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Immunotherapy, especially the immune checkpoint inhibitors (ICIs) such as the
pembrolizumab and nivolumab have contributed to significant improvements in
treatment outcomes and survival of head and neck cancer (HNC) patients. Still, only a
subset of patients benefits from ICIs and hence the race is on to identify combination
therapies that could improve response rates. Increasingly, genetic alterations that occur
within cancer cells have been shown to modulate the tumor microenvironment resulting in
immune evasion, and these have led to the emergence of trials that rationalize a
combination of targeted therapy with immunotherapy. In this review, we aim to provide
an overview of the biological rationale and current strategies of combining targeted
therapy with the approved ICIs in HNC. We summarize the ongoing combinatorial clinical
trials and discuss emerging immunomodulatory targets. We also discuss the challenges
and gaps that have yet to be addressed, as well as future perspectives in combining these
different drug classes.

Keywords: head and neck cancer, targeted therapy, immunotherapy, drug combinations, cancer genetics, immune
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INTRODUCTION

The immune checkpoint inhibitors (ICIs) have led to a paradigm shift in the treatment modalities
for advanced-stage head and neck cancer (HNC) patients. In 2016, two ICIs targeting the
programmed cell death -1 (PD-1), pembrolizumab and nivolumab were approved as second-line
treatment for recurrent and metastatic (R/M) HNC (1, 2), and subsequently, pembrolizumab was
approved as first-line treatment for advanced-stage HNC in 2019 (3). PD-1 is a membrane-bound
receptor found on immune cells such as T cells, that upon binding to its ligand, programmed death
ligand-1 (PD-L1) found on tumor cells, can prevent the attack by the cytolytic T cell, allowing
cancer cells to escape from immune surveillance (4). Hence, ICIs that can block the PD1/PD-L1
interaction represents a promising therapeutic strategy (4).

Besides, being a relatively immune-inflamed cancer, the use of immunotherapy for HNC is
rational since cytolytic T cells, and natural killer (NK) cells are present in high abundance in the
tumor (5). However, HNC is also a relatively immunosuppressive tumor that have also developed
other mechanisms to dampen or evade the immune system, suggesting that merely blocking these
checkpoint molecules is not sufficient. These include tumor intrinsic genomic alterations that drive
cancer development, presenting an opportunity to simultaneously suppress oncogenic signals and
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enhance immune activation to sensitize tumors to ICIs. Many
molecular targeted agents in combination with ICIs are in
clinical testing, and some have been approved as the standard
of care, such as lenvatinib (6) and axitinib (7). In addition,
actionable driver mutations such as in EGFR (8), BRAF (9),
KRAS (10) could contribute to immune evasion, driving the
emergence of new clinical trials to investigate the synergy
between targeting these genetic events to improve ICIs response.
Furthermore, common oncogenic mutations in HNC such as
those leading to altered p53 or Wnt/beta-catenin signaling were
found tomodulate the immunemicroenvironment and potentially
affect response towards ICIs (11–15). In particular, among
metastatic HNC, p53 mutation was reported to be negative
predictor of response towards ICIs (12).

The immunomodulatory mechanisms of the targeted agents
might however be tissue- or context-specific (dependent on the
genetic drivers). HNC comprises of tumors from the oral cavity,
oropharynx, hypopharynx, and larynx. About 25% of HNC is
estimated to be associated with human papilloma virus (HPV)
infection, and this is especially prevalent and have prognostic
implication in oropharyngeal cancer (16). Besides being
molecularly and genetically distinct, HPV-positive HNC is also
different from HPV-negative HNC in terms of its immune
landscape (17), where HPV-positive HNC showed significantly
higher immune cells infiltration and CD8 T cell activation (5).
Although the KEYNOTE-012 trial has shown better response
rates to pembrolizumab amongst HPV-positive HNC (18, 19),
KEYNOTE-048 reported that clinical benefit is seen regardless of
HPV status (20). More systematic review on the implications of
HPV positivity in immunotherapy responses in HNC have been
published recently in 17 and Wang et al., 2021 (21).

