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Background. Sleep duration is associated with type 2 diabetes (T2D). However, few T2D risk scores include sleep duration. We
aimed to develop T2D scores containing sleep duration and to estimate the additive value of sleep duration. Methods. We used
data from 43,404 adults without T2D in the Beijing Health Management Cohort study. The participants were surveyed
approximately every 2 years from 2007/2008 to 2014/2015. Sleep duration was calculated from the self-reported usual time of
going to bed and waking up at baseline. Logistic regression was employed to construct the risk scores. Integrated discrimination
improvement (IDI) and net reclassification improvement (NRI) were used to estimate the additional value of sleep duration.
Results. After a median follow-up of 6.8 years, we recorded 2623 (6.04%) new cases of T2D. Shorter (both 6-8 h/night and
<6 h/night) sleep durations were associated with an increased risk of T2D (odds ratio ðORÞ = 1:43, 95% confidence interval ðCIÞ
= 1:30-1.59; OR = 1:98, 95%CI = 1:63-2.41, respectively) compared with a sleep duration of >8 h/night in the adjusted model.
Seven variables, including age, education, waist-hip ratio, body mass index, parental history of diabetes, fasting plasma glucose,
and sleep duration, were selected to form the comprehensive score; the C-index was 0.74 (95% CI: 0.71-0.76) for the test set.
The IDI and NRI values for sleep duration were 0.017 (95% CI: 0.012-0.022) and 0.619 (95% CI: 0.518-0.695), respectively,
suggesting good improvement in the predictive ability of the comprehensive nomogram. The decision curves showed that
women and individuals older than 50 had more net benefit. Conclusions. The performance of T2D risk scores developed in the
study could be improved by containing the shorter estimated sleep duration, particularly in women and individuals older than 50.

1. Introduction

Type 2 diabetes (T2D) is arguably one of the largest epi-
demics globally [1]. The epidemic of T2D could threaten
global development through premature morbidity and mor-
tality from associated complications [2, 3]. With 702 million
cases projected by 2045, identifying modifiable risk factors
for T2D is of urgent public health importance [4].

More than half of T2D cases remain undiagnosed for
many years before the onset of complications. It is critical
to identify high-risk individuals, since early intervention
can effectively prevent or delay them from developing T2D
[5]. Traditional diagnostic tests (e.g., oral glucose tolerance
test) are expensive and time-consuming and therefore not
suitable for population screening. The most cost-effective
method is to use T2D scores for risk stratification [6].
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Researchers have built multivariate scores to help with risk
assessment for decades.

Recently, sleep duration has emerged as a novel target for
T2D prevention [7]. Sleep loss has become a major public
health concern due to its high prevalence and association
with mortality [8]. Previous studies on the association
between sleep and T2D remain inconsistent. A recent
Mendelian randomization study did not indicate a direct
association between sleep duration and T2D [9]. However,
other studies have shown that sleep duration is associated
with T2D risk [10, 11]. In addition, few diabetes scores
include sleep duration [12, 13], especially for T2D.

Furthermore, much less is known about the association
between T2D risk and eating pace and taste preferences,
although eating quickly may be an important predictor in
T2D scores [14]. Eating speed is controllable, and eating
slowly is an easy and acceptable target for lifestyle interven-
tions to prevent T2D. Although limited, a large prospective
cohort study showed that spicy preferences are associated
with overall and specific mortality [15].

Thus, the aims of this article were (a) to develop T2D risk
scores containing sleep duration to stratify T2D risk and
identify high-risk populations and (b) to estimate the addi-
tive value of sleep duration taking eating pace and taste
preferences into account.

2. Materials and Methods

2.1. Study Population. The Beijing Health Management
Cohort (BHMC) study is an ongoing prospective cohort study
that is aimed at investigating factors associated with metabolic
disorders in healthy individuals from urban areas of north-
eastern China. The BHMC study was based on cluster sam-
pling from a working population of functional communities
by performing health check-ups at the Beijing Physical Exam-
ination Center and Beijing Xiaotangshan Hospital. The partic-
ipants participated in follow-up every two to three years with
a general health questionnaire, a physical examination, and
laboratory measurements. Details of the study design and
recruitment methods have been described elsewhere [16].

