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Abstract

Severe acute respiratory syndrome coronavirus (SARS-CoV-2), a novel coronavirus, has brought an unprecedented pandemic
to the world and affected over 64 million people. The virus infects human using its spike glycoprotein mediated by a crucial
area, receptor-binding domain (RBD), to bind to the human ACE2 (hACE2) receptor. Mutations on RBD have been observed in
different countries and classified into nine types: A435S, D364Y, G476S, N354D/D364Y, R408I, V341I, V367F, V483A and
W436R. Employing molecular dynamics (MD) simulation, we investigated dynamics and structures of the complexes of the
prototype and mutant types of SARS-CoV-2 spike RBDs and hACE2. We then probed binding free energies of the prototype
and mutant types of RBD with hACE2 protein by using an end-point molecular mechanics Poisson Boltzmann surface area
(MM-PBSA) method. According to the result of MM-PBSA binding free energy calculations, we found that V367F and
N354D/D364Y mutant types showed enhanced binding affinities with hACE2 compared to the prototype. Our computational
protocols were validated by the successful prediction of relative binding free energies between prototype and three mutants:
N354D/D364Y, V367F and W436R. Thus, this study provides a reliable computational protocol to fast assess the existing and
emerging RBD mutations. More importantly, the binding hotspots identified by using the molecular mechanics generalized

Born surface area (MM-GBSA) free energy decomposition approach can guide the rational design of small molecule drugs or
vaccines free of drug resistance, to interfere with or eradicate spike-hACE2 binding.
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Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
a highly pathogenic novel coronavirus, has started a worldwide
pandemic since December 2019 [1]. The disease caused by the
virus known as coronavirus disease 2019 (COVID-19), with a
wide range of symptoms, including dry cough, fever, headache,
dyspnea and pneumonia [2]. As of 4 December 2020, the virus has
affected more than 216 countries, infected more than 64 million
people, and claimed lives for 1.5 million, with the estimated
mortality of about 2–5% [3, 4]. The total number of infected
people is highly underestimated since part of the mild symptom
patients are self-cured without cases recorded.

SARS-CoV-2 belongs to betacoronavirus genus, with family
members including SARS-associated coronavirus (SARS-CoV)
and Middle East respiratory syndrome coronavirus (MERS-CoV).
Since the 21st century, these three viruses have trespassed the
species barrier and caused an unprecedented epidemic situation
[5–7]. Among the three coronaviruses, SARS-CoV-2 has the most
severe global impact [8]. The genetic material inside SARS-CoV-
2 is single-positive-strand RNA, with 1/3 of the gene codes for
structural proteins (SPs) and the rest 2/3 of the gene codes for
nonstructural proteins (nSPs) [9]. The major structural proteins
expressed by SARS-CoV-2 can be divided into four classes:
spike protein (S); envelope protein (E); nucleocapsid protein
(N); membrane protein (M) [10]. Same as other betacoronavirus
family members [11, 12], SARS-CoV-2 uses spike protein as the
cell entry [13, 14]. The spike protein is the protrusion on the
virus surface, giving the virus a crown appearance [15]. The
spike protein comprises two functional subunits, S1 and S2. The
S1 subunit includes the receptor-binding domain (RBD) with a
length of about 200 residues targeting a specific protein receptor
of host cells called human angiotensin-converting enzyme
(hACE2) (see below) [16, 17]. Within RBD area, a short sequence
called receptor-binding motif (RBM) makes direct contact with
the receptor. The S2 subunit is the fusion machinery that is
responsible for membrane fusion [18]. In spike protein, RBD is
thought to be essential in viral tropism and infectivity [19–21].
SARS-CoV-2 spike protein provides infusion and penetration of
the virus that gives the virus unsmooth surface. Just like SARS-
CoV, SARS-CoV-2 infects host cells utilizing hACE2 expressed by
HeLa cells as the receptor, [22] and the spike-hACE2 binding trig-
gers a cascade of immune reactions. Normal hACE2 level in the
lung is beneficial for the host to combat inflammatory disease,
and also crucial for other physiological activities [23, 24]. During
the virus infection, hACE2 is one indispensable component and
is also considered to be one promising therapeutic target.

Binding mechanism study of spike protein RBD and hACE2
may provide a key to tackle this worldwide health threat.
Complementary to wet lab study, computational methods can
provide more details about binding pattern and the dynamics of
protein–protein interaction. The binding mechanism elucidated
by virtual in silico studies can provide hints on designing
effective drugs and vaccines to overcome the emergent global
challenge. More importantly, mutant models can be easily built
through computational mutagenesis and the mutation effect
can be easily predicted using the same computational protocol
adopted to study the prototype. The hotspot residues that are
essential for both the prototype and mutants can be identified
by analyzing the binding profiles of their spike RBD-hACE2. Drug
molecules or vaccines targeting those hotspot residues are likely
to be free of drug resistance. In real world, it is hard to analyze
the mutant that has higher infectivity as we will not exactly
know which mutant has infected the patient. Moreover, the

mutant infectivity analysis is only based on a small fraction
of the samples. Therefore, we focused on in silico approaches
to study the binding mechanisms of spike protein RBD/hACE2,
aiming to provide insights into rational drug and vaccine design.