However, there remains a scarcity of information on the
targeted agents that could synergize with ICIs in HNC. Hence,
this review serves to provide an overview of the current strategies
in combining targeted therapy with ICIs, as well as emerging
immunomodulatory targets for HNC. Challenges and future
perspectives will also be discussed.
TARGETED AGENTS TESTED IN
COMBINATION WITH ICIS IN HNC

Clinical trials in HNC reporting combination therapies involving
ICIs, were identified from clinicaltrials.gov, with the search terms
of “Head and Neck Cancer” for “Condition or disease” and
“pembrolizumab” , “nivolumab” , “atezolimumab” , or
“durvalumab” under “Other terms” [Curated on 1st Sep 2021].
A total of 49 trials involved the combination of molecular
targeted agents with ICIs were summarized in Table 1 (Details
in Supplementary Table 1 and Supplementary Figure 1).
Whereas Figure 1 provides a schematic summary of current
strategies and their corresponding mechanisms of action in
immunomodulation. Whilst most of these trials are still in
their early phases, we hope to provide an overview and discuss
the rationale of these combinations as detailed below.
Frontiers in Oncology | www.frontiersin.org 2
EGFR Inhibitors
Epidermal growth factor receptor (EGFR) is overexpressed in
more than 80% of HNC (22) and in addition to its oncogenic role,
ac t iva ted EGFR signa l ing modula tes the immune
microenvironment, helping tumors to escape from the immune
system. Therefore, EGFR inhibitors have important immune-
related mechanisms of action. Cetuximab, an IgG1 monoclonal
antibody (mAb) against EGFR is the only approved targeted
therapy for HNC. Cetuximab can exert its anti-tumor activity
through antibody-dependent cell-mediated cytotoxicity that is
triggered by the binding of the IgG-Fc part of cetuximab to the
CD16 molecule on NK cells (23). Cetuximab triggers the
maturation of dendritic cells (DC) causing the initiation of
adaptive immune responses through CD8+ T cells priming and
Th1 cytokine release, resulting in antigen-specific immune
responses in HNC patients (24). EGFR signaling downregulates
the antigen presentation machinery, enabling HNC to evade the
immune system. Inhibiting EGFR signaling restores the expression
of major histocompatibility complex (MHC) molecules, and
enhances secretion of interferon-gamma (IFNg) which increases
PD-L1 expression on tumor and immune cells within the tumor
microenvironment (TME) (25). Two Phase 2 trials are
investigating the combination of cetuximab with either
pembrolizumab [NCT03082534] or nivolumab [NCT03370276]
whilst the combination of cetuximab and nivolumab is being
tested in a Phase 1 trial for p16-negative local-regionally advanced
HNC [NCT02764593]. In NCT03082534, where patients received
cetuximab and pembrolizumab, a promising overall response rate
(ORR) of 45% among platinum-refractory patients with no prior
anti-EGFR/immunotherapy, was reported (26). On the other
hand, for the nivolumab and cetuximab combination in
platinum-refractory R/M HNC, the 1-year progression free
survival (PFS) and overall survival (OS) rates were 19% and
44%, respectively. Although patients with no prior ICI showed
improved PFS and OS compared to those with prior ICI, the
difference was not significant (27).

High-throughput screening of small molecule inhibitors also
showed that EGFR inhibitors (including erlotinib, afatinib and
gefitinib) could enhance T cell-mediated killing (28). Clinically,
afatinib is being tested with pembrolizumab for platinum-
refractory R/M HNC in a Phase 2 trial [NCT03695510 –
ALPHA study] unveiling an impressive ORR of 41.4% (29), a
drastic increase compared to 16% or 10-10.8% for pembrolizumab
and afatinib monotherapy respectively (30, 31). Biomarkers
predictive of response were also investigated in this study,
whereby MTAP loss or mutation was found to be associated
with lower response rates, while EGFR amplification was
associated with 100% ORR. On the other hand, high PD-L1
(CPS score ≥20) was associated with higher ORR (63% vs 35%
in CPS score <20), albeit not statistically significant (Fisher’s exact
p-value = 0.23) (29).