In the present study, the 2007/2008 survey of the BHMC
study was used as the starting point of the follow-up, and the
2014/2015 survey was used as the endpoint of the follow-up.
A total of 55,120 individuals were recruited in this study in
2007/2008. Among these individuals, 10,090 subjects with a
previous diagnosis of T2D and 261 subjects younger than
18 years were excluded from the study, leaving 44,769 sub-
jects at baseline (81.22% response rate). According to recom-
mendations from the American Diabetes Association, T2D at
baseline was defined as a self-reported history of a T2D diag-
nosis, the use of antidiabetic medicine, or a measured fasting
plasma glucose (FPG) level ≥ 7:0mmol/L [6]. Approximately
3.05% of participants were lost to follow-up (n = 1365). The
sensitivity analysis showed that there were no significant dif-
ferences in the distributions of baseline characteristics
between those lost to follow-up and those followed. Finally,
43,404 subjects (mean age: 36:79 ± 13:29 years; age range:
18–80 years; 55.31% males) were included in the present
study (see Figure 1).

The study was approved by the Ethics Committee of the
Capital Medical University of China, Beijing (reference no.
2013SY26). All participants signed an informed consent
form, and all data used in the analyses were deidentified.

2.2. Outcomes. The main outcome was the incidence of T2D
during the seven-year follow-up. According to recommenda-
tions from the American Diabetes Association, T2D was
defined as a self-reported history of a T2D diagnosis, the
use of antidiabetic medicine, or a measured FPG level of
≥7.0mmol/L [6]. At each survey, participants were asked,
“Have you ever been told by a doctor that you have T2D
(high blood sugar)? If yes, how long ago were you diagnosed
with T2D? Have you ever taken any antidiabetic medicine?”
The participants’ FPG levels were measured at each follow-
up survey with the glucose hexokinase method.

The incidence of T2D was based on the first report. The
date of diagnosis (incidence) was defined as the diagnosis
date if a recent T2D history was reported by questionnaire
or the examination date at which a new case of T2D was
identified, whichever occurred first.

2.3. Covariates. There were four groups of covariates used in
the analysis, and these covariates were collected at each
survey. The covariates included were sociodemographic
characteristics (age, sex, marital status, and education), life-
style behaviours (sleep duration, smoking, drinking, physical
activity, and work stress), dietary habit factors (eating pace,
breakfast frequency, taste preferences, milk intake, grain
intake, and dietary patterns), and other chronic conditions
(obesity, hypertension, and hyperlipidaemia).

A general health questionnaire was used to obtain infor-
mation about these covariates. Given that it is not feasible to
accurately measure the actual sleep time using objective
methods such as polysomnography in large studies, sleep
duration was recorded according to participants’ responses
to the question “Over the past three months, what time have
you normally gone to bed and woken up?” (with time
recorded in a 24 h format). The estimated nocturnal sleep
duration was defined as the time space between bedtime
and waking time and was categorized into three levels: <6,
6 to 8, and >8h per night. For the physical activity intensity

55,120 subjects recruited in 2007/2008

44,769 subjects included at baseline  
for further analysis

10,090 subjects with prior 
history of T2D excluded

261 subjects <18 years excluded 

43,404 subjects remaining at the latest survey

1365 subjects without follow-up 
data excluded

Figure 1: Study population selection flowchart.
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variable, “high” was defined as swimming, playing ball, or
skipping rope; “moderate” was defined as jogging, cycling, or
climbing; and “mild” was defined as walking, tai chi, or danc-
ing. According to the demand-control model, work stress was
defined as high psychological demands (such as intense tasks)
and low control (in areas such as skill discretion) at work [17].
In our study, work stress was categorized into four semiquan-
titative categories. The “small” group was defined as having
neither high psychological demands nor low control at work,
the “medium” group was defined as having one of them, the
“high” group was defined as having both, and the “retired”
group was the category specified for retired subjects.

In the present study, the speed of eating was self-reported
by the response to the question “How fast is your speed of
eating?” The responses were chosen from three semiquanti-
tative categories: “slow,” “medium,” and “fast.” Previous
reports have demonstrated good validity and adequate repro-
ducibility of speed of eating, as assessed by self-report [18].
The measurement and classification of each variable category
have been reported elsewhere in detail [16].

The resting heart rate was measured using a 12-lead elec-
trocardiogram with the participants in the supine position
[19]. Blood pressure was measured twice with a mercury
sphygmomanometer and an appropriately sized cuff on the
left arm of the seated participants; the average of the blood
pressure measurements constituted the examination blood
pressure value. The blood pressure measurements were at
least 5 minutes apart. If the difference between the two mea-
surements exceeded 5mmHg, then the blood pressure was
measured again, and the average of the three measurements
was ultimately selected. Blood pressure was classified into
two groups: high (systolic blood pressure > 140mmHg or
diastolic blood pressure > 90mmHg) and normal.