Spike RBD is the only protein domain initializes the viral
infection process of SARS-CoV-2. Its sequence consisting of
about 200 amino acid residues is highly conserved [25]. Thus,
harmful mutations on this protein domain may cause drug
resistance. Under this context, it’s crucial to monitor the
mutation dynamics of the virus, and the mutants should be well
studied to fully capture their effect on the RBD functions. Strains
of SARS-CoV-2 have been collected from multiple countries,
and mutants have been detected and classified into nine types
according to mutation positions on RBDs, including V341I, F342L,
N354D/D364Y, V367F, R408I, A435S, W436R, G476S and V483A. In
this study, models of mutant RBDs were generated using the
prototype SARS-CoV-2 RBD/hACE2 complex for the computa-
tional simulations. To thoroughly study the only dual amino
acids mutant, N354D/D364Y, single mutation models of N354D
and D364Y were also built for the subsequent studies, including
molecular dynamics (MD) simulations of the protein complexes,
end-point molecular mechanics-Poisson Boltzmann surface
area-weighted solvent accessible surface area (MM-PBSA-WSAS)
binding free energy calculations, and end-point molecular
mechanics generalized Born surface area (MM-GBSA) binding
free energy decomposition analysis (see the Method section).
The binding affinity calculations can reveal which mutations
are able to strengthen the protein–protein binding and cause
drug resistance. Free energy decomposition study further reveals
how binding profile is altered by point mutations on RBD. MD
simulation technique has been diversely employed in COVID-19
research. Gollapalli et al. [26] reported a structure-based drug
design (SBDD) case study using docking and MD simulation to
find potential therapeutic targets for wild type of SARS-CoV-2
RBD; Silva de Souza et al. [27] employed MD simulation to
help understand the ionic effects on wild RBD/hACE2 complex
formation/stability and reported two regions on wild RBD,
which can interact with hACE2 differently; de Andrade et al.
[28] reported the binding affinities of wild SARS-CoV spike
protein and wild SARS-CoV-2 spike protein with hACE2 and
provided detailed analysis to help gain a clearer view on the
binding process between two viruses. All of these studies
focused on the wild type of SARS-Cov-2 spike protein. MD
studies on mutant types are scarce. Ou et al. [29] published a
preprint stuy on Biorxiv about short MD simulations (10 ns)
on mutant RBDs/hACE2 complexes with GROMACS program
and OPLS/AA force field. Our study provides a view of mutant
RBDs binding with hACE2 through performing multiple MD runs
and energy decomposition analysis to help better understand
the binding mechanism of SARS-CoV-2 RBD with hACE2.
The hotspot residues from both spike RBD and hACE2 were
identified by analyzing the free energy decomposition data. The
common hotspots occurring to both the wild type and harmful
mutants should be major targets in binding pocket definition
for structure-based drug design and vaccine development.

Results
We first performed MD simulations to assess the structural sta-
bilities of the wild type and mutant protein complexes, and the
collected MD snapshots were then applied to calculate the bind-
ing affinities of spike RBD/hACE2 interactions, and to conduct
binding free energy decomposition.
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Figure 1. Overlay of crystal and MD representative structure for the wild type RBD/hACE2 (Panel A) and the 10 RBD mutation sites (Panel B). Glycosylated residues are

shown in greenish sticks for the X-ray and brownish sticks for representative MD structures. The residues undergo mutations are shown as greenish sticks.

Structural stability of the prototype and mutants of
SARS-CoV-2 RBD/hACE2 during MD simulations

Five independent MD runs were performed for the prototype
spike RBD/hACE2 complex. For each of the mutant types, which
include V341I, F342L, N354D, N354D/D364Y, D364Y, V367F, R408I,
A435S, W436R, G476S and V483A, two independent MD runs were
carried out. Each MD run lasts 100 ns.

The root-mean-square deviations (RMSDs) of the RBD and
hACE2 in each system along with the simulation time were
calculated from the MD trajectories and shown in Figures S1
and S2, respectively. The RMSD plots showed that both RBD
and hACE2 proteins from each system reached equilibria in the
equilibrium phase (20 ns). The stable RMSD values were around
1–2.5 Å for most systems. The low RMSD values indicate the
complex stability of the MD systems is satisfactory during the
simulation time. Although fluctuation can be observed from
some different MD runs, the fluctuations are all within 1.5 Å. The
fluctuations were understandable because this is MD simulation
for two proteins rather than a small ligand with a protein.

