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Abstract

Introduction

In this study, we investigate the role of radiomics for prediction of overall survival (OS), locor-

egional recurrence (LRR) and distant metastases (DM) in stage III and IV HNSCC patients

treated by chemoradiotherapy. We hypothesize that radiomic analysis of (peri-)tumoral tis-

sue may detect invasion of surrounding tissues indicating a higher chance of locoregional

recurrence and distant metastasis.

Methods

Two comprehensive data sources were used: the Dutch Cancer Society Database (Alp

7072, DESIGN) and “Big Data To Decide” (BD2Decide). The gross tumor volumes (GTV)
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were delineated on contrast-enhanced CT. Radiomic features were extracted using the

RadiomiX Discovery Toolbox (OncoRadiomics, Liege, Belgium). Clinical patient features

such as age, gender, performance status etc. were collected. Two machine learning meth-

ods were chosen for their ability to handle censored data: Cox proportional hazards regres-

sion and random survival forest (RSF). Multivariable clinical and radiomic Cox/ RSF models

were generated based on significance in univariable cox regression/ RSF analyses on the

held out data in the training dataset. Features were selected according to a decreasing haz-

ard ratio for Cox and relative importance for RSF.

Results

A total of 444 patients with radiotherapy planning CT-scans were included in this study: 301

head and neck squamous cell carcinoma (HNSCC) patients in the training cohort (DESIGN)

and 143 patients in the validation cohort (BD2DECIDE). We found that the highest perform-

ing model was a clinical model that was able to predict distant metastasis in oropharyngeal

cancer cases with an external validation C-index of 0.74 and 0.65 with the RSF and Cox

models respectively. Peritumoral radiomics based prediction models performed poorly in

the external validation, with C-index values ranging from 0.32 to 0.61 utilizing both feature

selection and model generation methods.

Conclusion

Our results suggest that radiomic features from the peritumoral regions are not useful for

the prediction of time to OS, LR and DM.

Introduction

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignant dis-

ease worldwide [1]. In the Netherlands, approximately 39,000 men and women were diag-

nosed with HNSCC between 2000 and 2015 [2]. Roughly two thirds of patients have advanced

stage of disease at diagnosis with debilitating symptoms.

Major progress has been made in the treatment of advanced HNSCC throughout the last

decade [6]. The “traditional” treatment of these advanced tumors consists of surgical excision

followed by complementary (adjuvant) radiotherapy or chemoradiotherapy (CRT). CRT either

applied upfront or postoperatively significantly improves survival in HNSCC patients with

overall 5-year survival rates up to 61%, 41%, and 69% for oral, pharyngeal and laryngeal can-

cers, respectively [3–6]. The introduction of organ-preserving therapies (induction chemo-

therapy, upfront concomitant CRT, or molecular targeted drugs such as cetuximab) has

notably changed treatment protocols of advanced stage HNSCC patients, especially in patients

where surgical resection is considered too invasive and where severe problems with speech

and swallowing are expected after surgery. Concomitant CRT consists of systemic administra-

tion of cisplatin in combination with locoregional radiotherapy and is the mainstay of organ-

preserving treatment for advanced HNSCC.

It has been shown that 40% of patients treated upfront with CRT develop a locoregional

recurrence or distant metastasis within 2 years after treatment and consequently have an unfa-

vorable prognosis [7]. Several studies have found that advanced and human papillomavirus

(HPV)-16-negative tumors respond poorly to CRT in contrast to HPV positive tumors, in
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particular in oropharyngeal HNSCC [4, 8]. TNM classifications are expected to support patient

prognosis by clinicians but unfortunately, they are not helpful to accurately predict which

HNSCC patients treated with CRT will develop locoregional recurrences and hence might

have benefited from alternative treatment options. Several other potentially prognostic factors

have been proposed, such as chemotherapy dose, radiotherapy dose, co-morbidity, World

Health Organization (WHO) Performance Status (PS), and HPV-status. Through the use of

machine learning algorithms, complex survival models can be created that take these clinical

factors into account, while accounting for e.g. interaction between the predictors and right

censored data [9].

