, the selected
channels were all located inferior to the corresponding
functional channels identified by cortical stimulations.
One possible reason might be related to that the electrical
stimulation which was conducted for sensorimotor locali-
zation was coarse during the examination. In addition,
the channels for hand gesture decoding could be restricted
to the area of 4 cm∗4 cm. And other documents showed
that the edges of the hand-related area including palm
and five fingers in the somatosensory cortex also spanned
approximately 4 cm. However, more researches are needed
to investigate whether the area of selected channels consis-
tently corresponds to some functional regions across partici-
pants. Many functional neuroimaging techniques could be
adopted, such as functional magnetic resonance imaging
and magnetoencephalography, to precisely localize the place-
ment of ECoG electrode grids and the projected fields of each
functional electrodes.

Finally, we have shown that the synchronous hand
gestures could be decoded using an ECoG-based real-
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Figure 7: Real-time ECoG-based synchronous gesture types decoding performance. (a) An epoch of the real-time prosthetic hand control
state of P1. Red line is the predicted gesture state, and the blue line is the actual visual cue timing. The real-time decoding performance of
that session is 82%. (b) The photo taken at the experiment scene.
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time control. However, when applied it into daily life, it
might be unnatural because most of the movements are
controlled by voluntary modulations without a particular
hint at a particular “go” cue [24]. Therefore, in the future,
an asynchronously BMI which starts or releases at will
might be more feasible and suitable to realize a natural
and practical hand movement. Currently, some of the
researchers found that the grasp intentions were repre-
sented by certain neural activity patterns. They also proved
that this intention could be detected from the sensorimo-
tor cortex [23]. These studies were only limited to few
participants and it is unclear whether it is the same to
multiple hand gestures classification. Furthermore, theoret-
ically, the release of the gesture could also be detected for
it is another kind of hand-shaping movements, but in prac-
tice, it needs more careful examinations for distinguishing
it from the neural activity in a hand-shaping period.

5. Conclusion

In this study, we explored the feasibility of implementing an
ECoG-based BMI which could decode real-time three hand
gestures and control an artificial hand. Three participants
with ECoG electrode grids placed over the sensorimotor cor-
tex were involved. To achieve minimal craniotomy, several
strategies were employed to select the subset of channels. A
general spatial distribution of these selected channels was
showed as clustered along the center sulcus. With the selected
channels, high decoding performance was maintained. It is
expected that this results would help to translate BMI
application towards practical and clinical realization.
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