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Abstract: Vaccination is an effective prevention of influenza infection. However, certain individuals
develop a lower antibody response after vaccination, which may lead to susceptibility to subsequent
infection. An important challenge in human health is to find baseline gene signatures to help
identify individuals who are at higher risk for infection despite influenza vaccination. We developed
a multi-level machine learning strategy to build a predictive model of vaccine response using
pre−vaccination antibody titers and network interactions between pre−vaccination gene expression
levels. The first-level baseline−antibody model explains a significant amount of variation in
post-vaccination response, especially for subjects with large pre−existing antibody titers. In the
second level, we clustered individuals based on pre−vaccination antibody titers to focus gene−based
modeling on individuals with lower baseline HAI where additional response variation may be
predicted by baseline gene expression levels. In the third level, we used a gene−association
interaction network (GAIN) feature selection algorithm to find the best pairs of genes that interact to
influence antibody response within each baseline titer cluster. We used ratios of the top interacting
genes as predictors to stabilize machine learning model generalizability. We trained and tested the
multi-level approach on data with young and older individuals immunized against influenza vaccine
in multiple cohorts. Our results indicate that the GAIN feature selection approach improves model
generalizability and identifies genes enriched for immunologically relevant pathways, including B
Cell Receptor signaling and antigen processing. Using a multi-level approach, starting with a baseline
HAI model and stratifying on baseline HAI, allows for more targeted gene−based modeling. We
provide an interactive tool that may be extended to other vaccine studies.

Keywords: gene interaction; vaccine immune response; nested cross-validation

1. Introduction

One of the major challenges of machine learning models that use omic data to predict influenza
vaccine immune response is defining the outcome. Ideally, individuals in training data would be
labeled as protected and unprotected following vaccination. Instead, hemagglutination inhibition
(HAI) titer is often used as a surrogate marker of protection (e.g., HAI titer of 1:40). In vaccinomic
research, an increase or fold-change (day 28/day 0 HAI) is often used to assess vaccine efficacy (e.g.,
high and low responders based on 4-fold change relative to pre−vaccination titer) [1]. However,
HAI fold change by itself may be misleading and modeling should account for pre−existing HAI
for influenza [2]. For example, subjects with high pre−vaccination influenza HAI titers show little
increase in titer following vaccination but appear to be protected [3]. In other words, when there is
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a previous exposure, a small fold change may simply mean that ceiling effects or feedback from the
immune system limit the amount the immune system can increase pre−existing antibody titers. Thus,
instead of using fold change as a binary response in statistical models of immune response, we choose
to model the variation in post-vaccination HAI as a function of previous HAI levels in addition to
omic predictors.

Before using genomic information, the initial stage of our multi-level approach used an inverse
model of baseline HAI to predict post-vaccination HAI. Previous studies have addressed the inverse
correlation of initial titers on day-28 fold-change observed in influenza vaccination studies [4–6]
using the adjusted max fold change (AdjMFC) [7]. AdjMFC and MFC are defined in greater detail
in Reference [7]. To summarize, one first computes the maximum titer for individual virus strains
that are standardized (subtracting the median followed by dividing the maximum absolute deviation
(MAD) across subjects within each virus strain). To compute adjMFC, one bins subjects based on their
maximum baseline titers (among virus strains) and then subtracts the median and divides by the MAD
within each bin. The nonlinear correlation between MFC and day 0 titers is removed by first dividing
the cohort into groups of subjects with similar day 0 titers and then adjusting the response within each
group so that groups are normalized and, thus, comparable. Finally, for each metric, “high” and “low”
responders are defined as subjects ranked above or below the top or bottom 20th percentile mark of
the adjMFC, respectively. Other studies [8] have used 30% and 70% thresholds to create three groups
of low, medium, and higher antibody responses.

Our approach, rather than discretize the response, attempts to use all variation in day-28 HAI
response. After modeling with baseline HAI levels, we discretized the baseline (pre−vaccine) HAI
values and stratified subjects into low, medium, and high prior-exposure groups because we expect
different gene regulatory mechanisms to be involved in each group. For the high prior-exposure group,
we did not train a gene−based model because most of the variation in the HAI response is already
explained by a simple baseline HAI model.