Representative MD structures, which have the smallest
RMSDs compared to the average MD structures, were generated
for all the MD systems. Interestingly, the representative MD
structures are very similar to the crystal structure, especially
for the RBD/hACE2 binding interface (Figure 1). For each mutant
shown, the key interactions in prototype and in the mutant
types are shown in Figure S3 and S4, respectively. As shown in
the Figure 1B and Figure S3A, all the mutation sites stay far away
from the protein–protein interface except for GLY476 (giving
G476S mutant), ARG408 (giving R408I mutant) and VAL484 (giving
V483A mutant). Though these three residues were close to the
interface, no polar interaction of these three residues with the
ACE2 residue was observed. Residues ASN354, ASP364, VAL367,
ARG408, ALA435 and TRP436 had strong interactions with nearby

residues, whilst residues VAL341, PHE342, GLY476 and VAL483
interacted with surrounded residues weakly. The interaction
with nearby residues may be altered due to mutation. For
example, ASN354 in the prototype can form multiple hydrogen
bonds with ALA348 and SER399; after ASN354 changed to
ASP354, the interaction with ALA348 disappeared, which lead
to a binding affinity drop. For V483A case, no polar contact
with nearby residues has been observed before or after the
mutation. And no significant binding affinity alteration showed
up for this mutant. By comparing the interaction with nearby
residues before and after mutations, we found that the greater
interaction change of the mutated residues with its nearby
residues, the greater change of the RBD-ACE2 binding affinity.
To be specific, V341I, A435S, W436R, G476S and V483I, part of
or all of interaction formed before mutation remained after the
mutation, and only slight binding affinity change was observed
for these types. For cases of F342L, N354D, N354D/D364Y,
D364Y, V367F and R408I, old interaction disappeared or new
strong interaction formed, thus drastic binding affinity changes
were observed (Figure 2). Overall, the residues that had strong
interactions with the nearby residues were more likely to alter
the binding free energy. This may explain why some of the
mutants showed the altered binding affinity, but the other ones
had comparable affinity as the prototype. By comparing the
changes of conformation and the interaction pattern before
and after the mutation, we can estimate the strength of the
perturbation induced by a mutation at the mutation site.

Binding energies of RBDs/hACE2

The binding affinity between prototype SARS-CoV-2 spike and
human ACE2, or a mutant SARS-CoV-2 spike protein and human
ACE2 are represented by the binding affinity (�G) between the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab188#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab188#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab188#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab188#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab188#supplementary-data
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Figure 2. The comparison of binding free energy of each mutant and the prototype SARS-CoV-2 RBDs with hACE2.

RBDs and the hACE2. To obtain the �G values, we conducted MM-
PBSA calculations for the MD snapshots sampled in the product
phase of the RBDs-hACE2 simulations. MM-PBSA is a popular
end-point free energy calculation method. [30] We estimated the
entropic contribution using a method called WSAS [31], as such,
we call this free energy method MM-PBSA-WSAS. The results of
MM-PBSA-WSAS calculations were summarized in the Table 1,
and the comparison between mutants and the prototype was
shown in Figure 2. Compared to −16.04 kcal/mol binding free
energy of the prototype SARS-CoV-2 RBD system, three mutant
types, N354D/D364Y, D364Y and V367F, showed significant lower
�G values indicating the significant higher binding affinities
with hACE2. Two of these three mutants, N354D/D364Y and
V367F, have drawn extensive attention as they showed up in
multiple countries, indicating its enhanced binding affinity in
the real world [28]. Four mutant types showed comparable bind-
ing affinity with the wild type, which are V341I, A435S, W436R
and V483A. Four mutant types showed lower binding affinity
than the prototype system, which are F342L, N354D, R408I and
G476S. From other publication [32], R408I was once reported
to have a lower binding affinity, which is consistent with our
study. In the case of N354D/D364Y, D364Y mutation significantly
enhanced the binding affinity, while N354D lowered the binding
affinity, indicating the mutation on Asp364 contributed more
to the increment of the mutant N354D/D364Y binding affinity.
It is pointed out that the single D364Y mutant has not been
observed in any country. The predicted binding free energies
were compared with experimental data from multiple reports
applying different experimental techniques. Figure 3 shows how
well the binding free energies by MM-PBSA-WSAS agree with
the experimental values reported by AcroBiosystems [33]. The
original experimental values were listed in Table S1 in the Sup-
porting Information (SI). The KD and EC50 values were con-
verted into �G values using equation �G = −RTlnKD or �G =
−RTlnEC50. The simulation results suggested that all the three
mutants (N354D/D364Y, V367F and W436R) can enhance the
binding between spike RBD and hACE2, which agrees with the
experiment. The predicted binding affinities in our study were
about 0.5-fold higher than the experimental values, with binding
affinity of W436R was slightly higher than that of the prototype,
and other two types, V367F and N354D/D364Y, exhibiting more
higher binding affinities (Table 1 and Table S1). In summary, our
MM-PBSA-WSAS method correctly captured the trend of the
binding affinity increment of the aforementioned three mutants
than the prototypes measured by experiment, albeit it overes-
timated the absolute values of the binding free energies. Com-
pared to a limited number of experimental binding affinity data,

our in silico method can distinguish the difference of mutation
effects for a broad set of mutations, and offers a clearer view on
the direction of future studies.