Waist circumference, hip circumference, height, and
weight were measured in the standing position without heavy
clothing to the nearest 0.1 cm or 0.1 kg. BMI was calcu-
lated as kilograms divided by height in metre squared and
categorized as normal weight (<24 kg/m2), overweight (24-
27.9 kg/m2), or obese (≥28 kg/m2), according to the criteria
for Asian populations [20]. The waist-hip ratio (WHR) was
calculated as the waist circumference (cm) divided by the
hip circumference (cm) and was further divided into four
categories: <0.75 in men or <0.72 in women, 0.75 to 0.79 in
men or 0.72 to 0.76 in women, 0.80 to 0.83 in men or 0.77
to 0.81 in women, and ≥0.84 in men or ≥0.82 in women.

Blood samples were collected from an antecubital vein in
the morning after an overnight fasting period and placed in
tubes containing EDTA. The samples were analysed immedi-
ately after pretreatment or stored at -80°C in the ISO 15189
accredited medical laboratories of the hospital for further
analysis. All analyses were performed in accordance with
the manufacturer’s recommendations. The intra- and inter-
assay coefficients of variation for all laboratory tests were
under 5%. FPG, total cholesterol, triglycerides, and high-
density lipoprotein cholesterol (HDL-C) were subsequently
determined with standardized enzymatic methods. Based
on the new ADA guidelines of impaired FPG and dyslipidae-
mia, an FPG level of 5.6 to 6.9mmol/L was considered
impaired fasting glucose (IFG) [21]. A total cholesterol level

of 5.18mmol/L or greater, a triglyceride level of 1.7mmol/L
or greater, and an HDL-C level less than 1.03mmol/L
(40mg/dL) in men or less than 1.29mmol/L in women were
considered abnormal total cholesterol, triglycerides, and
HDL-C, respectively [22].

2.4. Construction, Evaluation, and Validation of the
Nomogram. The nomogram was constructed based on the
logistic regression parameter estimates in the cohort. The
selection of the final model was performed using a forward
selection process. Nomogram construction and validation
were performed according to Iasonos’s guide [23]. First, uni-
variate models were used to regress the risk of T2D incidence
on all twenty-five candidate variables, and variables with esti-
mated regression coefficients having a statistical significance
of P > 0:20 were removed. Then, all retained variables were
included in a multivariable prediction model with forward
selection and a cut-off P value of 0.1. In the third step, the
remaining variables were included to build the final predic-
tion model. For each model, the odds ratios (ORs) and 95%
confidence intervals (95% CIs) were calculated to estimate
the relative risk.

After the prediction models were developed, it was
critical to evaluate their performances. Discrimination of
the model was assessed using the C-index [24]. The calibra-
tion of the model was assessed graphically by comparing
the nomogram-predicted probability to the observed proba-
bility across 10 deciles of predicted risk [25]. Calibration
referred to the agreement between observed outcomes and
predictions, which could be quantitatively assessed by the
Hosmer-Lemeshow test and calibration plot calculated with
the R package “rms.” The greater the spread between the 10
deciles, the better the nomogram could discriminate.

Sleep duration is an important risk factor for diabetes, as
some studies have confirmed [26, 27]. However, few predic-
tion models for diabetes have considered the impact of esti-
mated sleep duration. The estimated sleep duration variable
was therefore included in our study. To supplement the mea-
sured improvement in the C-index, two new metrics were
also calculated to measure the prediction improvement with
the addition of the new risk factor: integrated discrimination
improvement (IDI) and net reclassification improvement
(NRI) [28]. The IDI and NRI were assessed using the R pack-
age of PredictABEL [29].

Recently, decision curves [30] have been proposed to
assess the population performance of risk prediction models
for intervention recommendations. Decision curves are most
useful when there is no consensus on the risk threshold for
intervention because the curves allow one to examine risk
model performance across a range of plausible risk thresholds.
Therefore, decision curves are preferred over the area under
the receiver operating characteristic curve.We did not account
for the interaction terms between the independent variables.
All continuous variables included in the model were catego-
rized, so that the estimated contribution of these factors to dia-
betes risk could be expressed through nomograms.

Our literature review included 40 original articles (dated
from March 2003 to December 2018) related to the develop-
ment of new diabetes risk scores. Among the 22 articles
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identifying the risk of diabetes incidence, we selected 13 arti-
cles [31–43] for validation using our cohort. The selected
articles follow the criteria below: (a) a better C-index; (b)
the variables in the article which can be obtained in our
cohort; and (c) articles from different countries and regions.
The article by Wilson et al. [36] was selected for its develop-
ment of the FraminghamOffspring Study diabetes equations,
which have been suggested to be effective in identifying those
at risk for incident diabetes [44]. For the same reason, we also
selected the article by Kanaya et al. [32]. We also tested the
New Chinese Diabetes Risk Score [42], although it was orig-
inally developed for detecting undiagnosed diabetes.