Currently used biomarkers comprise tumor size, local tumor extent and a few molecular

markers (e.g. p16 staining or HPV-PCR). Radiologic imaging, which is routinely performed

prior to initiation of CRT, provides an additional source of information that can be exploited

through the use of advanced image analysis methods such as radiomics. Radiomics turns

radiographic images into a high-throughput data-mining format. The format of the extracted

data is a set of features, including first-order intensity histogram statistics, shape- and size sta-

tistics, and (filtered) texture features. Complex models that combine radiomics with clinical

parameters may be better in detecting HNSCC patients that have a higher likelihood to relapse

early after CRT [10].

A growing body of research shows that the tumor microenvironment is a key player in

head and neck cancer development and progression [11,12] and hence the immediate sur-

roundings of the tumor may be a source for the extraction of imaging biomarkers. One of the

hypotheses is that information about underlying malignancy-associated changes (MAC’s) in

the tumor microenvironment can be detected by these imaging biomarkers. These MAC

changes are subtle changes in the nuclear morphology and chromatin structure of seemingly

normal cells located within the stroma distally to neoplastic lesions that have been shown to

dictate its ability to grow and spread, evade the body’s immune defenses, and resist therapeutic

intervention [13].

In this study, we aim to investigate the role of radiomics for prediction of overall survival

(OS), locoregional recurrence (LRR) and distant metastasis (DM) in stage III and IV HNSCC

patients, both in a HPV-negative oropharyngeal cohort (high risk) as well as in the general

HNSCC population. We hypothesize that radiomic analysis of peritumoral tissue detects

changes associated with malignancy and therefore the likelihood of locoregional recurrence

and distant metastasis following CRT.

Methods

Patient characteristics

Two sources of clinical and imaging data were available to us for this study: the Dutch Cancer

Society Database (Alp 7072, acronym DESIGN) and “Big Data To Decide” (BD2Decide,

NCT02832102). DESIGN is a Dutch multi-center clinical study to create predictive models for

stage III and IV HPV-negative HNSCC patients treated by CRT. BD2Decide is a European

multi-center clinical study to improve clinical decision making in stage III and IV HNSCC

patients irrespective of treatment. In the present study, we included patients from both con-

sortiums with pathologically-confirmed HNSCC, who received contrast-enhanced pre-treat-

ment CT and have been treated upfront with CRT.

The DESIGN data consists of contrast enhanced CT images (and associated clinical data)

acquired from 4 different centers: Amsterdam UMC location VUmc, Netherlands Cancer

Institute (NKI), Maastricht Radiation Oncology Clinic (MAASTRO), and the University Med-

ical Center Utrecht (UMCU). The BD2Decide data consists of contrast-enhanced CT images

PLOS ONE (Peri)tumoral radiomics recurrence prediction in concurrent chemo-radiotherapy treated head and neck carcinoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0232639 May 22, 2020 3 / 16

https://doi.org/10.1371/journal.pone.0232639


retrospectively acquired from 4 different centers: Fondazione IRCCS Istituto dei Tumori

Milano (INT), Maastricht Radiation Oncology Clinic (MAASTRO), Amsterdam UMC, loca-

tion VUmc (VUMC), and the Heinrich-Heine-university in Düsseldorf. There were no over-

lapping patients between DESIGN and BD2DECIDE.

Both DESIGN and BD2Decide data included clinical, pathological, radiologic imaging, and

molecular markers for each case. After comparing datasets, a selection was made to include

patients based on the overlap of available clinical data between the two cohorts. These consist

of age, sex, performance status, ACE-27 baseline comorbidity, number of pack years, alcohol

consumption, hemoglobin at baseline, chemotherapy regimen, HPV status (defined as

p16-status) for oropharyngeal cancer, induction chemotherapy (yes/ no), chemotherapy com-

pletion (yes/no), and RT dose to the high-risk clinical target volume (HR-CTV).