RBDs free energies

Unlike the first principal method, molecular mechanics energies
are not comparable for different molecules. In Rosetta force field,
a score12 term was introduced to account for different amino
acid type in protein design. This term reflects the energy of an
amino acid in unfolded state [34, 35]. This score12 has a narrow
range (<2 kcal/mol) for different amino acid types. Considering
the larger variation of the MM-PBSA-WSAS complexation ener-
gies between different mutants, the reference energy correction
applied in the Rosetta force field was not made in this work. The
free energy of a RBD mainly reflects the stability of the complex,
as the hACE2 is well-folded and remaining the same in all of the
systems. The MM-PBSA-WSAS free energies of the prototype and
11 mutant RBDs were listed in Table 2 and shown in Figure 4.
As both the RBD and hACE2 are well folded proteins, we only
discussed the RBD free energies to better compare the mutation
effect on RBD. The hACE2 free energies are listed in Table S2 to
show the consistency of hACE2 energies. Overall, most of the
RBDs had comparable free energies with that of the prototype
RBD except for R408I and W436R. R408I exhibited a signifi-
cantly higher RBD free energy than the prototype, while W436R
RBD had a significantly lower free energy than the prototype.
This observation is understandable as the former mutant has a
charged amino acid (ARG408) being replaced with a neutral one
(ILE408), and the latter mutant has a neutral amino acid (TRP436)
being replaced with a charged one (ARG436). For the R408I case,
in the prototype ARG408 forming a salt-bridge with the ASP405,
moreover, it can also interact with GLN414 by forming a side
chain-side chai hydrogen-bond (Figure S3G). From ARG to ILE, the
basic amino turned into one hydrophobic amino acid, and the
mutation disrupted the interactions with the polar amino acids,
explaining why a single mutation has such a significant effect
on the whole complex free energy. This change in one protein
might not have an effect on the binding affinity, but it can affect
the stability of the protein complex. The unfavorable RBD energy
and less binding affinity make R408I less risk compared to other
mutants. On the other hand, as for W436R, the TRP436 formed
two hydrogen bonds with ARG509 in the wild type (Figure S3I);
after it was mutated into ARG, four hydrogen bonds formed
between ARG436 and ARG509/SER373 (Figure S4H). For this rea-
son, the W436R mutant achieves the lowest RBD free energy than
the other RBDs, suggesting its high RBD stability. In addition, the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab188#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab188#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab188#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab188#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab188#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab188#supplementary-data
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Table 1. Results of calculated MM-PBSA energy terms and binding free energies of prototype and mutant systems

Spike �Evdw �Eeel �Gsol
p �Gsol

p -T�S �GMM-PBSA

Prototype −91.54 ± 0.22 −615.23 ± 0.90 667.81 ± 1.10 −10.10 ± 0.01 33.02 ± 0.04 −16.04 ± 0.05
V341I −91.85 ± 0.85 −584,95 ± 5.67 640.29 ± 5.38 −9.91 ± 0.06 31.64 ± 0.26 −14.77 ± 0.83
F342L −93.96 ± 0.56 −564.05 ± 6.68 627.49 ± 5.90 −10.43 ± 0.04 32.37 ± 0.22 −8.59 ± 0.85
N354D −93.20 ± 0.63 −415.49 ± 3.40 476.86 ± 4.00 −10.36 ± 0.06 32.29 ± 0.14 −9.90 ± 1.17
N354D/D364Y −93.19 ± 0.81 −584.45 ± 5.67 634.35 ± 4.27 −9.94 ± 0.08 32.39 ± 0.07 −20.84 ± 1.41
D364Y −96.07 ± 0.24 −754.67 ± 1.89 797.13 ± 2.15 −10.61 ± 0.06 36.26 ± 0.03 −30.61 ± 0.47
V367F −97.29 ± 0.43 −604.85 ± 3.1 657.86 ± 2.4 −10.45 ± 0.03 34.08 ± 0.21 −20.66 ± 1.3
R408I −88.52 ± 0.93 −410.55 ± 2.13 468.19 ± 2.77 −10.12 ± 0.19 31.48 ± 0.26 −9.53 ± 0.55
A435S −101.03 ± 0.65 −554.74 ± 3.41 614.91 ± 3.82 −11.03 ± 0.06 34.83 ± 0.16 −17.07 ± 0.35
W436R −93.92 ± 0.71 −831.27 ± 5.51 884.57 ± 4.39 −10.41 ± 0.04 33.92 ± 0.17 −17.12 ± 1.51
G476S −94.04 ± 0.67 −585.17 ± 3.49 643.48 ± 4.13 −10.55 ± 0.04 33.50 ± 0.18 −12.79 ± 1.22
V483A −91.31 ± 0.58 −622.57 ± 6.54 673.45 ± 6.48 −10.69 ± 0.04 33.82 ± 0.15 −17.30 ± 1.57

Figure 3. The comparison of the predicted binding free energies and experimental results. BLI is Bio-Layer Interferometry method; SPR is Surface plasmon resonance

method; enzyme-linked immunosorbent assay (ELISA) is enzyme-linked immunosorbent assay. �G = RTlnKD is used to convert KD to binding free energy for BLI and

SPR methods. �G = RTlnEC50 is used to convert EC50 to binding free energy for ELISA method.