A Phase 1 study was initiated to study the pharmacodynamics
of MVC-101 and nivolumab within the TME [NCT04891718].
MVC-101, is a conditionally active T cell engager that contains
two anti-EGFR antibodies, designed for tumor cell- selective
targeting (32). Similarly, BCA-101, a chimeric EGFR/TGFb-
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TABLE 1 | Overview of clinical trials involving the combination of targeted agents with ICIs for HNC patients.

Drug target Targeted Drug Name ICI NCT number Phase Status Biomarkers under investigation

EGFR Cetuximab Pembrolizumab NCT03082534 Phase 2 Recruiting PD-L1, EGFR expression, p16 status, EBV
plasma DNA titres

Nivolumab NCT02764593 Phase 1 Active, not recruiting –

Nivolumab NCT02124850 Phase 1 Terminated NK activation, tumor infiltration, serum
cytokines, mDC, T ell activation, tumor-
antigen specific cytotoxic T lymphocyte
induction

Nivolumab NCT03370276 Phase 1|Phase 2 Active, not recruiting -
Afatinib Pembrolizumab NCT03695510 Phase 2 Active, not recruiting Unaltered MTAP level, EGFR amplification,

PD-L1 expression
Nivolumab NCT03652233 Phase 1 Withdrawn HPV status, somatic mutations in ERBB1,

ERBB2, BRAF; expression levels of ErbB2
and PTEN, active CD8+ T cell density,
expression and localization of PD-1, PD-L1,
CTLA-4, TIM-3, LAG-3, OX40; circulating
monocytic MDSCs, HBD3 expression

MVC-101 (TAK-186) Nivolumab NCT04891718 Early Phase 1 Not yet recruiting Cell death markers, T-cells , NK cells/
myeloid cells, proinflammatory cytokines

EGFR and TGF-b BCA-101 Pembrolizumab NCT04429542 Phase 1 Recruiting –

RTK Lenvatinib (E7080/MK-
7902)

Pembrolizumab NCT04428151 Phase 2 Recruiting –

Pembrolizumab NCT04199104 Phase 3 Recruiting –

Cabozantinib Pembrolizumab NCT03468218 Phase 2 Recruiting -
Nivolumab NCT04514484 Phase 1 Recruiting Immune checkpoint expression (PD-L1,

B7x, HHLA2, B7H3), infiltrating immune
cells level, tumor microenvironment
biomarkers (VEGF, VEGFR, MET, AXL)

Atezolizumab NCT03170960 Phase 1|Phase 2 Recruiting -
Anlotinib Pembrolizumab NCT04999800 Phase 2 Recruiting TMB, T cell gene expression
Pexidartinib (PLX3397) Pembrolizumab NCT02452424 Phase 1|Phase 2 Terminated –

Ramucirumab
(Cyramza)

Pembrolizumab NCT03650764 Phase 1|Phase 2 Active, not recruiting –

Sitravatinib (MGCD516) Nivolumab NCT03575598 Early Phase 1 Completed Tumor PD-L1 expression, density of
immune cell in tumor and peripheral blood
(T-cells, NK cells, myeloid-derived cells)

PI3K Duvelisib Pembrolizumab NCT04193293 Phase 1|Phase 2 Suspended –

Copanlisib Nivolumab NCT03735628 Phase 1b|Phase 2 Active, not recruiting –

Eganelisib (IPI-549) Nivolumab NCT02637531 Phase 1 Active, not recruiting –

JAK1 and PI3K-
delta

Itacitinib (INCB039110)
and INCB050465

Pembrolizumab NCT02646748 Phase 1 Active, not recruiting –

STAT3 Danvartirsan (AZD9150) Durvalumab NCT02499328 Phase 2 Active, not recruiting PD-L1 expression