CT acquisition parameters and segmentation

Patients were selected according to the following inclusion criteria: (i) concomitant CRT of

unresected HNSCC, (ii) hypopharyngeal, laryngeal or (HPV-negative on p16 staining) oro-

pharyngeal, (iii) no prior treatment with chemotherapy or with radiotherapy in the head and

neck area, (iv) availability of contrast-enhanced baseline planning CT imaging with a slice

thickness� 5mm and artifacts in less than 50% of the GTV slices, and (v) availability of patient

outcome data for OS, LRR, and DM. A large selection of different scanners were used to

acquire the images (S1 Appendix).

GTVs were delineated in each center by an assigned radiation oncologist or radiologist. All

contours were revised by a radiation oncologist with over 18 years experience, using MIM soft-

ware version 6.9.0 (MIM, Cleveland, United States).

Tumor border regions of interest (ROI) extending 3mm and 5mm from the 3D GTV bor-

der were generated in MIM (outer ring expansion, see Fig 1). Afterwards, air and bone were

filtered from the delineation by setting minimum and maximum thresholds, and manually

adjusting the final ROI’s border (peritumoral) regions.

Ethical approval

This study was performed following the guidelines of the Code of Conduct for Human Tissue

and Medical Research (https://www.federa.org/codes-conduct) and the EU General Data Pro-

tection Regulation.

Medical Ethics Committee approval was provided by the individual centers (full list pro-

vided in S2 Appendix).

Written informed consent was given and was placed under the responsibility of the Princi-

pal Investigators of the relevant Clinical Participating Centers mentioned above and remain

under the custodianship of the specific Participating Centers.

For reproducibility purposes, our code can be found on: https://github.com/

PeritumoralRadiomics/Peritumoral-radiomics-HN.git.

Clinical outcome

The clinical endpoints evaluated in this study were overall survival (OS), locoregional recur-

rence (LRR) and distant metastasis (DM). The missForest (non-parametric missing value

imputation using Random Forest) function within the R environment (https://www.R-project.

org/) was used to impute missing data. Time to OS was defined as the time between CRT start

date and date of death, or censored at the last follow-up date.
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Time to LRR was defined as the time between CRT start date and the first scan date of

radiologically evident local or regional recurrence (event), or censored at the last follow-up

date or date of death.

Time to DM was defined as the time between CRT start date and the first scan date of radio-

logically evident distant metastasis, or censored at the last follow-up date or date of death.

Image pre-processing, radiomic feature extraction and feature

harmonization

International Biomarker Standardization Initiative (IBSI)-compliant radiomic features as well

as other non-IBSI covered features were extracted with our in-house RadiomiX research soft-

ware (supported by Oncoradiomics, Liège, Belgium) implemented in Matlab 2017a (Math-

works, Natick, Mass). Hounsfield Unit (HU) intensities beyond -1024 and +3071 HU were

clipped (assigned the value -1024 and +3071 respectively). An image intensity discretization

applying a fixed bin width of 25HU was used for feature extraction in CT. Voxel size resam-

pling was performed before feature extraction using cubic interpolation. Images were resam-

pled to isotropic voxels of size 3 x 3 x 3 mm3 using cubic interpolation (upsampling to highest

slice thickness).

Radiomic features were extracted consisting of five main groups: 1) fractal features 2) first

order statistics, 3) shape and size, 4) texture descriptors including gray level co-occurrence

(GLCM), gray level run-length (GLRLM) and gray level size-zone texture matrices (GLSZM),

5) features from groups 1, 3 and 4 after wavelet decomposition of the original image. There

were no missing feature values. Definitions and detailed feature descriptions are described

elsewhere [14].