Table 2. The free energies of prototype RBD and mutant type RBDs (kcal/mol)

Prototype V341I F342L N354D N354D/D364Y D364Y V367F R4081 A435S W436R G476S V483A

−6554 ± 2 −6515 ± 7 −6556 ± 5 −6515 ± 4 −6483 ± 3 −6487 ± 5 −6546 ± 5 −6356 ± 4 −6530 ± 2 −6739 ± 7 −6481 ± 5 −6518 ± 11

mutant’s binding affinity was slightly higher than the prototype
according to the MM-PBSA-WSAS calculation. Therefore, this
mutant is relatively risky.

Binding pattern of prototype SARS-CoV-2 RBD/hACE2

Through the MM-PBSA-WSAS calculation, the binding free
energy for the prototype SARS-CoV-2 spike protein with
human ACE2 protein is −16.04 kcal/mol, which is close to
−12.16 kcal/mol reported [22]. As MM-GBSA-WSAS method tends
to overestimate the absolute values of binding free energies,

it’s reasonable that the predicted binding free energies are
more negative than experimental values. We conducted binding
free energy decomposition for the prototype and mutants of
RBD/hACE2 using the MM-GBSA method since its computational
cost is much lower than MM-PBSA-WSAS. Hotspot residues
were identified according to its interaction energy with the
protein binder, ��Ginter. The ��Ginter of a RBD residue is its
interaction energy with hACE2, while ��Ginter of a hACE2 residue
is its interaction energy with the RBD domain of the SARS-
CoV-2 spike protein. The hotspot residues for the wild type
were listed in Table S3 and illustrated in Figure 5. We used a

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab188#supplementary-data
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Figure 4. The comparison of RBD free energies of each RBD/hACE2 system.

Figure 5. The binding hotspot of prototype SARS-CoV-2 RBD with the human ACE2. The binding interface was colored in red and blue to show the interaction strength

between the prototype RBD/hACE2 complex. The red color indicates strong interaction; the blue color indicates mild interaction. The grey color indicates no interaction

or the negligible interaction. The binding interactions between the interfaces were labeled with residue names. The residues from RBD are labeled in dark blue, and the

residues from ACE2 are labeled in yellow. Panel B shows the interaction between Cys488 (RBD), Tyr83 (ACE2) and Phe486. Panel C shows the interaction of Ile472 (RBD)

with Gln24 (ACE2), Ser19 (ACE2) and Phe486 (ACE2). Panel D shows the interaction of Glu484 (RBD) with Thr27 (ACE2), Phe28 (ACE2), Lys31 (ACE2) and His34 (ACE2). Panel

E shows the interaction of Lys353 (ACE2) with Tyr495 (RBD) and Gly502 (RBD). Panel F shows the interaction of Asp355 (ACE2) with Gln498 (RBD) and Thr500 (RBD).

color scheme to indicate the interaction strength measured by
��Ginter, and it showed that most strong interactions occurred to
the binding interface residues that are colored in red and blue.
The hotspot residues that strongly interact with their protein
binder were labeled and shown in Figure 5B-5F. Termination
of these polar/nonpolar contacts may directly interfere with
the binding between two proteins. The residues positions of
the selected hotspots were compared with RBM sequence and
shown in the Figure 6. RBM sequence was from 438–506 and
most of the significant hotspot residues were within RBM.

Key binding residues in prototype and mutant
RBD/hACE2

The key residues for RBDs/hACE2 binding were identified by
analysis of the MM-GBSA binding free energy decomposition
results. The residues with a decomposed binding energy

��Ginter < −0.1 kcal/mol were selected as key residues and
listed in Tables S4 and S5. We generated heatmaps to show the
overall contributions of each key residue to the protein–protein
binding for both the prototype and mutants (Figures 7 and 8). In
a heatmap, the selected key residues were listed vertically and
their interaction energies in different systems were mapped
into colors using a colormap shown below. Two heatmaps, for
RBD and hACE2, were generated. In the RBD heatmaps, ��Ginter

is the interaction energy between an RBD residue with the
whole hACE2 protein (Figure 7), while in the hACE2 heatmap,
��Ginter is the interaction energy between an hACE2 residue
with the whole RBD domain (Figure 8). For most mutants, the
residues at the mutant positions did not take a crucial role in
RBD-ACE2 binding and were not recognized as the key residues.
However, GLY476, VAL483 and ARG408 were selected and shown
in the heatmap since they interacted with hACE2. GLY476 made
a significant contribution (−0.8 to −3.8 kcal/mol, Table S5) in