CDK4/6 Abemaciclib Pembrolizumab NCT03938337 Phase 2 Terminated –

Nivolumab NCT03655444 Phase 1|Phase 2 Terminated -

TGF-beta Bintrafusp alfa (M7824
/ MSB0011359C)

anti-PDL1 NCT02517398 Phase 1 Active, not recruiting HPV status

anti-PDL1 NCT03427411 Phase 2 Active, not recruiting

BTK Acalabrutinib (ACP-196) Pembrolizumab NCT02454179 Phase 2 Completed –

Ibrutinib Nivolumab NCT03646461 Phase 2 Recruiting HPV status

HDAC Abexinostat Pembrolizumab NCT03590054 Phase 1 Recruiting –

Vorinostat Pembrolizumab NCT04357873 Phase 2 Recruiting –

Pembrolizumab NCT02538510 Phase 1|Phase 2 Active, not recruiting PD-L1 expression, T cell phenotype, PD-1
family proteins expression

p53 Ad-p53 Pembrolizumab
or Nivolumab

NCT02842125 Phase 1|Phase 2 Terminated –

Pembrolizumab/
Nivolumab/
Atezolizumab/
Durvalumab

NCT03544723 Phase 2 Recruiting –

(Continued)
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targeting antibody is being tested in a Phase 1 trial with
pembrolizumab [NCT04429542], which could address not only
the immunosuppressive mechanisms (33), but also overcome the
resistance to EGFR inhibitors brought on by upregulation of
signaling (34, 35).
RTK Inhibitors
Besides EGFR, other receptor tyrosine kinases (RTKs) implicated
in HNC include the vascular endothelial growth factor receptor
(VEGFR) and fibroblast growth factor receptor (FGFR). Clinical
studies have demonstrated the synergistic effects of combining
anti-angiogenic therapy with immunotherapy (36–38), as these
could enhance immune cell differentiation and infiltration, and
overcome the immune suppressive function of VEGF (38–40). In
HNC, lenvatinib is being tested with pembrolizumab as first-line
and second-line treatment [Phase 3, NCT04199104; Phase 2,
NCT04428151]. Notably, lenvatinib has an immunomodulatory
function by activating CD8+ T cells (41) and this combination
treatment is approved for advanced RCC and endometrial cancer
(42). Carbozantinib, an inhibitor of MET and VEGFR2 is also
being tested with pembrolizumab [Phase 2, NCT03468218],
nivolumab [Phase 1, NCT04514484] and atezolizumab [Phase
1/2, NCT03170960]. Further, anlotinib is being investigated with
pembrolizumab as first-line therapy for R/M HNC with a
Frontiers in Oncology | www.frontiersin.org 4
combined positive score (CPS) ≥ 1 in a Phase 2 trial
[NCT04999800]. Another VEGFR2 inhibitor ramucirumab, is
undergoing Phase 2 trial with pembrolizumab [NCT03650764]
whilst sitravatinib, a VEGFR inhibitor that also targets the TAM
receptor family (TYRO3, AXL and MERTK) was combined with
nivolumab in a window-of-opportunity (WOO) trial in
neoadjuvant setting [NCT03575598] (42). Here, nine of ten
patients showed clinical-to-pathological downstaging and
immunophenotyping analyses confirmed the immunomodulatory
effect of sitravatinib (42). Further investigation is needed to evaluate
if this is contributed by the inhibition of the TAM receptors, which
play a critical role in dampening NK cells mediated anti-tumor
response (43, 44).
PI3K Inhibitors
Oncogenic mutations in PIK3CA and dysregulation of PI3K
signaling have been actively investigated as a therapeutic target
in HNC (45, 46). Whilst exerting tumor intrinsic effect on HNC
growth, targeting PI3K signaling could also reverse its immune-
suppressive effects. Activating mutations in PIK3CA or PTEN
loss which are both frequent events in HNC, represses the
induction of MHC class I and II expression by IFNg (47).
PI3K inhibitors, dactolisib and pictilisib can induce MHC
molecules expression in HNC cell lines (47). PD-1 blockade
TABLE 1 | Continued

Drug target Targeted Drug Name ICI NCT number Phase Status Biomarkers under investigation

Galectin-3 GR-MD-02 Pembrolizumab NCT04987996 Phase 2 Suspended GAL-3 expression, MDSC expression
Pembrolizumab NCT02575404 Phase 1 Active, not recruiting CD4+ T cells, CD8+ T cells level

AURKA Alisertib Pembrolizumab NCT04555837 Phase 1|Phase 2 Recruiting T-cell repertoire, tumor infiltrating
lymphocyte function