Radiomic feature values are potentially sensitive to inter-scanner model, acquisition proto-

col and reconstruction settings variations. The ComBat statistical feature harmonization tech-

nique was employed in our analysis. This technique was initially developed by Johnson et al.

[15] for gene expression microarray data (even for small sample sizes) and was recently applied

Fig 1. Contrast-enhanced CT image from an oropharyngeal cancer patient. Primary gross tumor volume (GTV1) border in green, blue: 3mm

peritumoral border, yellow: 5mm peritumoral border.

https://doi.org/10.1371/journal.pone.0232639.g001
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in multicenter PET, MRI and CT radiomic studies [16,17]. Feature values were adjusted for

the batch effect according to treatment center, without adjustment for other covariates. Finally,

features were normalized in the training dataset by the mean and standard deviation, which

were subsequently used to normalize the validation dataset.

Univariable analysis and generation of multivariable models

The prognostic value of the individual radiomic and clinical features was evaluated using con-

cordance index (CI) with the survival package (Therneau T (2015). A Package for Survival

Analysis in R. version 2.38, URL: https://CRAN.R-project.org/package=survival) and random-

ForestSRC package (Ishwaran H (2017) Fast Unified Random Forests for Survival, Regression

and Classification (RF-SRC) version 2.9.1, URL: https://cran.r-project.org/web/packages/

randomForestSR).

Noether’s method was applied to assess the statistical significance of the computed CI from

random chance (CI = 0.5) with the survcomp package (Benjamin Haibe-Kains (2017). Perfor-

mance Assessment and Comparison for Survival Analysis in R. version 1.36.0, URL: https://

www.pmgenomics.ca/bhklab/). To account for multiple testing, a false-discovery-rate (FDR)

procedure by Benjamin and Hochberg was applied to adjust the p-values in univariate Cox-

regression.

Two machine learning methods were employed that are able to use censored survival data

as inputs: Cox proportional hazards based and random survival forrest (RSF).

Multivariable radiomic Cox models were generated using the significant features selected

through univariate cox modelling on the training dataset. In a 100-repeat 2-fold cross-valida-

tion on the training data, significant features were selected based on univariate significance

(p<0.05) adjusted for multiple testing.

“These features were then ranked according to adjusted hazard ratios, where hazard ratios

lower than 1 were inversed, and were gradually added to a multivariate cox model until the

first peak in the cross-validation testing C-index or after the first peak until the C-index drops

by more than 0.02, depending if there is an oscillation or noise pattern leading to multiple

peaks. The number of occurrences of each feature in all repetitions was determined, and a

selection rate> 50% was used as threshold for the final set of features, ensuring that the

selected features were chosen in the majority of the models.”

Multivariable clinical models included features selected through Cox-regression based on

univariate significance (p<0.05) adjusted for multiple testing. The selected clinical features

were then used to train multivariable Cox or RSF models.

Multivariable clinical RSF models were generated based on selecting all features with a rela-

tive feature importance >0 in the Random Survival Forest.

RSF strictly adheres to the prescription laid out by Breiman (2003) and requires taking into

account the outcome (splitting criterion used in growing a tree must explicitly involve survival

time and censoring information) in growing a random forest model. Further, the predicted

value for a terminal node in a tree, the resulting ensemble predicted value from the forest, and

the measure of prediction accuracy must all properly incorporate survival information.

Multivariable radiomic RSF models were generated based on the optimal number of fea-

tures corresponding to the first peak in C-index value in the out-of-bag cases OR after the first

peak until the C-index frops by more than 0.02, depending if there is an oscillation or noise

pattern leading to multiple peaks. Hereby features with decreasing relative importance in the

Random Survival Forest were consecutively added.
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Results

Clinical characteristics

Contrast enhanced CT images from a total of 444 patients were included in this study: The

training cohort (DESIGN) consisted of 301 head and neck squamous cell carcinoma (HNSCC)

patients and the validation cohort (BD2DECIDE) of 143 patients. At time of diagnosis, the

median age in the training cohort (DESIGN) was 61 years (range: 36 to 80 years), while the

median age in the external validation cohort (BD2DECIDE) was 60.5 years (range: 41 to 78

years).