2.5. Statistical Analysis. All P values reported are two-sided.
Independent two-sample t-tests, chi-square tests, logistic
regression analyses, and Hosmer-Lemeshow tests were per-
formed using SAS software for Windows (version 9.2, SAS
Institute Inc., Cary, NC). C-indexes, calibration plots, and
bootstrap internal validations were performed using the
Hmisc, rms, and survival ROC package in R software
(version 3.3.1, R Foundation for Statistical Computing,
Vienna, Austria).

3. Results

3.1. Baseline Characteristics and Follow-Up. Among 43,404
participants who were free of diabetes at baseline, 2623
(6.04%) developed diabetes over 6:83 ± 0:49 years of follow-
up. People who had diabetes were more likely to have a low
education level, to have a parental history of diabetes, to be
overweight or obese, to have a shorter estimated daily sleep
duration, or to have a higher FPG level at baseline
(Table 1). The participants in the new diabetes group were
more likely to have higher blood pressure, to be smokers, to
be drinkers, to have a faster eating pace, to have less food
for breakfast, to have less milk intake, to have salty or greasy
dietary taste preferences, to have low levels of physical activ-
ity, to have greater work stress and to have higher levels of tri-
glycerides, high-density lipoprotein, and total cholesterol
(Table S1).

3.2. Predictors of Incident Diabetes and Construction of the
Nomograms. Five variables were excluded (as P > 0:20 in
the univariate analyses), including marital status, resting
heart rate, dietary patterns, breakfast, and dietary prefer-
ences. Then, twenty significant variables were entered into
the multivariable prediction model, and seven variables were
retained after forward selection with a cut-off P value of 0.1
(Figure 2).

After controlling for other covariates, having a lower edu-
cation level, having a family history of diabetes, having a
higher waist-hip ratio, being overweight or obese, having
shorter estimated daily sleep durations, and having impaired
FPG were significantly associated with a higher risk of inci-
dent diabetes. Compared with those who slept more than
8h per day, individuals who had an estimated sleep duration
of 6–8 or <6h had an increased risk of diabetes incidence
(respectively, odds ratio ðORÞ = 1:43, 95%CI = 1:30-1.59;
OR = 1:98, 95%CI = 1:63-2.41).

Finally, two nomograms were developed to predict the
7-year risk of diabetes (Figure 3). The comprehensive nomo-
gram included age, education, parental history of diabetes,
waist-hip ratio, BMI, sleep duration, and FPG. FPG was
excluded to produce the concise nomogram. We determined
nomogram score cut-off values with which participants were
evenly stratified into five risk groups: very low risk, low risk,
moderate risk, high risk, and very high risk (Table 2). This
stratification effectively discriminated the diabetes incidence
for the five proposed risk groups (P for trend < 0:001).

3.3. Calibration, Discrimination, and Internal Validation of
the Nomogram. The total scores for the concise nomogram
varied from 0 to 43, and those for the comprehensive
nomogram varied from 0 to 29. The calibration plot for the
probability of incident diabetes showed good calibration
(Hosmer-Lemeshow test, chi-square = 15:506, P = 0:050;
chi-square = 12:626, P = 0:125), and the actual diabetes risk
in the cohort was similar to the predicted risk (Figure 4).
The C-index demonstrated that both the concise and the
comprehensive nomograms had medium-high predictive
capacity (Table 3). After internal validation by bootstrapping,
the optimism-corrected C-index of the concise and com-
prehensive nomograms for the test set was 0.73 (95% CI:
0.71-0.75) and 0.74 (95% CI: 0.71 0.76), respectively, sug-
gesting well-validated models.

3.4. Additional Improvement from Estimated Sleep Duration.
The additional value of estimated sleep duration was assessed
by the paired difference of risk scores. The empirical distribu-
tion function of the change in estimated risk scores for sub-
jects who had diabetes (thick solid line) and those who
were free of diabetes (thin solid line) was assessed
(Figure 5). The difference between the areas under the two
curves is the IDI, and the distances between the two black
dots and between the two grey dots represent the continuous
NRI and median improvement, respectively. For the concise
score, the IDI and NRI values of estimated sleep duration
were 0.016 (95% CI: 0.011-0.020, P < 0:001) and 0.597 (95%
CI: 0.520-0.659, P < 0:001), respectively; the median incre-
ment of estimated sleep duration was 0.022 (95% CI: 0.016-
0.027; P < 0:001). For the comprehensive score, the IDI and
NRI values of estimated sleep duration were 0.017 (95% CI:
0.012-0.022, P < 0:001) and 0.619 (95% CI: 0.518-0.695,
P < 0:001), respectively; the median increment of estimated
sleep duration was 0.020 (95% CI: 0.014-0.025, P < 0:001).

