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Abstract

Carotid artery stenosis causes narrowing of carotid lumens and may lead to brain infarction. The purpose of this
study was to develop a semi-automated method of segmenting vessel walls, surrounding tissues, and more
importantly, the carotid artery lumen by contrast computed tomography angiography (CTA) images and to define the
severity of stenosis and present a three-dimensional model of the carotid for visual inspection. In vivo contrast CTA
images of 14 patients (7 normal subjects and 7 patients undergoing endarterectomy) were analyzed using a multi-step
segmentation algorithm. This method uses graph cut followed by watershed and Hessian based shortest path method
in order to extract lumen boundary correctly without being corrupted in the presence of surrounding tissues.
Quantitative measurements of the proposed method were compared with those of manual delineation by independent
board-certified radiologists. The results were quantitatively evaluated using spatial overlap surface distance indices. A
slightly strong match was shown in terms of dice similarity coefficient (DSC) = 0.87�0.08; mean surface distance
(Dmsd) = 0.32�0.32; root mean squared surface distance (Drmssd) = 0.49�0.54 and maximum surface distance (Dmax)
= 2.14�2.08 between manual and automated segmentation of common, internal and external carotid arteries, carotid
bifurcation and stenotic artery, respectively. Quantitative measurements showed that the proposed method has high
potential to segment the carotid lumen and is robust to the changes of the lumen diameter and the shape of the stenosis
area at the bifurcation site. The proposed method for CTA images provides a fast and reliable tool to quantify the
severity of carotid artery stenosis.
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Introduction

The carotid artery has a paired structure, namely, the
left and right carotid artery and each carotid artery
divides into the common (CCA), the external (ECA)

and the internal carotid artery (ICA). The CCA begins in
the aorta and at the neck area (bifurcation site) divides
into two smaller arteries, ECA and ICA. At the circle of
Willis, the ICA branches into smaller arteries that
supply oxygenated blood to most of the cerebrum.
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Hence, the ICA plays an important role in cerebral
blood circulation[1–3]. Stroke may occur when the
carotid arteries become narrowed or blocked by
atherosclerotic plaques or emboli[4]. Contrast enhanced
computed tomography angiography (CTA) is deemed
superior to magnetic resonance imaging (MRI) and
ultrasound (US) for visualization and evaluation of
carotid artery atherosclerosis. To diagnose the severity
of stenosis, the carotid artery needs to be segmented
either manually or automatically. Manual delineation of
the carotid lumen is a tedious task and prone to
subjectivity due to complex vessel structures, narrowing
segments, significant intensity signal losses and irregu-
larities. Unlike manual segmentation, automatic mea-
surements are objective, more reproducible and faster.
However, accurate carotid artery segmentation is a
challenging task in CTA images because of the large
amount of slices, variability of the size and shape, and
gray levels of the artery along its path, especially in the
stenosis area (or bifurcation site).
Several studies reported various lumen segmentation

techniques such as using circular Hough transform[5],
level-set technique[6], geometric deformable model with
associated energy function[7–8], path tracking method
using speed function[9] and graph-based method using
the edge weighting function[10]. In this paper, a novel
multi-step method with less complexity is proposed for
carotid lumen segmentation. First, the mean shift
technique was applied to increase lumen uniformity
with minimal damage to the edges. The initial candidate
points for segmentation were calculated using semi-
automatic centerline extraction. Then, the watershed
method was applied to reduce the segmentation cost of
calculations and finally graph cut algorithm was
applied.