In the training dataset the median OS time was 1118 days, the median time to LRR or last

follow-up was 1042 days and the median time to DM or last follow-up was 1060 days. In the

external validation dataset the median time to death or last follow-up was 1268 days, the

median time to LRR or last follow-up was 1217 days and the median time to DM or last fol-

low-up was 1189 days.

The full list of patient characteristics and time to progression is presented in Table 1.

Clinical characteristics

Clinical models (Tables 2 and 3) to predict OS, LR and DM ranged from a C-index of 0.61–

0.85 in training with both methods and a C-index of 0.49–0.75 in external validation. Details

on the clinical variable selected in the final Cox/ RSF models are presented in Table 4.

The highest performing model in external validation was a clinical model (Oropharynx-

DM). With this clinical model a significant survival split was found both in training (Fig 2a)

but not in validation (Fig 2b) based on the median prediction probabilities in training accord-

ing to the Cox model.

Radiomics characteristics

A total of 1298 radiomic features were extracted from all contrast-enhanced CT-images.

Results of training (DESIGN) and validation (BD2DECIDE) c-index metrics are provided in

Tables 2 and 3. Both in oropharyngeal cases alone as well as in all tumor subsites combined

peritumoral radiomics performed poorly in external validation, with C-index ranging from

0.32 to 0.61 with both feature selection and model generation methods. (Figs 3 and 4).

Volumetric information was calculated for GTVprim and Spearman correlation coefficients

between individual selected features and volume were calculated. With the Cox method these

C-indexes were all<0.60 (all P>0.05 correlation with model features). With the RSF method

these varied between 0.28–0.45 (all P>0.05 correlation with model features).

Radiomics quality assurance and TRIPOD statement

For quality assurance a radiomics quality score (RQS) was calculated [14] for this study. The

RQS score for this specific study was 44% (most points allocated for external validation and

use of feature reduction analysis).

Scores were likewise calculated for the 22-item adherence data extraction checklist of the

TRIPOD (Transparent reporting of a multivariable prediction model for individual prognosis

or diagnosis), which was in the range of 0.75–0.86 (See S3 Appendix).

Discussion

In this first peritumoral H&N radiomics study we found that the highest performing model in

external validation was a clinical model which was able to predict distant metastasis in oropha-

ryngeal cancer cases with an external validation c-index of 0.65 and 0.75 with the RSF and Cox
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models respectively. Both in oropharyngeal cases alone as well as in all tumor subsites peritu-

moral radiomics performed poorly in external validation, with C-index ranging from 0.32 to

0.61 with both feature selection and model generation methods.

The reasoning for choosing a 5mm tumor border is based on radiotherapy margins which

are defined outside the visible/palpable or imaging-detectable (macroscopic) tumor GTV, the

clinical target volume (CTV), whereby potential microscopic tumor spread is taken into

account. Based on experience from pathological examination of surgical resections, the Danish

Head and Neck Cancer (DAHANCA) group concluded that for primary tumors (GTV-T), the

risk of subclinical microscopic spread was around 50% of which more than 99% was within 5

mm and 95% within 4 mm of the rim of GTV-T [18].

Table 1. DESIGN/ BD2DECIDE patient characteristics.