3.5. Clinical Utility of the Nomograms. The population deci-
sion curves showed that the two risk scores were similar in
the population. The subpopulation decision curves showed
that for women or individuals older than 50 years, the sub-
population net benefit (NB) was significantly higher for the
comprehensive score (blue line) (Figure 6). For men or indi-
viduals younger than 50 years, the two scores have a similar
low NB.

3.6. Validation of Other Existing Risk Scores. Table 4 summa-
rizes the performance of 13 existing diabetes scores, includ-
ing eight scores containing laboratory variables [32, 33, 36,
38–41, 43] and five scores that do not [31, 34, 35, 37, 42].
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When applied to our cohort, none of the 5 scores that do not
contain laboratory variables outperformed our comprehen-
sive score (Table 4). In terms of discrimination and cali-
bration, our comprehensive score containing laboratory

variables also performed better than the other 8 scores that
also contained laboratory variables. Among the 13 risk scores,
the diabetes risk score developed by Wang et al. [43] per-
formed the best (C-index of 0.75, P = 0:214 for calibration).

Table 1: Baseline characteristics between participants of incident diabetes and nondiabetes of selected factors in the model (N = 43,404).

Characteristic
No diabetes
(n = 40781)

New diabetes
(n = 2623) t/χ2 P

Mean age 36:4 ± 13:1 42:7 ± 15:1 -23.58 <0.001
Sex (% men) 22254 (54.6) 1753 (66.8) 149.92 <0.001
Marital status

Never married/divorced/widowed 5542 (13.6) 327 (12.5) 2.66 0.103

Married 35239 (86.4) 2296 (87.5)

Education

Master’s/higher degree 6447 (15.8) 226 (8.6) 236.44 <0.001
University degree 27340 (67.0) 1679 (64.0)

High school certificate 4872 (11.9) 476 (18.1)

Low/no qualifications 2122 (5.2) 242 (9.2)

Parental history of diabetes

Yes 7064 (17.3) 955 (36.4) 596.10 <0.001
No 33717 (82.7) 1668 (63.6)

Mean resting heart rate (beats per minute) 79:9 ± 9:2 80:8 ± 9:7 -2.05 0.040

Sleep duration (hours/night)

<6 1101 (2.7) 128 (4.9) 257.51 <0.001
6-8 11923 (29.2) 1102 (42.0)

>8 27757 (68.1) 1393 (53.1)

Eating pace

Slow 4072 (10.0) 171 (6.5) 54.59 <0.001
Medium 16614 (40.7) 995 (37.9)

Fast 20095 (49.3) 1457 (55.5)

Breakfast frequency

Never 4946 (12.1) 347 (13.2) 24.48 <0.001
≤2 times/week 4095 (10.0) 208 (7.9)

3-6 times/week 5385 (13.2) 294 (11.2)

≥7 times/week 26355 (64.6) 1774 (67.6)

Taste preferences

Light 20945 (51.4) 1220 (46.5) 64.31 <0.001
Salty 9335 (22.9) 762 (29.1)

Greasy 4594 (11.3) 324 (12.4)

Sweet 4283 (10.5) 225 (8.6)

Others 1624 (4.0) 92 (3.5)

Mean waist-hip-ratio 0:8 ± 0:1 0:9 ± 0:1 -19.85 <0.001
Body mass index

Normal weight (<24 kg/m2) 38468 (94.4) 2287 (87.2) 308.32 <0.001
Overweight (24-27.9 kg/m2) 1726 (4.2) 201 (7.7)

Obese (≥28 kg/m2) 536 (1.3) 134 (5.1)

Fasting plasma glucose (SD) 4:7 ± 0:5 5:7 ± 0:7 -37.33 <0.001
Fasting plasma glucose

Impaired (≥5.6mmol/L) 313 (0.8) 271 (10.3) 1698.33 <0.001
Normal (<5.6mmol/L) 40468 (99.2) 2352 (89.7)

Data are % or the means ± StandardDeviation.
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4. Discussion

The current study links the development of T2D and sleep
duration in urban Chinese adults after adjusting for other
known major T2D risk factors. Short sleep duration was sig-
nificantly associated with an increased risk of developing
T2D. We have constructed two nomograms to predict indi-
vidualized T2D risk that consider the influence of sleep dura-
tion and provide a practical guide to identify adults at a high
risk for T2D. The comprehensive nomogram performed bet-
ter than the concise nomogram. Women or individuals older
than 50 years had greater benefit from the comprehensive
nomogram for predicting T2D risk.