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab188#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab188#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab188#supplementary-data
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Figure 6. RBD sequence starting from Cys336 to Lys535. The residues selected in the hotspot were highlighted; the residues starting from Thr438 to Gln506 in RBM

were colored in red to show the overlap between the binding area and the RBM motif.

protein binding compared to other mutation residues, as it is a
part of the protein–protein binding interface (Figure 1). Unlike
GLY476, the ��Ginter of ARG408 is neglectable (∼ −0.2 kcal/mol)
and the ��Ginter of VAL483 is only significant for a few mutants
including A435S and G476S. We further selected some residues
that are key residues in both the prototype and mutants. Drugs
that target those key residues may block RBD-hACE2 binding for
not only the prototype, but also the mutants, and are likely free
of the drug resistance problem. Among all RBD key residues,
sevens were colored in dark color, indicating their important
role in RBD-hACE2 binding: PHE486, ASN487, TYR489, GLN493,
THR500, ASN501 and TYR505. Similarly, seven hACE2 residues
were colored in dark color indicating their essential role in
RBD-hACE2 binding: GLN24, THR27, ASP30, LYS31, HIS34, LYS353
and ASP355. Those key residues are shown in Figure 9. These
residues should be considered as hotspots in rational drug and
vaccine development.

Discussion
During the COVID-19 pandemic, social economy and technology
development were drastically staggered due to the extensively
applied quarantine measure. Even more severe, the numbers
of infection and death related to the virus are still growing.
Facing this global health threat, it is essential to investigate
viral infectivity and binding mechanism using all the resources
we have. With the virus travel, mutants emerged, and some of
the mutants are believed to have an elevated binding affinity
with the hACE2 target. The emerging SARS-CoV-2 mutants may
jeopardize the effort researchers put on the vaccine, since all
the vaccine targets at the prototype and known mutants. This
paper provides computational insights into infectivity change of
SARS-CoV-2 RBDs caused by mutations, the binding interface of
SARS-CoV-2 RBD and hACE2, and the key/essential residues for
RBD/hACE2 binding.

Validated using in-vitro experimental values, our simulation
and free energy method showed a great promise. We successfully
predicted three mutants, i.e. V367F, W436R and N354D/D364Y,
had more potent binding affinities than the prototype, and the
findings agreed with the KD and EC50 values measured by dif-
ferent methods by ACRO biosystem (https://www.acrobiosyste
ms.com). The trend of the measured binding affinities was: pro-
totype < W436R < N354D/D364Y < V367F. Our prediction result
showed that N354D/D364Y and V367F were two mutants with
binding affinity significantly more potent than the prototype
(−20.84 kcal/mol and − 20.66 kcal/mol versus −16.04 kcal/mol),
while W436R was comparable with the prototype (−17.12 kcal/-
mol versus −16.04 kcal/mol). Our predicted values are more
negative than the measured ones, which is satisfactory given
the measurement is for protein–protein binding and the
MM-PBSA-WSAS technique still needs further improvement on
its accuracy.

According to our computational results, two mutant types
showed significantly higher binding affinity than the prototype,
V367F and N354D/D364Y. V367F mutant was reported by multiple
countries and found to be more potent than the prototype,
agreeing with our prediction. To understand the binding mecha-
nism of N354D/D364Y, the only double-mutation system, we also
performed simulations and conducted free energy calculations
separately for N354D and D364Y. Interestingly, we found that
the binding free energy of D364Y is much more potent than the
prototype, while that of N354D is much less potent (Table 1). We
hypothesized that there is compensation mechanism governing
the double mutations: too strong interaction between RBD and
hACE2 in D364Y might actually prevent the sequential process of
SARS-CoV2 entering host cells, and the N354D mutation attenu-
ate the strong interaction between RBD and hACE2 to facilitate
the viruses to enter the host cells. As to the other mutants,
most of them showed a comparable binding affinity with the
prototype, and some specific types, such as F342L, R408I and
G476S, showed lower binding affinity than the prototype. As
of August 2020, some countries have shown trace of second
outbreak caused by mutant SARS-CoV-2, we should be alert that
the virus has evolved and selected to be more infective during
the travel.

The RBD stability can be altered due to a single amino
acid change. For mutant R408I and W436R, the RBD free
energy was changed dramatically involved by a charged amino
acid being mutated to a neutral one or vice versa. When we
evaluate the risk of a mutation, both the changes on the
binding affinity and protein stability should be taken into
consideration.