CXCR4 AMD3100 Pembrolizumab NCT04058145 Phase 2 Withdrawn –

SMO Sonidegib Pembrolizumab NCT04007744 Phase 1 Recruiting Immune cell markers, cytokines and
soluble PD-L1 levels, level of Bcl-2
interacting mediator of cell death (BIM)

ATR Elimusertib
(BAY1895344)

Pembrolizumab NCT04576091 Phase 1 Suspended TMB, circulating Ki67+ CD8+ T cells

PDE5 Tadalafil Pembrolizumab NCT03993353 Phase 2 Recruiting –

FUT8 SGN-2FF Pembrolizumab NCT02952989 Phase 1 Terminated Fucosylation biomarker

PARP Olaparib Pembrolizumab NCT04643379 Phase 2 Recruiting –

EZH2 Tazemetostat Pembrolizumab NCT04624113 Phase 1|Phase 2 Recruiting –

Arginase INCB001158 (CB-
1158)

Pembrolizumab NCT02903914 Phase 1|Phase 2 Active, not recruiting –

SYK/FLT3 TAK-659 Nivolumab NCT02834247 Phase 1 Terminated –

PPARa TPST-1120 Nivolumab NCT03829436 Phase 1 Recruiting –

VEGF Bevacizumab Atezolizumab NCT03818061 Phase 2 Active, not recruiting HPV status, PD-1/PD-L1 expression,
immune cells infiltration, cytokine
production, microbiome

PTPN2 ABBV-CLS-579 anti-PD1 NCT04417465 Phase 1 Recruiting Plasma/Serum metabolite M4
concentration

ABBV-CLC-484 anti-PD1 NCT04777994 Phase 1 Recruiting –
March 2022 | Volume 12 | Article 837835
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has been shown to upregulate another checkpoint receptor, Tim-
3 viaAKT/S6 pathway which could allow the escape of anti-PD-1
blockade in the TME, providing further support for concomitant
targeting AKT/S6 to improve the efficacy of ICIs (48). Recently,
targeting of PI3Kg/d in the leucocytes using TG100-115 or IPI-
145 has been shown to improve ICIs efficacy in pre-clinical HNC
models (27–29). This is likely attributed by the abrogation of
myeloid-derived suppressor cells (MDSC)-mediated immune
suppression (49). However, at high dose, IPI-145 was shown to
negatively impact the priming and effector function of antigen-
specific T cells, reversing the tumor control achievable by low
dose IPI-145 (49). Considering the narrow therapeutic window
in the combination of PI3K inhibitors with ICI, careful trial
design in scheduling and dosing is warranted.