The adjMFC used in Reference [7] to classify subjects into high and low responders, excludes
medium responders which may lead to loss of power due to exclusion of subjects. In addition, power
may be lost due to discretization of response data. Thus, we used a regression strategy because
dichotomization of the outcome variable (e.g., classifying subjects as responders or non-responders
based on 4-fold change in HAI from day 0 to day 28) can lead to loss of statistical power [9,10]. In the
first stage of analysis, we used a simple model of day-28 response from day-0 HAI and then used
the residuals of this model to train a day-0 gene expression model to explain additional variation in
day-28 HAI.

The primary aim of the current study is to use baseline transcriptomic profiles to improve
prediction of vaccine immune response. In a recent comparison of microarray-based classifiers, the
quality of prediction depended on the phenotypic outcome more than the particular machine learning
approach [11]; hence, our attention to the definition of HAI outcome is based on a residual day-0
HAI model. The inverse day-0 Ab titer model that we used in the initial stage of analysis explains a
significant amount of variation in day-28 response, especially for vaccinees with large day-0 antibody
titers. However, for those with low day-0 Ab titers, there is a large amount of unexplained variation in
day-28 titers. As immune responses are regulated by transcriptomic activity in immune cell subsets,
this variation is likely controlled by gene interactions.

To capture gene interaction effects, we used a feature selection algorithm called regression-based
genetic association interaction network (reGAIN) feature selection that finds pairwise interaction
or differential co-expression effects [12]. In previous work, we identified replicating modules for
depression based on co-expression [13]. Here we used interaction effects as opposed to correlation to
find important predictors. We used the ratios of the top gene pairs as predictors in the predictive HAI
model to create more generalizable models as the relative changes in expression are more consistent
between cohorts. To reduce the risk of overfitting with reGAIN feature selection we used nested
cross-validation [14–16] and an independent test set to report titer predictions. We trained and tested
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the multi-level approach on multiple publicly available influenza vaccine gene expression studies.
Our results suggest that the reGAIN feature selection approach improves model generalizability
and identifies genes enriched for immunologically relevant pathways. Using a multi-level approach,
starting with a baseline HAI model and stratifying based on baseline HAI, allows for a piecewise
model that flexibly targets genes involved in different pathways based on prior exposure. We provide
an interactive tool that may be extended to other vaccine studies.

2. Materials and Methods

2.1. Overall Approach

Our analytical pipeline involved four main modeling steps (Figure 1). To provide a broad
overview, these modeling steps begin with (A) a nonlinear model of post-vaccination fold-change
as a function of the day-0 HAI levels using an inverse power model to predict the post-vaccination
HAI. This initial model captures a large amount of variation in post-vaccination response, especially
those with high day-0 HAI. We next (B) identified subjects with low, medium, and high day-0 HAI for
additional stratified gene−based modeling. Subjects were clustered using their day-0 HAI titers by
Gaussian mixture modeling (GMM). The day 0 HAI titers in all data sets were combined and the GMM
generates three clusters of observations: low, medium, and high baseline levels (red, green, blue in
Figure 1B). A first level of gene expression feature selection was performed using the reGAIN method
(C) for the low (red) and medium (green) baseline titer groups. Genes were not used to model the high
baseline group (blue) because little additional variation is explained beyond the day-0 HAI model.
The reGAIN method was used in nested cross-validation (CV) to select 200 genes with the highest
interaction scores from the pairwise gene−gene interaction regression coefficients. A second level
of feature selection (D) with cross-validated glmnet, uses the residuals of the nonlinear model (from
A) as a new outcome variable, and genes and gene ratios from (C) were used as predictor variables.
The Baylor data was used as training data, and the Emory and Mayo data were used for testing.
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Figure 1. A diagram of the overall modeling approach in four parts. (A) Inverse power model is used to
model the pre−existing hemagglutination inhibition (HAI) antibody titer (day-0 HAI). The horizontal
axis is the day-0 HAI, and the vertical axis is the ratio of day-28/day-0 (fold-change) according to the
inverse power model. (B) Day-0 HAI in all data sets are combined and clustered into three groups (low
(red I), medium (green II), and high (blue III)) using Gaussian mixture modeling (GMM) clustering.
(C) The regression-based genetic association interaction network (reGAIN) method is used to compute
the weighted matrix for gene pairs through 10-outer/10-inner nested cross-validation (CV), and top
200 interacting genes with highest reGAIN values are selected as predictor variables in two of the
baseline groups (low/red and medium/green). We excluded the third group (high day-0, blue) since
the power law model works well in that group. (D) Final gene modeling using glmnet penalized
regression, where the dependent variable is the residual from A, and predictor variables are the top 200
gene ratios from C. In gene modeling, we again trained on the Baylor data and tested on Emory and
Mayo data for each group, separately.