Materials and methods

Methodology

Pre-processing

A multi-stage preprocessing technique was used
to prepare CTA images for segmentation purposes
(Fig. 1). Usually, each CTA data covers head, neck and

part of the thorax. Therefore, selecting regions of
interest (ROIs) reduces the computational cost and
increase the accuracy of the proposed method. Since
most carotid plaques occur at the bifurcation point or at
ICA arteries, these locations were appointed as
reference points for independent board-certified radi-
ologists to select appropriate slices for segmentation. In
this study, slices with the distance of less than 40 mm
from the bifurcation point in the ICA, and 20 mm from
the bifurcation point in the ECAwere considered as ROI
volume[11].
Due to heterogeneity of the lumen, detection of vessel

boundaries is an issue using this modality. In this study,
mean-shift filtering was proposed to reduce the level of
heterogeneity. The mean-shift is a non-parametric
iterative algorithm or a non-parametric density gradient
estimation using a generalized kernel approach[12].
Mean shift defines a window level around some pixels
of an image and computes the mean of data points. It
then shifts the center of window to the mean and the
algorithm continues until it reaches the convergence.
The weighted mean of the density in the window level
for n data points xi, i = 1,..,n is calculated as an iterative
formula:

xiþ1 ¼
Pn
i¼1
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where g is the Gaussian kernel (this function determines
the weight of neighbor points for re-estimation of the
mean) and h is the scaling constant[12]. The following
kernel was used in this study[12]:
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where C is the normalization constant, gðxÞ ¼
–
∂ðKðxÞÞ

∂x
, k(x) is the simple function related to ||x||,

xs and xr are spatial and the range factors of the feature
vector, respectively, and hs and hr are the bandwidth of
kernel: hs is spatial resolution parameter effects on the
smoothing and connectivity of contextual regions and hr
is the range resolution parameter that determines the
number of segments.

Fig. 1 Diagram of pre-processing techniques applied on computed tomography angiography (CTA) images.
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Centerline extraction

Carotid arteries are surrounded by many tissue
structures and veins. Therefore, for accurate and fast
segmentation, selecting initial points that are located in
the lumen region is necessary. For this purpose,
centerline extraction was applied to detect the center
positions of the artery as initial points. In this paper,
centerline of the artery was extracted with three pre-
defined seed points in the CCA, ECA and ICA. These
seed points can be easily calculated from anatomical
images without any user interaction[13] and can be
applied to the entire head and neck volumetric CTA
images in a few seconds.
To implement centerline extraction, first, the nearest

neighbor method was used to separate carotid artery
structures from the adjacent structures (Fig. 2). This step
separates CCA-ICA artery pathway from CCA and ICA
seed points. Similarly, the CCA and ECA seed points
were used to separate CCA-ECA artery pathway. It
should be noted that this step can only provide an
estimation of artery segments and cannot separate the
lumen in the narrow or nearly blocked parts of lumens.
This limitation can be handled by estimation of the vessel
pathway in relation to the total shape of vessel. In this
study, an energy based shortest path method was used to
estimate the centerline based on the total vessel shape.
Each path can be defined by two terminal points as

CCA-ECA seed points or CCA-ICA seed points which

were located at the beginning and the end of the vessel.
The length of distance (C) between these points can be
calculated:

LðCÞ ¼ !
L

0
wþ PðcðsÞÞds (3)

where s is the length of the artery, P is the potential
function and w is the constant intended fixed regulation.
The optimal artery curve C(s) (with unknown length L
in the 2D or 3D space) occurs when the energy of the
curve reaches the minimum.

EðCÞ ¼ !
L

0
½wþ PðCðsÞÞ�  ds (4)

Minimizing E(C (s)) over all possible paths of C is
time consuming but can be resolved using fast marching
techniques[13]. In this study, the potential function (P)
was obtained using a multi-scale approach analysis
based on the Hessian matrix eigenvalues. The Hessian
matrix for a given voxel of the image (I(x,y,z)) can be
expressed as follows[14]:
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The eigenvalues of the Hessian matrix for each voxel

Fig. 2 The rough vessel estimation in the proposed method using three seed points.
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can be used as the vessel enhancement. Table 1 shows
the behavior of Hessian eigenvalues for different
structures. Unfortunately, the value of the eigenvalues
depends on the size of the objects. The variability of the
size and shape of the carotid arteries along the vessel are
the main challenges in the carotid lumen segmentation.
A multi-scale analysis based on the scale-space theory
was proposed to address these issues.
The scale-space theory introduced by Lindeberg[15]

showed that a Gaussian kernel can be used to remove
small objects in an image:

LðsÞ ¼ Iðx,y,zÞ*G�¼ ffiffi
s

p ðx,y,zÞ (6)

where L(t) is the scale-space representation at scale s,
G is the Gaussian kernel and * indicates convolution
operator. It is shown that the 2nd order normalized
derivative of L (t) can be calculated[14]:

∂2

∂xi∂xj
L sð Þ ¼ �2 ∂2
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p :::ð Þ*I :::ð Þ (7)

The following ratios were used to quantify the
eigenvalues of Hessian matrix.

RB ¼ jl1jffiffiffiffiffiffiffiffiffiffiffiffijl2l3j
p ,     RA ¼ jl2j

jl3j
,     S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiX
j£3

l2j

s
(8)

Although RA separates tubular shaped structures
from sheet shaped structures, it cannot distinguish
between tubular and a blob-shaped pattern. The RB
ratio is the maximum value for blob-shaped structures
and the S ratio is the lowest value for the background.
The following equation was used as vesselness features
for each scale:

wherea, b and c are the threshold values which
control the sensitivity of the vesselness features. The
potential function can be obtained by integrating the
vesselness measures at different scales:

P ¼ max 
smin<s<smax

VMðsÞ (10)

where smin and smax are the maximum and minimum
of scale range. The centerline extraction step can be
applied on both 2D Maximum Intensity Projection
(MIP) maps and 3D modes. The computational cost in
the 2D mode is less than that in the 3D mode, but the
error (missing the correct paths) in the 2D mode is
greater than in the 3D mode (Fig. 3). To access an
accurate segmentation, centerline extraction approach
was applied on the 3D mode (Fig. 4).

Segmentation

Several methods were proposed for vessel segmenta-
tion in the literatures[6–8,10,16–18]. The simple methods
such as thresholding and region growing models do not
need prior knowledge of the image characteristics and
artery location, but these methods are not accurate,
especially in the presence of the noise. In this study, a
graph based segmentation method using the centerline
points was implemented to segment carotid lumen from
the background tissues precisely.
For graph based segmentation, each image must be

mapped onto a weighted graph. Usually, each pixel of
an image is mapped as a node of the graph and the
weight of the edge between two nodes represents the
similarity between two pixels. Labeling of the nodes can

VM sð Þ ¼
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8<
:
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Table 1 The behavior of Hessian eigenvalues for some 3D
models[16].
structure orientation e1 e2 e3

noise (no preferred structure) L L L

bright sheet-like structure L L H–

dark sheet-like structure L L H+

bright tubular structure L H– H–

dark tubular structure L H+ H+

bright blob-like structure H– H– H–

dark blob-like structure H+ H+ H+

L = Low, H– = High with negative value, H+ = High with positive value.

Fig. 3 The centerline extraction in 2D mode. (A), (B) Maximum
Intensity Projections (MIPs) of a carotid lumen. The centerline
cannot be found in the yellow marked area, but it is successfully
found in another MIP map.
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be considered for carotid image segmentation on CTA
image using the graph theory[19]. The aim of this
method is to assign a label set of L{0,1}to each node of
the graph where 0 corresponds to the background and 1.
corresponds to the carotid artery pixels. Hence, some
special nodes (terminals) are used to correspond to the
set of labels that can be assigned to pixels. These
terminals are usually called the source, s, and the sink, t.
An s-t cut, c(s; t), in a graph can be defined as a set of
edges where there is no path from the source to the sink
when this set is removed from the graph. Usually, the
summation of the cut edge weights is called the cost of
each cut.
To solve the labeling problem, one cut of s-t graph with