This study extends and expands on the existing diabetes
scores by adding a novel factor, namely, estimated sleep
duration. To the best of our knowledge, this is the first study
to include estimated sleep duration in seven-year risk nomo-
grams for T2D. The estimated sleep duration was assigned 3
points in the comprehensive nomogram. The association
between a short self-reported sleep duration and T2D could
be confounded by BMI, or sleep restriction may mediate its
effects on T2D through weight gain [45]. Our study showed
that shorter sleep duration was an independent risk factor

for T2D after adjustments were made for BMI, which is con-
sistent with other research findings [26, 27]. Several potential
biological mechanisms may contribute to the relationship
between short sleep duration and T2D. First, laboratory
studies have corroborated the decreases in glucose toler-
ance and insulin sensitivity after sleep restriction [46].
Both inadequate pancreatic insulin secretion and increased
circulating levels of glucose due to sleep deprivation could
lead to the development of insulin resistance and type 2
diabetes [47, 48]. Changes in the activity of neuroendocrine
systems seem to be major mediators of the detrimental met-
abolic effects of sleep restriction [10]. Second, short sleep
duration was associated with increases in inflammation
markers [49], such as interleukin-6 and C-reactive protein,
which indicate low-level systemic inflammation and play a
role in T2D development [50]. It is possible that sleep disrup-
tion is related to T2D via a mechanism of low-grade systemic
inflammation. Finally, short sleep is associated with increases
in ghrelin and decreases in leptin, leading to a longer eating
time, thereby increasing the risk of weight gain and subse-
quent health risks [48, 51].

Other variables included in the comprehensive nomo-
gram are age, education level, WHR, BMI, parental history

Variables
Age

18−29
30−39
40−49
50−59
60−69
>=70

Education
Master's/higher degree
University degree
High school certificate
Low/no qualifications

Parental history of diabetes
No
Yes

Waist−hip ratio
Q1 (< 0.75/0.72 in men/women)
Q2 (0.75−0.79/0.72−0.76 in men/women)
Q3 (0.80−0.83/0.77−0.81 in men/women)
Q4 (>=0.84/0.82 in men/women)

Body mass index (kg/m2)
Normal weight (<24 kg/m2)
Overweight (24−27.9 kg/m2)
Obese (>=28 kg/m2)

Sleep duration (hours/night)
> 8
6−8
< 6

Fasting plasma glucose
Normal(<5.6 mmol/L)
Impaired(>=5.6 mmol/L)

Coefficient

0.17
0.35
0.7

0.99
1.11

0.43
0.9

0.91

1.29

0.34
0.62
0.89

0.08
0.77

0.36
0.68

1.68

Odds ratio (95% confidence interval)

Reference
1.18(1.02, 1.36)
1.42(1.23, 1.64)
2.01(1.73, 2.34)
2.69(2.26, 3.2)
3.04(2.42, 3.8)

Reference
1.53(1.33, 1.77)
2.45(2.07, 2.9)

2.49(2.04, 3.05)

Reference
3.63(3.31, 3.97)

Reference
1.41(1.01, 1.95)
1.85(1.36, 2.51)
2.43(1.83, 3.24)

Reference
1.09(0.88, 1.34)
2.16(1.66, 2.81)

Reference
1.43(1.3, 1.59)

1.98(1.63, 2.41)

Reference
5.37(4.48,6.36)

0 1 2 3 4 5 6

Figure 2: Variables involved in the multivariable logistic regression after forward selection.
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of diabetes, and FPG. The FPG variable was the strongest
predictor of incident T2D (a contribution of 10 points).
This finding is roughly consistent with those of previous
studies [52]. The risk of T2D incidence increased with
higher FPG levels. A parental history of diabetes was the
second-strongest predictor after FPG (a contribution of 6

points), and genetic and environmental pathways may be
able to account for this association. Age and education
level were the third-strongest predictors after parental his-
tory of T2D (a contribution of 4 points each). The inclu-
sion of education level in the diabetes score is also
common. A previous study demonstrated an inverse

Points
0 1 2 3 4 5 6 7 8 9 10

Age (years)
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Figure 3: The nomograms of incident diabetes at t = 7 years from the Beijing Health Management Cohort study population (a) in the concise
nomogram and (b) in the comprehensive nomogram. Q1 (quantile 1): <0.75 in men or <0.72 in women; Q2 (quantile 2): 0.75-0.79 in men or
0.72-0.76 in women; Q3 (quantile 3): 0.80-0.83 in men or 0.77-0.81 in women; Q4 (quantile 4): ≥0.84 in men or ≥0.82 in women.
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association between educational level, risk of diabetes, and
inequalities in the risk of diabetes in Western European
countries. BMI had a contribution of 1 point and has also

been observed in most of the published T2D scores [53].
WHR is also an important predictor of incident diabetes
in our scores.