The hotspot residues that make significant contributions to
protein–protein binding for both prototype and mutants were
identified by MM-GBSA binding free energy decomposition anal-
ysis. Seven residues in key residues in RBD and seven residues
in hACE2 were selected as the key residues (the essential set
of key residues) that should be targeted in design inhibitors
and vaccines to block the RBD binding to hACE2 (Figure 9). We
conducted cluster analysis on the essential set of key residues
and the other hotspots (the expanded set of key residues) that
occur in at least one mutant and prototype (Tables S2–S4), with
an aim to identify possible binding sites where small-molecule
drugs bind to RBD or hACE2. We first identified potential binding
pockets of RBD, hACE2 and the complex using the SiteID module
of the Sybyl software (https://www.certara.com/) and six clusters
were identified. Using the center of a cluster, we expanded its
residue coverage and identified the key residues within the clus-
ter. As shown in Figure 10, there are four possible binding sites
for the RBD, among which Clusters 1 and 2 can accommodate
relatively large-sized organic molecules and Clusters 3 and 4 are
more suitable to screen regular-sized organic molecules. Most
key residues in the essential and expanded sets were covered by
the four clusters. As to hACE2, we identified two possible binding

https://www.acrobiosystems.com
https://www.acrobiosystems.com
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab188#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab188#supplementary-data
https://www.certara.com/
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Figure 7. The heatmaps of residues selected from RBDs. The residue was selected if the energy contribution in RBD/hACE2 binding exceeded −0.1 kcal/mol. The y axis

label presents the selected residue names; the x axis presents mutant system name. The bar on the bottom represent the relation between energy contribution and

the color: darker color on the heatmap indicates bigger contribution of the residue in the binding process.

sites, which can accommodate both large (Figure 10E) and small
(Figure 10F) molecules.

With the reliable computational approaches established in
this work, we can easily identify new RBD mutations that may
enhance RBD/hACE2 binding. Different from a wet lab study, the

aim of computational simulation and free energy calculations
focuses on identification of risky mutants and understanding
of the underlying molecular mechanisms, which may guide us
to develop inhibitors of the protein–protein interaction through
allostery.
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Figure 8. The heatmaps of residues selected from hACE2. The residue was selected if the energy contribution in RBD/hACE2 binding exceeded −0.1 kcal/mol. The y

axis label presents the selected residue names; the x axis presents mutant system names. The bar on the bottom represents the relation between energy contribution

and the color: darker color on the heatmap indicates bigger contribution in the binding process.

Conclusion
This paper applied a series of computational methods to
explore the binding pattern of SARS-CoV-2 RBD with the human
ACE2. Molecular mechanics models of SARS-CoV-2 RBD/hACE2
prototype and mutants were built after a set of force field
parameterizations of modified resides. Through MD Simulations
and MM-PBSA calculations, the binding free energies of the

prototype and mutant type RBDs binding to hACE2 were pre-
dicted. Two mutants, V367F and N354D/D364Y, were predicted to
have significantly higher binding affinities, and the prediction
was validated by experiment and the virus epidemiology.
Moreover, the RBD and hACE2 free energies were applied by
us to predict structural stability altered by mutagenesis. Two
mutants, R408I and W436R were found to decrease and enhance
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Figure 9. The residues selected from ACE2 and RBD, which contributed the most

in RBD and hACE2 binding. The residues located in ACE2 protein were colored in

red, and the residues located in RBD protein were colored in blue. These colored

residues are defined as essential binding residues.

the structural stability, respectively. Last, we conducted MM-
GBSA free energy decomposition analysis using the snapshots
collected during MD simulations. A set of hotspot residues was
identified for both the prototype and mutants. After cluster
analysis, a set of potential binding sites where the key residues
from both the essential and expanded sets are located, were
identified. Those binding sites may be applied to develop
inhibitors of the RBD/hACE2 binding through virtual screenings.
The key residues identified by us can also provide guidance on
vaccine development for the spike protein.

Methods
Molecular simulation system setup

The complex of prototype SARS-CoV-2 RBD and hACE2 structure
(PDBID 6 M17) [36] was obtained from Protein Data Bank. [37]
The models of mutant type SARS-CoV-2 spike glycoprotein were
built based on the prototype RBD/hACE2 complex by mapping
the common atoms of the original and mutation residues and
manually rotating side chains to maximize the favorable inter-
actions with the surrounding residues. Three types of glyco-
sylated residues, called AS1, AS2 and AS3, which are modified
ASN residue with one N-acetylglucosamine (NAG), two NAG and
three NAG residues, respectively, were introduced. A modified
GLU and HIS residues that are covalently bonded to Zn2+ were
also prepared using programs in the Antechamber package [38].
The atomic partial charges of those nonstandard residues were

derived by the RESP [39] program to fit the HF/6-31G∗ elec-
trostatic potentials generated using the Gaussian 16 software
package [40]. FF14SB [41] were used for modeling proteins except
for NAG, which was described by GAFF [42]. In total, there are
11RBD/hACE2 systems studied and each system contains a copy
of RBD/hACE2 protein, 120 Cl− and a certain number of Na+,
which neutralize the whole MD system and about 40 000 TIP3P
[43] water molecules. The simulation systems were rectangles
with sizes of roughly 110 × 110 × 110 Å after equilibrium.