2.1.1. Inverse Power of Baseline HAI to Model Post-Vaccine HAI Fold Change

One of the major challenges to identifying genes and signatures that influence vaccine immune
response is defining the immune response outcome and accounting for pre−existing immunity (day-0
HAI). Thus, before predicting immune response from omic data, we determined the explained immune
response variation based on easily observable variables, such as day-0 HAI and age. It is known
that the post-vaccination change in response is negatively correlated with pre−vaccination titers,
and regression approaches, such as the titer response index (TRI), have been used to adjust for this
effect [4]. Feng et al. noted that the change in post-influenza vaccination antibody is inversely related
to pre−existing antibody in multiple groups, including elderly and subjects with lupus [17]. We used
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an inverse power law model of post-vaccine HAI fold-change (Figure 1A), f c(do) = a do
b, where fc is

the predicted fold change (day28 HAI/day0 HAI) and d0 is day0 (pre−vaccine) HAI. We fit the model
parameters a and b, where b is expected to be negative.

2.1.2. Expectation Maximization/Gaussian Mixture Model

We used Gaussian mixture model (GMM) density estimation [18] to cluster subjects based on
pre−vaccination HAI. The GMM algorithm estimates a finite mixture of models using maximum
likelihood estimation and expectation maximization methods. For these clusters, we created piecewise
regressions models that predict HAI fold change based on gene expression for each baseline group
separately (Figure 1B). This stratified model building allows for the selection of genes most relevant to
modeling vaccine response within each prior exposure group. We bypassed gene−based modeling for
the high baseline group because little additional variation is explained beyond the day-0 HAI model in
the first stage.

2.1.3. reGAIN Gene−Gene Interaction Based Feature Selection of Baseline Gene Expression

A regression-based genetic association interaction network (reGAIN) is a statistical network
that encodes the pairwise statistical interactions between genes A and B conditioned on an outcome
variable Y [19–21].

Y ∼ β0 + β1 A + β2B + β3 AB +
n

∑
i=1

β3+iCOVi + ε. (1)

Each element of the weighted network is constructed from the interaction coefficient β3 between
each pair of genes. The full model corrects for the main effects of variables A and B (β1 and β2) and for
possible covariates (COV1—COVn) that may be relevant to the outcome. For dichotomous phenotypes,
the interaction term represents a differential co-expression between genes and in this case reGAIN
uses logistic regression (Figure 1C). In the current study, the outcome Y in the second-level modeling
stage is the residual of the HAI fold change from the day-0 HAI model (Figure 1A). Thus, the outcome
is continuous, and linear regression is used. The most statistically significant interactions were selected
for subsequent machine learning (Figure 1D). In addition, we wrapped reGAIN feature selection into
nested cross-validation to prevent overfitting as discussed next.

2.1.4. Baseline Gene Expression Machine Learning Model to Improve Baseline HAI Model

Bootstrapping and cross-validation (CV) provide reliable internal validation and estimation of
classification accuracy [9,22]. Because the gene−gene interaction features from reGAIN incorporate
phenotype information, we used a nested CV procedure to avoid biased classification errors and to
properly evaluate the generalized performance of classifiers [14]. Because reGAIN feature selection
computes interactions or differential correlation effects, we used the ratio of genes as features in the
machine learning classifier (Figure 1D). Using the relative expression level between two genes within a
data set may improve generalizability to other data sets by reducing the effect of systematic differences
between samples.

We used glmnet hyperparameter tuning with CV [14] for the final model of HAI fold change.
glmnet tunes the α [0, 1] and λ hyperparameters by CV, where a lower value of α leads to ridge penalty
and a higher value leads to lasso penalty. A low value for λ generally includes many features and
leads to overfitting. In addition to internal validation, we validated the machine learning model’s
predictive ability on an independent data set. Given the relatively large size of the Baylor data (e.g.,
n = 200+ subjects; Table 1), an alternative to cross-validation is to split the data into three parts: a
feature selection set, a training set, and a testing set. A 3-way split is also conducive to a differential
privacy approach that uses threshold-out in a training and holdout data sets [23,24]. We provided
R code and a Shiny app to reproduce this pipeline (https://github.com/insilico/predictHAI) and
(http://insilico.utulsa.edu/predictHAI).

https://github.com/insilico/predictHAI
http://insilico.utulsa.edu/predictHAI
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Table 1. Influenza vaccine data used for training and validation. Demographic summary and number
of subjects with available data.