DESIGN training cohort (n = 301) BD2DECIDE validation cohort (n = 143) P-value

Median (range) Median (range)

GTVprim Volume (cm3) 21.28 (0.65–176.10) 19.82 (0.54–157,28) 0.82

Age (years) 61 (36–80) 60 (41–78) 0.52

Number of pts (%) Number of pts (%)

WHO PS <0.001

0 0 (0) 120 (83.9)

1 79 (26.2) 20 (14.0)

2 139 (46.2) 3 (2.1)

3 10 (3.3) 0 (0)

Missing 73 (24.3) 0 (0)

Clinical TNM (T), 7th Edition 0.08

cTX 0 (0) 0 (0)

cT1 14 (4.7) 3 (2.1)

cT2 63 (20.9) 25 (17.5)

cT3 106 (35.2) 68 (47.6)

cT4 118 (39.2) 47 (32.9)

Clinical Nodal stage (N), 7th Edition 0.01

cNX 1 (0.3) 0 (0)

cN0 41 (13.6) 37 (25.9)

cN1 41 (13.6) 19 (13.3)

cN2 a-b-c 209 (69.5) 79 (55.2)

cN3 9 (3.0) 8 (5.6)

HPV status (P16 stain) <0.001

Negative 207 (68.8) 64 (44.8)

Positive/ Unknown 94 (31.2) 79 (55.2)

Treatment

Chemotherapy regimen <0.001

• Platin 292 (97.0) 81 (56.6)

• Platin + others 9 (3.0) 23 (16.1)

• Cetuximab 0 (0) 39 (27.3)

Cumulative radiotherapy dose high-risk CTV 70 (60–84) Gy 70 (20–76) Gy

Tumor site

Oropharynx 145 (48.2) 49 (34.3) 0.02

Larynx 57 (18.9) 39 (27.3)

Hypopharynx 99 (32.9) 55 (38.5)

https://doi.org/10.1371/journal.pone.0232639.t001
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Previous studies on peritumoral radiomics in other tumor models have not been able to

produce promising results in internal cross-validation either. We have not yet seen a peritu-

moral H&N radiomics study with an external validation dataset.

Dou et al. [19] for instance found a testing C-index of 0.55 with a lung radiomic tumor bor-

der model in the prediction of distant metastasis, while Shan et al. [20] found that in predicting

Table 2. Multivariable Cox Regression method, C-index and number of radiomic and (non)-treatment related prognostic clinical factors in validation dataset

(BD2DECIDE).

C-index Prognostic (No.

feat)

C-index GTVprim (No.

feat)

C-index TB 3mm (No.

feat)

C-index TB 5mm (No.

feat)

C-index GTVprim, + TB

3mm + TB 5mm (No.

feat)

Train Val Train Val Train Val Train Val Train Val

Oropharynx

Clinical-OS 0.61 (1) 0.49 (1)

Clinical-LR 0.61 (1) 0.55 (1)

Clinical-DM 0.67 (1) 0.65 (1)

Radiomics-OS 0.65 (3) 0.57 (3) 0.69 (3) 0.52 (3) 0.79 (1) 0.60 (1) 0.70 (2) 0.56 (2)

Radiomics-LR 0.57 (1) 0.52 (1) 0.70 (2) 0.56 (2) 0.76 (6) 0.51(6) 0.72 (4) 0.48 (4)

Radiomics-DM - - 0.69 (2) 0.61 (2) 0.73 (3) 0.44 (3) 0.72 (2) 0.60 (2)

All subsites

Clinical-OS 0.64 (4) 0.56 (4)

Clinical-LR - -

Clinical-DM 0.67 (1) 0.49 (1)

Radiomics-OS 0.61 (1) 0.60 (1) 0.63 (4) 0.61 (4) 0.61 (2) 0.62 (2) 0.61 (3) 0.59 (3)

Radiomics-LR 0.66 (3) 0.51 (3) 0.67 (3) 0.51 (3) 0.58 (1) 0.47 (1) 0.61 (1) 0.47 (1)

Radiomics-DM 0.63 (2) 0.54 (2) 0.54 (2) 0.47 (4) 0.61 (2) 0.56 (2) 0.64 (3) 0.55(2)

Abbreviations GTVprim—Primary Gross Tumor Volume, OS- Overall Survival, LR- Locoregional Recurrence, DM- Distant Metastasis.

https://doi.org/10.1371/journal.pone.0232639.t002

Table 3. Random survival forest method, C-index and number of radiomic or (non)-treatment related prognostic clinical factors.