Table 2: Nomograms scores to stratify the 7-year risk of type 2 diabetes.

Subgroups
Concise nomogram Comprehensive nomogram

Score Estimated incidence (%) Score Estimated incidence (%)

Very low risk <7 2.33 <2 2.32

Low risk 7-8 3.22 2-3 3.15

Moderate risk 8-12 4.25 3-5 4.13

High risk 12-17 7.40 5-8 7.90

Very high risk >17 15.11 >8 14.74

P for trend <0.001 <0.001
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Figure 4: Calibration plots by deciles for nomograms: 7-year incidence of diabetes in the concise nomogram and the comprehensive
nomogram, respectively. (The nomogram-predicted probabilities of diabetes incidence are plotted on the x-axis; actual probabilities of
diabetes incidence are plotted on the y-axis. Dashed lines along the 45-degree line through the origin point represent perfect calibration
models, in which the predicted probabilities are identical to the actual probabilities.)

Table 3: The C-index (95% CI) of the nomograms after bootstrapping validation.

Concise nomogram Comprehensive nomogram
Training set Test set Training set Test set

Male 0.73 (0.72-0.75) 0.73 (0.72-0.74) 0.73 (0.72-0.74) 0.73 (0.71-0.75)

Female 0.73 (0.72-0.74) 0.73 (0.72-0.75) 0.74 (0.72-0.76) 0.74 (0.71-0.77)

Age < 60 0.69 (0.62-0.72) 0.69 (0.61-0.77) 0.74 (0.73-0.75) 0.72 (0.70-0.75)

Age ≥ 60 0.73 (0.72-0.74) 0.72 (0.70-0.75) 0.75 (0.70-0.79) 0.80 (0.75-0.83)

Total 0.73 (0.72-0.75) 0.73 (0.71-0.75) 0.74 (0.73-0.75) 0.74 (0.71-0.76)
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The concise nomogram is noninvasive and can be admin-
istered by the individuals themselves. The comprehensive
nomogram is more effective but requires simple blood tests.
In terms of discrimination and calibration, both nomograms
performed better compared with 13 risk scores derived from
other populations. The subgroup analysis showed that
women or people older than 50 years had the largest net ben-
efit in the decision curves. Furthermore, the clinical variables
that we have chosen to incorporate into the nomograms can
be easily documented by any physician and the participants,
enhancing its practical utility.

Previously, the Finnish Diabetes Risk Score (FINDRISK)
[31], the German Diabetes risk score [35], and the Framing-
ham DM risk score [36] were considered the most widely
useful scores in the clinical guidelines. The C-indexes of these
diabetes risk scores for adults ranged from 0.62 to 0.87 in
their original population [31, 42] and ranged from 0.68 to
0.75 in the current study population. Both our concise and
comprehensive nomograms performed with a moderately
high C-index value (0.73 and 0.74, respectively) in the test
set. All predictors included in our nomograms are readily
available clinical variables. Based on the nomograms, we fur-
ther stratify patients into five distinct risk groups. Trend
analysis implied that there was a statistically significant linear
correlation between the scores based on nomograms and
actual diabetes risk.

Our research has some advantages. First, our sample size
was relatively large. Second, comprehensive novel factors,
such as estimated sleep duration, eating pace, and taste pref-
erences, were taken into account in our research. Third,
nomograms and decision curves were used to visualize the
risk score to improve its clinical utility. Fourth, multiple
novel methods were used to evaluate the performance of the

nomograms, including calibration plots, decision curves,
IDI, and NRI. The calibration plots showed optimal agree-
ments between the prediction and actual observation of T2D
cases, which guarantees the reliability of the established
nomograms. Decision curves helped to identify the most
suitable population for application. According to the IDI
and NRI values, the prediction model that included esti-
mated sleep duration was superior to the model without
this variable.

There were also some limitations to our research. First,
we were not able to include oral glucose tolerance test data,
additional sleep dimensions or characteristics (such as sleep
quality, apnoea, and insomnia), and longitudinal changes in
sleep duration, which could affect T2D outcomes and impact
sleep. Second, our research relied on self-reported sleep dura-
tion, whereas objective methods (such as actigraphy and
polysomnography) might provide more accurate measures.
However, objective measures of sleep duration are too expen-
sive to be feasible in large prospective cohort studies. In
addition, several validation studies observed a high correla-
tion (r = 0:79-0.95) between self-reported and actigraphy-
measured sleep duration [54, 55]. Third, this study was
conducted using a sample of the Beijing population (mean
age: 36:79 ± 13:29 years; age range: 18–80 years; 55.31%
males; 7-year incidence of T2D 6.04%), which had a higher
socioeconomic status (82.2% had a bachelor degree or
higher) and higher prevalence of major risk factors
(57.4% smokers) compared with the general population.
Thus, our prediction models might have limited generaliz-
ability to other populations. Another limitation is that the
lack of external validation may limit the extrapolation of
the scores. Although all results consistently show the
satisfactory performance of the established nomograms,
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Figure 5: The additional value of sleep duration, as assessed by the paired difference of nomograms (a) in the concise nomogram and (b) in
the comprehensive nomogram.
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additional external validation in prospective datasets in
future studies is warranted. Fourth, a follow-up bias may
have easily occurred in the long-term follow-up. However,
the sensitivity analysis showed that there were no signifi-
cant differences in the distributions of baseline characteris-
tics between those individuals who lost to follow-up and
those who were followed. Finally, as the questionnaire