Molecular dynamics simulations

Molecular mechanics (MM) minimization and the sequential
molecular dynamics (MD) simulations were performed using
the AMBER18 package. [44] First, five 10 000-step restrained
minimizations were performed with the restraining forces on
the main chain atoms gradually decreased from 20 to 10, 5, 1
and 0 kcal/mol. The followed MD simulations have four phases,
including the relaxation phase, the heating up phase, the equi-
librium phase and the sampling phase. In the relaxation phase,
five 200-ps MD simulations using the same restraining forces
to the main chain atoms as in minimization stage. Then the
MD system was heated up progressively from 50 to 250 K at
steps of 50 K in a series of 1-nanosecond MD simulations. In the
next equilibrium phase, the system was equilibrated at 298 K,
1 bar for 10 ns. Last, a 100-ns MD simulation was performed
at 298 K, 1 bar to produce isothermal–isobaric ensemble. We
repeated the last phase four more times for the prototype and
one more time for each mutant. The repeated MD runs produced
independent MD trajectories by using different random number
seeds for temperature regulation using Langevin dynamics [45]
with a collision frequency of 5 ps−1. The integration of the
equations of motion was conducted at a time step of 1 fs for
the relaxation phase and 2 fs for the other three phases. The
particle mesh Ewald (PME) method [46] was used to calculate the
full electrostatic energy of a unit cell in a macroscopic lattice of
repeating images. In total, 10 000 snapshots were collected from
the sampling phase for post-analysis using the Cpptraj module
implement in the AMBER software package.

MM-PBSA-WSAS free energy calculation and MM-GBSA
energy decomposition

Molecular mechanics/Poisson Boltzmann surface area (MM-
PBSA) is an end-point method [47–53] for free energy calculations
with the solvation free energy being calculated using the PBSA
method and the conformational entropy being estimated using
the WSAS method. For a molecule in a solvent, the free energy
is calculated using the following equations.

�GMM-PBSA-WSAS = �H − T�S
= �Eint + �Evdw + �Eeel + �Gsol

p + �Gsol
np − T�S

�Eint stands for the internal energy contribution, which is
cancelled out when applying the ‘Single Trajectory’ sampling
protocol as we did in this study [54]; �Evdw and �Eeel are the
van der Waals and gas phase electrostatic energies, respec-
tively; �Gsol

p and �Gsol
np stand for the polar and nonpolar compo-

nents of the solvation free energy, respectively. T is the absolute
temperature; �S is the change of the conformational entropy.
�Gsol

p is calculated by solving the Poisson–Boltzmann equations
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Figure 10. Top clusters of binding sites for Spike RBD domain and hACE2. A: Cluster 1 for RBD, B: Cluster 2 for RBD, C: Cluster 3 for RBD, D: Cluster 4 for RBD, E: Cluster

1 for hACE2 and F: Cluster 2 for hACE2. All key residues of RBD are shown as greenish sticks, while those of hACE2 as brownish sticks.

using the Delphi program [50]. �Gsol
np is estimated using sol-

vent accessible surface area with the surface tension coeffi-
cient of 0.00542 kcal/(mol·Å2) and a constant of 0.92 kcal/mol.
[55] For each MD trajectory, MM-PBSA-WSAS calculations were
performed for 200 evenly selected snapshots. MM-GBSA energy
decomposition [56], on the other hand, was performed for all the
10 000 snapshots. For MM-GBSA analysis, the polar component
of solvation free energy is calculated using the Generalized Born
model developed by Hawkins et al. [56]. The internal and external
dielectric constants were set to 1 and 80, respectively, for both
PBSA and GBSA calculations. The free energy decomposition
analysis was performed using an internal program. An RBD
residue becomes a hotspot when its interaction energy with
hACE2 is smaller than a cutoff, −0.1 kcal/mol, while a hACE2
residue is a hotspot when its interaction energy with RBD is
smaller than the cutoff.

Key Points
• We provided an efficient computational protocol to

predict binding affinities of SARS-CoV-2 spike glyco-
protein RBD to hACE2 receptor, and our computational
results agree with the experimental data well.

• Three mutant type RBDs with enhanced binding
affinities were identified.

• We provided the RBD free energies of different
RBD/hACE2 systems to predict the relative structural
stability of the mutants.

• We identified binding hotspots through MM-GBSA
free energy decomposition analysis. Cluster analysis
on the hotspot residues were conducted to predict
potential binding sites for binding inhibitor screening.

• The binding heatmaps were generated to facilitate the
identification of key residues for both the prototype
and mutant type RBDs and hACE2. Small molecule
drugs or vaccines that target those essential residues
are likely to be free of drug resistance.

Supplementary Data

Table S1 lists the experimental values mentioned in this
paper and the binding free energy conversion results;
Table S2 lists the hACE2 free energies; Tables S3–S5 list the
hotspot residues identified through MM-GBSA free energy
decomposition for the prototype and mutants; Figures S1
and S2 describe the RMSD fluctuation of RBDs and hACE2s
during the multiple simulations; Figure S3 shows the key
interactions of the mutated residues revealed by the crystal
structure; Figure S4 shows the key interactions of the
mutated residues revealed by MD simulations.

Supplementary data are available online at https://acade
mic.oup.com/bib.
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