C-index Prognostic

(No. feat)

C-index Treatment

(No. feat)

C-index GTVprim

(No. feat)

C-index TB 3mm

(No. feat)

C-index TB 5mm

(No. feat)

C-index GTVprim,

+ TB 3mm + TB 5mm

(No. feat)

Train Val Train Val Train Val Train Val Train Val Train Val

Oropharynx

Clinical-OS 0.74 (5) 0.74 (5) 0.52 (1) 0.53 (1)

Clinical-LR 0.81 (5) 0.81 (5) 0.51 (1) 0.51 (1)

Clinical-DM 0.85 (4) 0.85 (4) 0.51 (1) 0.52 (1)

Radiomics-OS 0.73 (3) 0.58 (3) 0.77 (6) 0.49 (6) 0.79 (5) 0.60 (5) 0.78 (6) 0.61 (6)

Radiomics-LR 0.77 (2) 0.49 (2) 0.83 (3) 0.43 (3) 0.83 (2) 0.59 (7) 0.71 (3) 0.57 (3)

Radiomics-DM 0.82 (2) 0.49 (2) 0.91 (8) 0.55 (8) 0.81 (3) 0.50 (3) 0.86 (4) 0.32 (4)

All subsites

Clinical-OS 0.77 (7) 0.77 (7) 0.56 (1) 0.51 (1)

Clinical-LR 0.79 (3) 0.79 (3) 0.56 (2) 0.49 (2)

Clinical-DM 0.84 (4) 0.84 (4) - -

Radiomics-OS 0.79 (7) 0.58 (4) 0.89 (4) 0.58 (4) 0.77 (5) 0.60 (5) 0.78 (6) 0.59 (6)

Radiomics-LR 0.81 (3) 0.52 (2) 0.80 (2) 0.52 (2) 0.86 (7) 0.59 (7) 0.83 (2) 0.53 (2)

Radiomics-DM 0.86 (3) 0.49 (3) 0.86 (4) 0.49 (4) 0.96 (3) 0.50 (3) 0.86 (3) 0.43 (3)

Abbreviations GTVprim—Primary Gross Tumor Volume, OS- Overall Survival, LR- Locoregional Recurrence, DM- Distant Metastasis.

https://doi.org/10.1371/journal.pone.0232639.t003
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early recurrence in hepatocellular carcinoma (HCC), by comparing AUC values between

training and validation cohorts, the prediction accuracy in the validation cohort was good for

the peritumoral radiomics model (0.80 vs. 0.79, P = 0.47) but poor for the tumoral radiomics

model (0.82 vs. 0.62, P < 0.01).

Despite the poor performance in external validation with both GTVprim, 3mm, and 5 mm

tumor border radiomics, we have found a clinical model for the prediction of distant metasta-

sis in oropharyngeal cancer patients performed the best in external validation.

We find an overlapping clinical parameter, namely node-stage, between these two clinical

models. Indeed high node stage is hypothesized to be one of the major risk factors for the

development of distant metastasis [21,22]. We also see some discrepancies between the two

clinical models. For instance, T-stage, age, and packyears (the number of packs of cigarettes

per day multiplied by the years spent smoking) are also selected as one of the predictors of dis-

tant metastasis in the RSF model.

Strengths of the current study include the use of an external validation dataset, the extensive

clinical data and the rigorous feature selection methods that take into account time-to-event

outcomes.

One of the limitations is the retrospective nature of the study, leading to several clinical var-

iables (e.g. weight loss) to not be comparable between training and validation. Another limita-

tion is the heterogeneity between the training and validation dataset, both in terms of WHO

PS, N-stage, chemotherapy regimen (mostly platin alone regimens in DESIGN versus platin

+ other regimens in BD2DECIDE) as well as tumor site (DESIGN more oropharynx, less

laryngeal cases compared to BD2DECIDE). We hypothesize that this has negatively impacted

the model performance.