GEO Acc# Location Male:Female Age HAI at Day
0 and 28

Gene Expression Array Data

Day 0 Day 1 Day 3 Day 7 Day 14

GSE48018 Baylor
Male 111:0 19–41 111 111 110 101 x 109

GSE48023 Baylor
Female 0:107 19–41 107 107 107 105 x 98

SDY67 Mayo 57:92 50–74 149 105 x 105 x 105

GSE29619 Emory
2007–2009 27:38 22–40 63 63 x 63 63 x

GSE74817 Emory
2009–2011 35:51 21–85 80 58 58 58 58 58

x—data was not available on the given day post-vaccination.

3. Results

3.1. Gene Expression and HAI Training and Testing Data

We trained and tested the proposed methods using three public datasets (Table 1) to build
models of vaccine response using the multistage modeling strategy (Figure 1). These studies include
virus-neutralizing titers H1N1 A/California/07/2009, A/Brisbane/59/07, H3N2 A/Uruguay/716/07,
A/Perth/16/2009, B/Brisbane/60/2001, and B/Brisbane/3/2007. Reported titers were the highest
dilution that completely suppressed virus replication. Not all data is available at each time point for
all studies. For example, the Emory 2007–2009 data (GSE29619) consists of 63 subjects age 22 to 40
years old and includes baseline or pre–vaccination gene expression data but not the entire longitudinal
gene expression data [25]. They showed that, even without vaccine−perturbed expression levels, it is
possible to achieve good immune response prediction from baseline data [7,26]. Similarly, we used
baseline gene expression with reGAIN machine learning feature construction. Another Emory study
2009–2011 (GSE74817) consists of 89 subjects age 21–85 years old vaccinated with TIV and available
HAI in days 0, 1, 3, 7, 14, and only baseline gene expression [26]. We also used data from the gene
expression omnibus (GEO) data from Baylor (GSE48018 and GSE48023) [4]. The Baylor data has a
relatively large number of samples: approximately 100 healthy adult males and 100 healthy adult
females with expression time series (Day 0, 1, 3, 14) and HAI (Day 0, 14, 28). The Mayo RNA-Seq
gene expression data study consists of 105 old individuals from 57 to 92 years old (both genders)
performed at the Mayo Clinic (Rochester, MN—available on ImmPort under study number SDY67).
Note that the Baylor data set is a relatively young cohort (ages 19 to 41 years), whereas the Mayo and
Emory data also include older subjects with related immunosenescence, which could affect prediction.
Furthermore, the Mayo gene expression is derived from RNA-Seq while the other data are derived
from microarray. We used quantile normalization for each dataset [27].

3.2. Day-0 HAI Model of Post-Vaccination HAI Fold Change

We trained the inverse power law (desensitization) model (Figure 1A and Section 2.1.1) of
influenza HAI fold-change response from day-0 HAI using the Baylor data set (Table 1). We also tested
a term that is linearly decreasing with age, but we did not include it in the final model because the
adjustment has a very minor effect on the predictions. We tested the model on the Emory and Mayo
data (Table 1). We applied a log2 transformation to all titers. Following the approach used by Tan et
al. [1] to create the outcome variable, we used the maximum fold change (day28/day0) HAI antibody
response across the three influenza vaccine strains (A-H1N1, B, and A-H3N2) for each subject. For
the day-0 predictor in the Baylor training data, we used the day-0 levels from the strain that shows
the max fold change for each subject (matched strains). The Mayo test data only includes A-H1N1
titers, so there is only one choice for the fold change and day 0 HAI values. The model on the Baylor,
Emory, and Mayo data (Figure 2) explains 45%, 32%, and 22% of the variation in the maximum titer
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fold change when we trained day-0 HAI of the Baylor data. Thus, the model describes the general
behavior of the fold-change as a function of day-0 HAI, but, for a given day-0 HAI, additional variation
in the fold-change may be explained by gene expression data. Due to the older age of subjects in the
Mayo data and the concomitant higher day-0 HAI, the Mayo fold-change is low compared to the other
data sets (Figure 2).
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Figure 2. Baseline (day-0) HAI model prediction of HAI fold change (day 28) trained on the Baylor
data and tested on Emory and Mayo data. The plots are on log2 scale, where predicted values are
plotted with blue dash line with parameters trained from the Baylor data. The parameters are shown in
the model equation along with the R2. The variation explained in fold change HAI is 45% in the Baylor
data, 32% in the Emory data, and 22% in Mayo data. Emory data are a combination of two data sets
from different years that are distinguished by black circles (2007–2009) and purple crosses (2009–2011).