a minimum cost must be found[19]. Unfortunately, in the
graph based segmentation of the carotid arteries, this step
can be time consuming because of the huge number of
nodes in the volumetric data of CTA. In this study a pre-
segmentation step was performed to reduce the number
of the graph nodes based on the iterated region merging
method with localized graph cuts using the watershed
technique[20]. It converts each image into many small
homogenous regions where each homogenous region
was considered as a node instead of a pixel.
Following data acquisition, the extracted centerline

points from the previous step were considered as source
terminals for each slice. Then, at each slice, four points
with a distance of as much as twice the normal diameter
of the carotid arteries from the centerline point were
considered as the sink terminals. Finally, an iterated

watershed based graph segmentation was applied to
segment the carotid lumen.

Make gold standard segmentations

Subjects in this study included non-calcified and
calcified plaques and/or both types. The contour of each
carotid artery was drawn manually by two independent
board certified radiologists, slice by slice, using an in-
house toolkit software written in MATLAB (Mathwork,
version 2015) to facilitate editing of the 2D lumen
segments. The ROIs excluded the border or edge of the
cord (approximately 1-2 voxel from outer margin of the
artery) to avoid the effects of partial volume artifacts.
This toolkit software allows radiologists to review data
in axial, coronal and sagittal planes and draw contours
in each plane. Finally, the ground truth for each patient
data was then formed by setting each pixel as the carotid
segments where two radiologists reached a consensus.

Statistical analysis

Fig. 5 shows some of volume rendering by the
proposed method. The left carotid artery showed no
stenosis while the others had some stenosis. It should be
noted that the middle case has a lower severity of
stenosis than the right case. The two most common
techniques currently used to assess the performance of
image segmentation techniques are spatial overlap
index and surface distance metrics. The performance

Fig. 4 The centerline extraction in 3D mode. There is a total occlusion in the carotid lumen, but the method is successful in centerline
estimation. A: Lumen segmentation result with centerline points; B: centerline points; C, D, and E: different MIP views of the lumen in CTA.
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of the proposed method was evaluated quantitatively
using the following measures compared to the ground-
truth images.

Spatial overlap index

Dice similarity coefficient (DSC) represents the pixel
ratio of the overlapping regions, where at any given
threshold DSC values would range from 0, indicating
no spatial overlap between two sets of binary
segmentation results, to 1 indicating complete over-
lap[21].

Dice  similarity ¼ 2ðΩGUΩsÞ
ΩG þ Ωs

(11)

where WG is the ground truth image and Ws is the
segmented image.

Surface distance metrics

DSC is only related to the size of the contours and it
does not represent the stability according to the general
shape of the vessels. Therefore, surface distance metrics
including mean, root mean square and maximum
surfaces were presented for this purpose.
(1) Mean surface distance (Dmsd):
This Dmsd metric calculates the average distance

between the obtained 3D voxel surfaces of manual
segmentation and the proposed method.
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Here, sdmr and sdmp are the signed distance maps of
the manual segmentation and the proposed method, Sr

and Sp are the carotid lumen boundary surfaces obtained
by manual and proposed segmentation methods,
respectively, and |Si| is the surface area of the i

th surface
Si.
(2) Root mean squared surface distance (Drmssd):
This metric shows the surface distance of two 3D

objects by means of standard deviation of their surface
voxel difference.
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(3) Maximum surface distance:
This metric is similar to previous metrics except that

it shows the maximum difference between the corre-
sponding voxels of two surfaces.

Dmax ¼
1

2
� max

x  2   Sr
ðjsdmpðxÞjÞ þ max

x  2   Sp
jsdmrðxÞj

� �

(14)

Subjects

Fourteen volunteers, seven healthy subjects and
seven with carotid artery disease, with the age of
60�10 (mean�standard deviation) and range of 45 to
80 years, were recruited from Tehran Heart Center
Hospital (Table 2). Subjects provided written informed
consent and the institutional review board approved the
protocol. All patients received Visipaque (Iodixanol,
320 mg/mL), a contrast agent material. It contains 0.044
mg calcium chloride dihydrate per mL and 1.11 mg
sodium chloride per mL, with a sodium/calcium ratio
equivalent to blood.