Currently, three PI3K inhibitors are being tested with ICIs in
HNC trials. Previous pharmacodynamic study of copanlisib
[NCT02155582] showed suppression of factors associated with
macrophages and regulatory T cells (Tregs), supporting the
rationale for the combination with nivolumab [NCT03735628].
Another Phase 1 trial combined eganelisib (PI3Kg inhibitor) with
nivolumab, demonstrating positive response (ORR=20%) and
disease control rates of 40% at interim analysis (50), among
those who had one or two prior lines of chemotherapy.
Following the encouraging outcome, a Phase 2 WOO study
[NCT03795610] is ongoing for locally advanced HNC to
evaluate the effect of eganelisib in modulating a PI3Kg-mediated
immune-suppressive signature. Interim biomarker analysis from
Frontiers in Oncology | www.frontiersin.org 5
another Phase 1 dose-finding trial [NCT02646748] showed that
the PI3K-d inhibitor (INCB050465) enhanced T cell activation,
leading to the improved outcome when combined with
pembrolizumab (51).
JAK/STAT Inhibitors
Activated JAK/STAT signaling increases tumor cell proliferation,
treatment resistance and immune evasion in HNC (52, 53). A
Phase 1 trial [NCT02646748] investigated itacitinib, a JAK
inhibitor with pembrolizumab, but was inferior to the arm
with PI3K-d inhibitor plus pembrolizumab (51). The
antagonistic effect of JAK inhibition with pembrolizumab, may
be caused by the suppression of STAT1, which impairs IFNg-
mediated immune cell killing (54, 55). Indeed, trials in other
solid tumors were terminated early due to poor efficacy,
speculated to be caused by the impairment of the immune cell
function with JAK inhibition (53, 56). While the inhibition of
JAK has yielded contradicting results (53, 56), the selective
inhibition of STAT3 is more promising as this targets both
tumor intrinsic pathway signaling as well as STAT3 inhibition
within the immune cells (54). Recently, the development of
therapeutic antisense oligonucleotide such as danvartisan
(AZD5190) has enabled the selective targeting of STAT3. On-
treatment biopsies analysis from a Phase 1 study [NCT01563302]
showed that danvatirsan upregulated IFNg-related gene
expression signatures (GES) (54). Furthermore, danvatirsan
FIGURE 1 | Summary of the immunomodulatory effects of inhibiting oncogenic signaling pathways in HNC. These targeted agents not only result in tumor-intrinsic
killing, but also modulate the tumor microenvironment, such as increasing immune cell infiltration, activation and differentiation, increasing MHC class I and II antigen
presentation, increasing PD-L1 expression, and inhibiting regulatory T cells proliferation. *For illustration purpose only, icons are not drawn in actual scale ratio. **
Some icons are taken from Servier Medical Art (smart.servier.com).
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promoted pro-inflammatory cytokine expression and depleted
immunosuppressive macrophages, enhancing T cell killing in
syngeneic models (54). A Phase 2 trial investigating danvatirsan
plus durvalumab (anti-PD-L1) as second-line treatment, is
currently ongoing [NCT02499328]. Interim analysis showed an
enhanced response (ORR of 26%) among second-line anti-PD-L1
naïve patients, compared with durvalumab with a CXCR2
inhibitor (AZD5069; ORR of 10%) with responses independent
of HPV or PD-L1 status (57), and with on-treatment biopsies
showing upregulation of IFNg GES (57).
Cell Cycle Inhibitors
The cell cycle pathway is altered in almost all HNC (58), with
CDK4 and CDK6 among the most studied drug targets (59).
Abemaciclib, an inhibitor of CDK4/6 showed anti-tumor effect
in HNC patient-derived xenograft harboring CCND1
amplification and/or CDKN2A mutation. The immune-
modulatory functions of CDK4/6 inhibitors include increasing
antigen representation, promoting infiltration of CD45+ cells
into the tumor, activating effector T cells and inhibiting Treg
proliferation (60, 61). A WOO trial [NCT04169074] is accessing
the immune-modulation function of abemaciclib, among HPV-
negative HNC patients in a neoadjuvant setting. Disappointingly,
two trials in HNC [NCT03938337, NCT03655444] which tested
the combination of abemaciclib with pembrolizumab and
nivolumab respectively, were terminated early. The former was
terminated due to high incidence of pulmonary toxicities,
including death. Consistently, adverse events were also
reported for non-small-cell lung cancer (62). Given the poor
risk-benefit profile of the combination from several trials, the
combination of CDK4/6 inhibitors with ICI would require dose
adjustments and biomarkers that could identify the most suitable
patients for this treatment.
TGF-b Inhibitors
Elevated expression of TGF-b is common in HNC and is
associated with advanced disease and poor clinical outcome
(63). Importantly, TGF-b signaling regulates both innate and
adaptive immune signaling, impacting diverse types of immune
cells (64). A first-in-class, bifunctional fusion protein, bintrafusp
alfa (M7824) has been developed, composing of the extracellular
domain of the human TGF-b receptor II, fused with an IgG1
avelumab-like anti-PDL1 antibody (65). M7824 increased
infiltration of CD8+ T cells and NK cells into the tumor, while
depleting MDSC in a murine model (66). Results from a Phase 1
study [NCT02517398] showed an ORR of 13%-16%, and a total
clinical response rate of 22% (65). Encouragingly, early-phase
trials of M7824 demonstrated efficacy seen in heavily pre-treated
patients with “cold” tumors, whom tumor progressed/recurred
after platinum therapy and are immunotherapy naive (66).
Responses were seen regardless of PD-L1 status (ORR of 12%
in PD-L1-positive vs 17% in PD-L1-negative), but HPV-positive
HNC had significantly higher response rate (ORR of 33% in
HPV-positive versus 5% in HPV-negative), perhaps due to the
more enriched pre-existing immune response in these viral-
Frontiers in Oncology | www.frontiersin.org 6
driven cancers (65). As a result, a Phase 2 trial is now ongoing
for HPV-associated oropharyngeal cancers [NCT03427411].
Others
Bruton tyrosine kinase (BTK) has recently shown ectopic
expression in some solid tumors (67). Despite the low efficacy
as a single agent, preclinical studies showed synergy in improving
survival when BTK inhibitors were combined with
immunotherapy (67), demonstrating enhanced effector and
memory T cells responses (68). Ibrutinib with nivolumab are
being tested in a Phase 2 trial for R/M HNC [NCT03646461],
with patients stratified by HPV status and randomized in a 1:1
ratio to ibrutinib + cetuximab or ibrutinib + nivolumab arms.
Another BTK inhibitor, acalabrutinib is being tested with
pembrolizumab in advanced HNC patients, unfortunately all
patients have discontinued treatment due to the lack of efficacy
(ORR for combination = 16.7% vs pembrolizumab = 18.9%) and
increase in adverse events [NCT02454179]. The limited clinical
benefit and increased toxicity make it unfavorable to pursue BTK
inhibitor in combination with ICI in HNC.