Another limitation is the omission of valuable semantic imaging features, qualitative imag-

ing features that are defined by experienced radiologists (e.g. extracapsular growth, necrosis)

as well as the omission of radiomics description of the GTV2 (positive lymph nodes).

Most radiomic features are designed to be extracted from a fully enclosed 3D volume, as is

often the case with the primary tumor. In contrast, the peritumoral regions are rings with

Table 4. Multivariable clinical Cox/ RSF models.

Outcome Clinical Cox, all

subsites Prognostic
Clinical Cox,

Oropharynx Prognostic
Clinical RSF, all

subsites Prognostic
Clinical RSF,

Oropharynx Prognostic
Clinical RSF, all subsites

Treatment
Clinical RSF,

Oropharynx Treatment
OS N-stage N-stage N-stage N-stage Chemotherapy regimen Chemotherapy regimen

Tumor site Tumor site Age Chemotherapy

completion

Gender Hb baseline Pack Years

Alcohol consumption Age Alcohol consumption

Pack-years Gender

LR N-stage Gender Hb baseline Gender Chemotherapy regimen Chemotherapy regimen

Tumor site Alcohol consumption Chemotherapy

completion

Gender Age

Pack years

N-stage

DM N-stage N-stage N-stage N-stage Chemotherapy regimen

T-stage T-stage

Hb baseline Age

Pack-years Pack years

https://doi.org/10.1371/journal.pone.0232639.t004
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Fig 2. a. Training Kaplan-Meier (distant metastasis free) survival split for oropharyngeal patients (best performing clinical model in

validation with Cox regression, oropharynx-DM) based on above (blue line) and below (yellow) median prediction probabilities. b.

Validation Kaplan-Meier (distant metastasis free) survival split for oropharyngeal patients (best performing clinical model in

validation with Cox regression, oropharynx-DM) based on above (blue line) and below (yellow) median prediction probabilities.

Non-significant split in survival according to median in training, though in all of the above median cases the time to event is not

observed (censoring).

https://doi.org/10.1371/journal.pone.0232639.g002
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limited volume, especially the 3mm regions. Therefore, features such as those extracted from

filtered images require a certain volume of the region of interest and therefore have limited

application in small volumes or disjointed regions. These technical issues may have contrib-

uted to the relatively poor performance of peritumoral radiomics.

We believe that in the future, to improve clinical use of this kind of signatures, larger and

more homogenous and prospectively collected data should be sought, taking into account

imaging features derived from GTV2/ lymph node regions and gene expression profiles in

order to construct more reliable prognostic biomarkers. An intrinsic problem might be that

recurrences cannot be predicted well with bulk tumor characteristics. In a recent genetics

study [23] it was shown that half of the local relapses of CRT treated HNSCCs, did not share

genetic changes with the index tumors, suggesting that minor treatment resistant subclones

determine outcome in many cases. Taking this into regard we believe that future radiomics

studies should derive information not only from the planning CT’s, but also during the multi-

ple follow-up moments after treatment.

Conclusion

In this study, we have investigated whether clinical data as well as computer-extracted radio-

mic features from peritumoral as well as inter-tumoral derived imaging features on CT can

predict OS, LRR and DM. Our results show that radiomic features from the primary peritu-

moral regions, as well as from the primary inter-tumoral regions, do not predict OS, LRR and

DM.

Fig 3. Error rate stabilizes with increasing number of trees. Features with an importance> 0 on an RFSRC model trained with all clinical variables in

were eventually combined in the multivariable clinical (prognostic/ treatment-related) RFSRC model and externally validated on the BD2DECIDE dataset.

https://doi.org/10.1371/journal.pone.0232639.g003
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More homogenous cohorts, both in patient and imaging characteristics, and the combina-

tion of clinical, radiomics, and genomics models may increase the generalizability and predic-

tive power of prognostic models.
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