3.3. GMM for Day-0 Clustering

We hypothesize that different baseline genes will be involved in predicting vaccine response
depending on the individual’s baseline HAI (Figure 3). The inverse day-0 HAI model works best
for subjects with high pre−existing titer, while more variation remains unexplained for subjects with
medium or lower day-0 HAI. The post-vaccine response of subjects with low previous response shows
much greater variability in fold change due to additional immune system mechanisms and factors.
These low previous-response individuals will be of most interest in identifying additional variation
through gene expression contributions. Thus, before gene expression modeling, we first defined three
groups of day-0 HAI subjects. Using GMM clustering (Figure 1B, overall approach), we identified three
normal densities of day-0 HAI observations (Figure 4). We set the number of clusters or mixtures to
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three (low, medium, high). We determine the cutoff points by the maximum posterior probability that
each observation belongs to one of the Gaussian densities. To evaluate the robustness of the clusters,
we combined day-0 HAI from all data sets (Table 1).
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Figure 4. Gaussian Mixture Model (GMM) estimate of densities of day-0 HAI (log2) for combined
data. The red density represents the lower baseline titer group, the green density is the intermediate
baseline group, and the blue density represents the higher baseline titer group. The vertical dashed
lines indicate the different group boundaries based on the maximum posterior probability. We used
these boundaries to identify the cutoff points for creating the low, medium, and high day-0 titer groups
for gene−based modeling.
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3.4. reGAIN for Constructing the Interaction Network

We used a data-driven, vaccine−specific network method called reGAIN [21] that incorporates
interactions between genes that affect outcome variation [19,20,28]. We used the β3 interaction term in
Equation (1) to construct the weighted network. Such supervised feature selection procedures carry
the risk of overfitting; however, generalized performance is achieved by performing feature selection
and training within each k-fold of cross-validation (CV). Embedded feature selection methods, such as
glmnet, perform feature selection during training, and feature selection methods were also carried out
within each cross-validation fold, but they are separate from the training. We used nested CV with
10 inner loops and 10 outer loops to compute reGAIN gene scores. In each fold, we selected the top
genes with highest interaction values from the reGAIN matrix and filtered the top 200 genes with the
highest frequency to create a gene−network based gene set for immune response prediction (Table S1).
In addition, we used the STRING network to characterize gene interactions (Figure S1).

We used pathway enrichment to characterize the biological function of the genes selected by
reGAIN from baseline expression in the Baylor discovery data. We used the Molecular Signatures
Database (MSigDB) [29] to compute the overlap of genes in known pathways with a query list of
genes to assess a common biological function of the query gene set. We identified enriched Reactome
pathways (Table 2) from a query list of the top 200 genes from nested CV. The p-values were calculated
based on the hypergeometric distribution, which estimates the probability of observing a gene overlap
ratio by chance compared to the ratio of the size of the pathway to the total number of genes. Many
of the pathways related to the reGAIN network have clear relevance to predicting vaccine immune
response: adaptive immune system, MHC-mediated antigen presentation, and B cell receptor signaling.

Table 2. Top 10 enriched Reactome pathways using the top 200 genes ranked by reGAIN interaction
pairs from the Baylor gene expression discovery data. The first column indicates the name of each
pathway. The second column provides a description of the biological activity of the pathway. The third
column provides the number of genes overlapping between the pathway and query list. The fourth
and fifth columns show the p-value using a hypergeometric test and False Discovery Rate (FDR) of the
enrichment, respectively.