was not validated and was self-reported, a measurement
bias is inevitable.

5. Conclusions

Short sleep duration was associated with increased T2D risk
in adults. Increased estimated sleep duration could improve
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Figure 6: The performance of concise nomogram and comprehensive nomogram scores in the following subpopulations: (a) male, (b) female,
(c) 18-29 years old, (d) 30-39 years old, (e) 40-49 years old, (f) 50-59 years old, (g) 60-69 years old, and (h) ≥70 years old.
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the performance of T2D risk nomograms. Our nomograms
are more suitable for predicting T2D risk for women or
individuals ≥ 50 years old. Convincingly, tailored interven-
tions and preventive strategies could be readily developed
to decrease the risk of diabetes.

Data Availability

The data that support the findings of this study are available
from the Beijing Health Management Cohort (BHMC)
study, but restrictions apply to the availability of these data,

Table 4: The performance of existing scores in predicting incident diabetes in the Beijing Health Management Cohort study.

Year Leading author Population Predictors

Validation in the Beijing Health Management Cohort
study

C-index (95% CI)
P value of Hosmer-Lemeshow

test

2003 Lindstrom Finnish

‡Age, BMI, waist circumference,
hypertension, §history of high

blood glucose
0.69 (0.68, 0.70) 0.560

2005 Kanaya American Age, sex, TG, FPG 0.68 (0.67, 0.69) 0.173

2005 Schmidt American

||Age, race, parental history of
diabetes, FPG, SBP, waist

circumference, height, HDL-C,
TG

0.74 (0.73, 0.75) 0.269

2006 Aekplakorn Thai

¶Age, sex, BMI, waist
circumference, hypertension,
history of diabetes in parent or

sibling

0.74 (0.73, 0.75) 0.404

2007 Schulze German

Age, waist circumference, height,
moderate alcohol, smoking, (red
meat, whole-grain bread, coffee,

#physical activity)

0.71 (0.70, 0.72) 0.002

2007 Wilson American

∗BMI, parental history of
diabetes, hypertension, HDL-C,

TG, FPG
0.71 (0.70, 0.72) 0.197

2008 Balkau French

†Men: waist circumference,
smoking, hypertension

Women: waist circumference,
diabetes in the family,

hypertension

Men: 0.71 (0.70, 0.72)
Women: 0.69 (0.68, 0.70)

Men: 0.672
Women: 0.965

2009 Chien Chinese
Age, BMI, WBC, TG, HDL-C,

FPG
0.69 (0.67, 0.70) 0.005

2009 Gao Indian
‡‡Age, sex, BMI, waist
circumference, FPG, TG

0.69 (0.67, 0.70) 0.115

2009 Kahn American

##Age, parental history of
diabetes, hypertension, race,
drinking, waist circumference,
height, resting pulse, FPG, TG,

HDL-C, UA

0.74 (0.73, 0.75) 0.424

2010 Chen Australian

Age, sex, BMI, race, waist
circumference, parental history of
diabetes, history of high blood
glucose, hypertension, smoking,

physical inactivity

0.75 (0.74, 0.76) 0.029

2013 Zhou Chinese
Age, sex, BMI, waist

circumference, SBP, family
history of diabetes

0.75 (0.74, 0.76) 0.029

2016 Wang Chinese

Age, sex, BMI, family history of
diabetes, education,

hypertension, resting heart rate,
FPG, TG

0.75 (0.74, 0.76) 0.214

The variables in parentheses were removed from the original model in validation because they could not be provided in sufficient detail in the Beijing Health
Management Cohort study. BMI: body mass index; FPG: fasting plasma glucose; SBP: systolic blood pressure; HDL-C: high-density lipoprotein cholesterol;
TG: triglyceride; WBC: white blood cell; UA: uric acid.
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which were used under license for the current study and so
are not publicly available. Data are however available from
the authors upon reasonable request and with permission
of the Capital Medical University.
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