Fig. 5 Volume renderings of three segmented carotid lumens without (A) and with low (B) and high (C) value of stenosis.
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Imaging

The CTA data were acquired on a 128 detector row
Siemens CT scanner (SOMATOM Definition Flash,
Siemens Medical Systems, Germany) with standard
parameters of Carotid Angio (Adult) vascular protocol.
The axial images of CTA were acquired with the
following parameters: tube current = 120 mAs, tube
voltage = 120 kVp, matrix size = 512 � 512, filter type
= flat, focal spot = 1.2 mm, spiral pitch factor = 1.2, slice
thickness = 0.6 mm, scan time = 10-14 s (depending on
the individual patient's size and anatomy) and the
patient position was head first-supine (HFS).

Results

The difference on the number of voxels between
ground truth and segmentation volumes is depicted in
Fig. 6. Table 3 shows the results for DSC and surface
distance metrics on each patient.
Table 4 illustrates the mean and standard division for

DSC, Dmsd, Drmssd and Dmax metrics. As mentioned
before, the number of voxels and DSC (or any volume
based metrics) depends on the size of the counters and
can be changed by applying morphological operations
(dilation and erosion) while the surface distance metrics
are resistant to the variation of the contour size. In the
subject encoded 13, the values of the volume based
metrics showed some reduction while surface distance
metrics showed a significant difference between the
segmentation result and the ground truth data (Table 3).

In this subject, a portion of the neighboring vein was
detected as lumen, which was marked by a yellow arrow
in Fig. 7C . The green contours showed the segmented
objects. This was viewed as an error, which can be
corrected by an extra preprocessing method.

Discussion

In this study, a multi-step method was proposed for
carotid artery segmentation in the CTA data. The
proposed method used three seed points that can be
obtained by anatomical markers[13]. Mean shift smooth-
ing was used as a preprocessing step to increase
uniformity of the lumen regions with minimal damage
to its edge. Then, centerlines of arteries were calculated
by a multi-scale 3D Hessian based shortest path method.
The centerline points were used as terminals for graph
cut based segmentation method. To reduce the complex-
ity of graph cut segmentation, a watershed pre-
segmentation was performed before graph cut segmen-

Table 2 Specification of patients that were used to evaluate the proposed method
Patient ID Age Carotid stenosis

1 50 No

2 45 Low stenosis in ICA

3 52 No

4 63 No

5 65 High stenosis in ICA, near the bifurcation site

6 51 No

7 67 High stenosis in ICA, near the bifurcation site

8 70 High stenosis in ICA

9 63 High stenosis in ICA

10 76 High stenosis in ICA

11 59 No

12 78 High stenosis in ICA, near the bifurcation site

13 49 No

14 61 No

ICA = internal carotid artery.

Fig. 6 The difference on the number of voxels between ground
truth and segmentation data
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Table 3 Validation results for the proposed method.
Patient ID DSC Dmsd (mm) Drmssd (mm) Dmax (mm)

1 0.89 0.27 0.39 2.22

2 0.91 0.22 0.29 1.7

3 0.91 0.22 0.3 1.3

4 0.89 0.25 0.43 1.92

5 0.90 0.32 0.52 3.03

6 0.85 0.21 0.29 0.87

7 0.91 0.14 0.2 1.25

8 0.93 0.21 0.28 1.12

9 0.9 0.17 0.24 1.78

10 0.83 0.26 0.34 0.87

11 0.82 0.31 0.58 3.07

12 0.88 0.32 0.40 1.27

13 0.61 1.43 2.32 8.9

14 0.90 0.2 0.26 0.71

DSC = dice similarity coefficient, Dmsd =mean surface distance, Drmssd = root mean squared surface distance, Dmax = maximum surface distance.