Gene Set Name Description Overlap Genes p-Value FDR

Immune system Genes involved in immune
system 25 5.6 × 10−13 3.78 × 10−10

Adaptive immune system Genes involved in adaptive
immune system 15 1.81 × 10−8 6.1 × 10−5

Class I MHC mediated antigen
processing presentation

Genes involved class I MHC
mediated antigen processing

and presentation
10 1.79 × 10−7 4.02 × 10−5

Antigen processing
ubiquitination proteasome

degradation

Genes involved in antigen
processing: ubiquitination and

proteasome degradation
9 4.38 × 10−7 7.39 × 10−5

Metabolism of RNA Genes involved in metabolism
of RNA 10 2.14 × 10−6 2.89 × 10−4

Generic transcription pathway Genes involved in generic
transcription pathway 10 3.8 × 10−6 4.27 × 10−4

Signaling by the B cell
receptor BCR

Genes involved in signaling
by the B cell receptor (BCR) 6 2.01 × 10−5 1.94 × 10−3

Mitotic G1_G1/S phases Genes involved in mitotic
G1-G1/S phases 6 3.23 × 10−5 2.34 × 10−3

Innate immune system Genes involved in innate
immune system 8 3.37 × 10−5 2.34 × 10−3

Regulation of mRNA stability
by proteins that bind AU rich

elements

Genes in involved in
regulation of mRNA stability
by proteins that bind AU-rich

elements

5 3.47 × 10−5 2.34 × 10−3

We trained the overall model (day-0 HAI plus day-0 gene interactions) on Baylor data and tested
on Emory and Mayo (Figure 5). Additional variation is explained by gene interactions relative to the
model with only day-0 HAI (Figure 2). The gene expression model shows the most improvement for
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the medium day-0 HAI group and overestimates the fold change for the low day-0 HAI group. Gene
expression levels were not used for the high day-0 HAI group. We compared the observed versus
predicted fold-change HAI in each group, low, medium, and high responders in Figure S2.
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Figure 5. Second-stage (HAI plus gene expression) baseline (day-0) model prediction of
post-vaccination HAI fold change (day 28). Genes were selected by reGAIN from baseline in nested
cross-validation to predict the residual HAI fold change from the pre−vaccination HAI model (Figure 2).
The model was trained on Baylor data (upper left). The black circles show the original data, and the
red-triangles show the predicted outcome. The Emory prediction (upper right) consists of two data
sets distinguished by black circles and purple x’s. The validation R2 is shown for each prediction. The
barplot shows the number of subjects in each day-0 HAI titer group.

To compare the effect of using reGAIN feature selection, we carried out the same pipeline with
a non-reGAIN feature selection method on the same data. For comparison, we used coefficient of
variation (CoV) filtering, which is the ratio of the standard deviation to the mean of a gene. A gene
with low CoV may be a useful predictor because its average magnitude is large and/or its effect is
consistent across samples. It does not use the outcome variable for filtering, so it does not increase the
risk of overfitting. Using the same data and modeling strategy as the reGAIN approach (Figure 5) we
compared the results of modeling based on CoV filtering (Figure 6). We found the reGAIN feature
selection model through nested CV leads to more variation explained (higher R2) in the independent
data sets, suggesting that reGAIN helps find more biologically relevant combinations of genes.
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Figure 6. Non-reGAIN filtering used in the second-stage (gene) model prediction of post-vaccine HAI.
Same as Figure 5 but instead of reGAIN feature selection, coefficient of variation was used to filter
genes. The R2 for non-reGAIN is lower than reGAIN for training and testing.

3.5. Shiny Application

We developed a flexible and user-friendly tool for the methods developed as a Shiny application
in the R statistical language. There are two different ways to use the Shiny app: (i) web-based, using
a web application that is hosted on our web server and can be found at http://insilico.utulsa.edu/
predictHAI/ or (ii) installed and run locally from https://github.com/insilico/predictHAI. The
application is designed in eight stages (Figure 7). In each stage, the sidebar is designed for settings
and pipeline customization, and a tabbed panel is designed to run the stages (run button) and display
results. In stage-1 (Figure 7A) users are able to select the train and test data in the sidebar and “Run
day-0 HAI modeling” to execute the day-0 model and display the plots. As described in the methods
(Figure 1A), stage-1 uses an inverse power law model to train baseline HAI. We kept the remaining
explained variation of each subject as a fold-change residual to use as the outcome variable for baseline
gene expression modeling. Stage-4 was an intermediate stage in the pipeline that uses Gaussian
mixture modeling to define the clusters (red, green, and blue densities) of subjects based on the
baseline HAI values (Figure 7B). The boundary of low, medium, and high baseline HAI subjects was
based on the maximum posterior probability using the expectation maximization method, where it
can be seen by two vertical dashed lines.

http://insilico.utulsa.edu/predictHAI/
http://insilico.utulsa.edu/predictHAI/
https://github.com/insilico/predictHAI
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Figure 7. R Shiny App for modeling of flu vaccine HAI response. Sidebar panel displays the settings and
main panel displays the result of modeling. (A) Sidebar panel displays options specifying the training
and testing datasets. (B) Sidebar panel displays customization of the number of clusters, (C) selection
of the regression modeling method, and (D) the number of genes filtered, including a download button
for top 200 genes, where users are able to select the train and test data sets, The user can run the
analysis for each tab and produce plots. Pre−loaded datasets are available by default in RData format.
The web based app and source code are available at https://github.com/insilico/predictHAI and
http://insilico.utulsa.edu/predictHAI.