HNC shows hypoacetylated chromatin and inhibition of the
histone deacetylases (HDAC) is seen as a promising strategy in
targeting the cancer-stem-cell population of HNC (69). HDAC
inhibitors can upregulate PD-L1 and MHC class I/II expression
(70) and are being actively investigated for their role in potentiating
response to ICIs (71). A recently completed Phase 2 trial
[NCT02538510] showed favorable activity of vorinostat and
pembrolizumab in HNC, with a higher ORR of 32% than
pembrolizumab alone, albeit at the expense of higher toxicity (72).
Another two trials combining either vorinostat [NCT04357873] or
abexinostat [NCT03590054] with pembrolizumab are in Phase 1.

Gene therapy that restores functional tumor suppressor has also
been explored. Gendicine, a gene therapy to deliver functional
wildtype p53 into tumor cells was approved for HNC in 2003 in
China (73). Experimental data showed that gendicine can activate
lymphokine-activatedkiller cells (LAK)andcytotoxicT cells (73).A
Phase 2 trial [NCT03544723] is ongoing to investigate the
combination of gendicine with clinicians’ choice of ICIs.
Preliminary gene expression analysis comparing pre- and post-
gendicine-treated HNC tumor revealed upregulation of IFNg-
signaling genes, decreased TGF-b and b-catenin signaling (74)
and increased CD8+ T cells signature, which is associated with
increased clinical responses to ICIs (74).

New immunomodulatory targets have also been identified in
vivo immuno-CRISPR/Cas9 screens and PTPN2 is among one of
the top hits (75). CRISPR-mediated knockout of PTPN2
sensitized response towards anti-PD1 treatment, by enhancing
IFNg-mediated antigen presentation and increasing cytotoxic
Tim-3+ CD8+ Tcells (76, 77). Two novel inhibitors targeting
PTPN2 - BBV-CLS-579 [NCT04417465] and ABBV-CLS-484
[NCT04777994] are now being tested in combination with anti-
PD1 in Phase 1 clinical trials, for LA and metastatic solid tumors,
including HNC. Other targets from these screens shown to be
able to enhance immune response through T cell suppression,
M1 macrophage polarization and/or PD-L1 regulation include
Asf1a (78) and eIF5B (79).
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Other drugs targeting Galectin-3 (GR-MD-02), AURKA
(alisertib), SMO (sonidegib), PDE5 (tadalafil), PARP (olaparib),
EZH2 (tazemotostat), arginase (INCB001158) are in Phase 1 or 2
trials, in combination with pembrolizumab (Table 1). The PPARa
antagonist, TPST-1120 in combination with nivolumab is in Phase
1 for advanced HNC [NCT03829436]. Whereas bevacizumab, a
mAb targeting soluble VEGF is being tested with atezolizumab in a
Phase 1 trial [NCT03818061]. Results from these trials will provide
further insights into pathways that confer immunomodulatory
effects in HNC.
EMERGING IMMUNOMODULATORY
TARGETS