Table 4 Mean and standard division of validation metrics.
DSC Dmsd Drmssd Dmax

average average average average std std std std

0.87 0.32 0.49 2.14 2.08 0.54 0.32 0.08

DSC = dice similarity coefficient, Dmsd = mean surface distance, Drmssd = root mean squared surface distance, Dmax = maximum surface distance.

Fig. 7 Segmentation result for case No. 13 of data (A) ground truth MIP map and (B) MIP map of segmentation by the proposed
method (C) and one slice of original image (D) segmentation area in the same slice. The yellow arrow depicts a false positive case and green
contours show the segmented objects in this slice.
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tation. The 3D CTA data of 14 patients were used for
evaluation of the proposed method. The results showed
that the method has good performance for carotid artery
segmentation, which assures that it can be used in
clinical case segmentation.
Fortunately, due to an energy based centerline

extraction method, the algorithm does not have a
dependence on seed point selection and the user can
select seed points at any part of the arteries. However,
selection seed points at the beginning and final slices of
ROI was preferred because plaques or narrowing
usually do not occur in these slices.
This method is able to detect and segment even small

branches of the carotid artery. Though in this study a
refinement stage branch in the centerline extraction step
has been considered to neglect these small vessels, it
may be still effective for segmentation and rendering of
vessels in cerebrovascular studies (Fig. 8).
In the carotid atherosclerotic plaque studies, the

bifurcation site and ICA artery were given special
attention[22–26]. Most of the stenosis plaques occur at the
bifurcation site due to the pressure changes of the blood
flow and in the ICA because it is thinner than ECA. The
proposed method can correctly segment the carotid
arteries at the bifurcation site even if the stenosis plaque
occurs (Fig. 9).
The method can estimate the centerline in the cases

with small total occlusion along the vessel path
precisely (Fig. 3). However, if there is a large total
occlusion along the vessel, it seems that the method

would not be able to estimate the centerline of the entire
artery, possibly because the method estimates central
points incorrectly. If a calculated centerline point
belongs to the other structures or background positions,
the segmentation step may separate non-lumen parts of
images as lumens. To solve this problem, it is suggested
to add a refinement step for centerline points. In this
step, centerline points that have no intensities in their
positions in the ranges of the normal artery intensities
should be removed from centerline set points.
Table 5 shows a comparison between the results of

the proposed method and those of two other methods[27–
28]. Although the dice similarity index in the proposed
method is less than that of other methods, it shows better

Fig. 8 The refinement stage in centerline extraction (A)
estimated centerline with extra branch (B), and centerline after,
refinement step (C) segmentation result

Fig. 9 Stenosis plaques near bifurcation site of carotid artery. A and C: Original images at two consecutive slices; B and D: segmented
carotid lumens by proposed method at the same slices.
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values for surface distance metrics. The overall shape of
the vessels will be very close to manual segmentation.
To have an analysis on the spent time, the method can

be divided into the three main stages that include pre-
processing, centerline extraction and graph cut stages.
The centerline extraction stage requires the lowest time
among these stages, because this stage only uses the
lower objects (from labeling and nearest neighbor)
instead of all of image pixels. The preprocessing step
has the highest running time due to the use of mean shift
smoothing. One approach to shortening the average
preprocessing time is to reduce the mean shift range
resolution in every single slice, but it may cause
heterogeneity which decreases the performance of the
method.
In conclusion, in this paper, a novel interactive tool

was proposed for the accurate segmentation of the
carotid artery in the volumetric CTA images. The
experimental results showed that the proposed method
has a good ability to segment the narrowed carotid
arteries. It is simple to use and its user does not need to
adjust any parameter and the selection of three seed
points is enough. These features make it an appropriate
method for clinical use as an alternative to the manual
contouring. In addition, it seems that it can be used for
detection and quantification of carotid stenosis in the
CAD systems. Our further work is to evaluate the
proposed method in a larger data set and to optimize it
into a tool for detection, quantification of the stenosis
and plaque segmentation.
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