Stage-6 executed the baseline gene expression modeling separately for the lower baseline−HAI
responders and medium baseline−HAI responders (Figure 7C). The left column illustrates observed
fold-change residuals (x-axis) and predicted fold-change residuals (y-axis), and the right column
illustrates the variation explained using baseline gene expression prediction (red crosses) on
fold-changes (black circle). Since we have two prediction model—the baseline HAI model and
the baseline gene expression model—we created a table of R2 results using day-0 HAI modeling and
day-0 gene expression modeling in stage-8 (Figure 7C). In stage-8, there are supplemental links in the
sidebar that allow users to download the top 200 gene list, source code and data. The boxplots and
all other plots used in the current study are created in the intermediate stages of the application. The
application reacts to user changes up to the current stage, including changing the train and test data
sets or parameters, such as the number of filtered genes or glmnet penalty. Currently the tool does
not allow uploading of data due to resource allocation; however, this capability can be turned on by
developers in the available source code.

4. Discussion

In this study, we introduced a multi-level modeling strategy for predicting immune response to
influenza vaccine from baseline HAI and gene expression. To account for pre−existing exposures,
our first-level model to predict post-vaccination HAI was an inverse power function of day-0 HAI.
This model was trained on the Baylor data and explains post-vaccine fold change variation best for
individuals with high pre−existing HAI titers. However, for individuals with low and medium
pre−existing HAI, a model for the unexplained variation is needed that incorporates additional
biological information. Thus, we developed a second-level day-0 gene expression model to explain
additional variation in post-vaccine HAI fold change. We used the fold-change residuals from
the first-level baseline HAI model (Figure 1) as the regression outcome for the second-level gene
expression model.

Tsang et al. [7] standardized their day-0 serological and B-cell variables by the z-score
transformation between day 0 and late post-vaccination to ensure that the different variables can
be combined in different clustering group analysis. They used hierarchical and k-means clustering
to cluster the subjects, and they assigned the subjects to three groups of high, medium, and low.
They then excluded the medium group and consider the high and low groups for their further analysis.
The group [8] used 30% and 70% percentile confidence intervals to determine thresholds for creating
low, medium, and higher antibody responder groups. Excluding the medium group has the advantage
of focusing on the extremes of response. On the other hand, additional response variation may be
explained by baseline HAI titers if more groups are included. In our first-stage HAI-based model,
we used all HAI baseline groups: high, medium, and low. In our second-stage gene−based model,

https://github.com/insilico/predictHAI
http:// insilico.utulsa.edu/predictHAI
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we excluded the high day-0 baseline subjects from gene expression modeling because their first-stage
model, with day-0 HAI titer alone, was already a good predictor of response.

For the remaining day-0 responders (low and medium), we filtered to 5000 genes across all data
sets with coefficient of variation. We again used the Baylor data for training because it had the largest
sample size. We used the regression-based genetic association interaction network (reGAIN) method
with nested cross-validation (CV) for feature selection in the Baylor data. We selected the top 200
genes that have the highest interaction values based on the reGAIN matrix in each inner-loop of the
nested CV in the training of glmnet. We chose the top 200 genes with highest frequency across nested
CV folds because this leads to more stable features for modeling. The reGAIN method is able to
detect functional interactions, which are likely to be important in immune system regulation, but other
feature selection approaches and other machine learning algorithms have their own advantages and
may be used in conjunction with this multi-level approach.

We used the ratio of gene pairs from reGAIN as predictors to help create more generalizable
models because the relative changes in expression may be more consistent between samples and
cohorts than changes of single genes. Using all possible ratios of these genes as predictor variables,
we trained a glmnet model to predict fold-change residuals from the first-level model. We used 10-fold
cross-validation to optimize the α [0, 1] and λ hyperparameters. We ran the gene−model pipeline for
lower and medium baseline subjects separately. We did not run for higher baseline subjects because
the baseline model is effective at predicting response to the vaccine. We tested our multi-level model
on two independent data sets. The results show that our strategy with reGAIN feature selection with
day-0 gene expression can explain additional variation in HAI fold-change response to vaccination
compared with a non-reGAIN filtering.