Other emerging immunomodulatory targets in HNC preclinical
studies or in clinical studies of other cancers are discussed below.
MAPK Pathway
The mitogen-activated protein kinases (MAPKs) are key
regulators of cellular proliferation contributing to HNC
progression (80). Apart from the established oncogenic roles,
MAPK signaling pathway also promotes immunosuppression. In
HNC cell lines, trametinib could enhance expressions of MHC
class I and PD-L1 via STAT3 activation (81). The combination of
trametinib with anti-PD-L1 significantly delayed tumor growth
in HNC syngeneic models, possibly via increased infiltration of
CD8+ T cells and enhanced antigen-presentation (81).
Interestingly, HRAS mutations which are predominantly found
in HNC are associated with elevated antitumor immune
signatures (11). MAPK-mutated HNC wasa also found to be
CD8+ T cell inflamed and inherently harbor immunoactive TME
(82). Consistently, HNC with MAPK pathway mutations has
been associated with better patient survival upon anti-PD1/PD-
L1 treatment (82). Although no combinatorial trials for HNC are
being tested currently, findings using syngenic models
demonstrated that preceding MAPK inhibition with anti-PD-
1/L1 could enhance CD8+ T cells clonal expansion and clinical
investigation is warranted (83).
MTOR Pathway
Mammalian target of Rapamycin (mTOR) is one of the critical
intracellular kinases within the oncogenic PI3K/AKT pathway. A
combination of rapamycin and anti-PD-L1 mAb increased the
durability of tumor responses and survival in highly immunogenic
4MOSC1 tumors (84). The addition of rapamycin preserved
antigen-specific CD8+ tumor-infiltrating lymphocytes (TIL) and
enhanced IFNg secretion in both peripheral and infiltrating CD8+
T cells, leading to upregulation of MHC class I expression (84).
Whilst it appears counterintuitive to use rapamycin which is
clinically used as an immunosuppressant in transplant patients,
emerging evidence has shown that inhibiting mTOR confers
immune-activating function, particularly by promoting CD8+ T
cells generation (85), suggesting therapeutic opportunities to boost
the efficacy of immunotherapy.
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Challenges and Future Perspective
The scarcity of suitable mouse models for the immunological study
of HNC is a major challenge. Only lately, the 4−nitroquinoline−1
−oxide induced tumor in the immunocompetent C57BL/6 mice
has led to the establishment of the JC1-2 and 4-MOSC syngeneic
models (86, 87). These models are instrumental in identifying novel
immunomodulatory targets and evaluating new immune-oncology
drugs for HNC. The dynamic changes in the TME and immune
landscape during treatment can be comprehensively studied using
high-resolution technologies such as the single-cell sequencing and
spatial-omics, affording the opportunity to identify immune-
modulatory effects of specific drug and drug combinations.
Intratumor heterogeneity and plasticity of the TME are two
other challenges that could influence the outcome of combining
targeted therapy with immunotherapy. Further, an appropriate
dosage, the timing and sequence of the combination needs to be
considered carefully for optimal benefit-risk profile.

Finally, the successful application of precision medicine is
highly reliant on clinically-relevant predictive biomarkers, a
major challenge that is still being overcome. In HNC, other
than PD-L1 CPS for pembrolizumab, no other clinical biomarker
has made its way to the clinic. The advent of genomic,
transcriptomic, proteomic, and immunomic, which allow
comprehensive integrative analysis, could lead to a better
understanding of clinical response, driving the identification of
specific biomarkers for each drug combination.
CONCLUSION

Combinations of ICIs with targeted agents have shown promising
clinical efficacy, particularly those targeting EGFR (cetuximab,
afatinib), RTK (lenvatinib, sitravatinib), STAT3 (danvartisan) and
TGF-b (M7824). As most trials are still in early stages, an
improved understanding of the genomics and immunology
interplay and the lessons learned from trials in other solid
tumors could guide rational and optimal trial designs in HNC.
Furthermore, the increasing availability of HNC syngenic models
and the application of advanced omic technologies could further
fuel the development of combinatorial targeted therapy with ICIs
further maximizing the clinical benefit of immunotherapy.
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