Relevant pathways were enriched in the top 200 genes (Tables 2 and 3), including Class I MHC
Mediated Antigen Processing Presentation and Signaling by B cell receptor (BCR). In a previous
study, a BCR signaling module was found to have a significant association with influenza vaccine
immune response in a multi-cohort study [8]. Two of the gene sets linked to HAI response involved
the processing and presentation of antigen. We speculate that a subject’s ability to process and present
antigen may impact humoral immune responses to influenza vaccination by enhancing T cell help.
It has been suggested that increased activation of T follicular helper cells may contribute to the
development of higher titer Ab in response to the high dose influenza vaccine [30]. The presence of
the BCR signaling pathways suggests that robust activation of antigen-specific B cells is also critically
important for the developing Ab response. For example, B cells receiving maximal BCR stimulation
may undergo more robust clonal expansion, have a higher propensity to develop into memory cells,
and may produce greater quantities of antibody. It has been shown that influenza vaccination of older
subjects results in the development of fewer vaccine−specific plasmablasts compared to younger
recipients. This decrease is accompanied by lower concentrations of Abs but is not accompanied by
any change in Ab avidity or affinity [31].

Our results suggest that one method to overcome this immunosenescence may be to provide
optimal BCR signaling. It has also been demonstrated that the high dose influenza vaccine elicits a
more robust plasmablast response than the standard dose vaccine [32]. The results from our study may
provide mechanistic insights into the biological processes controlling the magnitude of the immune
response to influenza vaccination.

We provide source code and a web-based tool to perform these analyses. The web-based tool is
meant to interactively demonstrate the approach but currently does not allow upload of additional data.
The web-based tool may be improved by allowing upload and additional preprocessing options on a
suitable server. These capabilities are present in the provided source code. Additional variation may
be explained by our model by incorporating prior knowledge from functional networks [16] and by
integrating other types of biomarkers such as proteomics, genetic variants and methylation. However, a
model that uses only baseline gene expression would be clinically more practical. Additional variation
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may be explained by other types of feature selection and by boosting the gene expression machine
learning on individuals that lie farther away from the baseline HAI model prediction.

Table 3. Table of overlap genes from our analysis in the first seven enriched pathways from Table 2.

Immune
System

Adaptive
Immune
System

Class I MHC
Mediated Antigen

Processing
Presentation

Antigen Processing
Ubiquitination

Proteasome
Degradation

Metabolism
of RNA

Generic
Transcription

Pathway

Signaling by
the B Cell

Receptor BCR

BCL2 CD36 CD36 DET1 CNOT10 MAML2 ORAI1
CASP1 CRTAM DET1 HUWE1 DDX20 MED31 PIK3R1
CD36 CTSF HUWE1 LRSAM1 EXOSC2 RBL1 PSMA4

CRTAM DET1 LRSAM1 PJA1 EXOSC4 RORA PSMC5
CTSF HUWE1 PJA1 PSMA4 PSMA4 ZNF160 PSMF1
DET1 LRSAM1 PSMA4 PSMC5 PSMC5 ZNF180 SOS1
FLNB ORAI1 PSMC5 PSMF1 PSMF1 ZNF197

HUWE1 PIK3R1 PSMF1 RNF4 RBM8A ZNF430
IL6R PJA1 RNF4 UBOX5 RPLP1 ZNF517

LRSAM1 PSMA4 UBOX5 SNRPD3 ZNF589
MAP2K7 PSMC5
MAPK1 PSMF1

MAPK13 RNF4
NLRP3 SOS1
ORAI1 UBOX5
PIK3R1

PJA1
PSMA4
PSMC5
PSMF1
RNF4

RPS6KA3
SOS1
TLR1

UBOX5
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Figure S1: String network of top 200 genes used in analysis based on reGAIN matrix, Figure S2: Panel of observed
versus predicted (HAI plus gene model) plots of day-28 HAI fold changes for models that use only day-0 HAI as
input (left plots) and models that include day-0 HAI and baseline gene expression (right plots); Table S1: Top 200
genes from Baylor data using nested CV for all baseline HAI combined.
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