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ABSTRACT Prions of lower eukaryotes are transmissible protein particles that prop-
agate by converting homotypic soluble proteins into growing protein assemblies.
Prion activity is conferred by so-called prion domains, regions of low complexity that
are often enriched in glutamines and asparagines (Q/N). The compositional similarity
of fungal prion domains with intrinsically disordered domains found in many mam-
malian proteins raises the question of whether similar sequence elements can drive
prion-like phenomena in mammals. Here, we define sequence features of the proto-
type Saccharomyces cerevisiae Sup35 prion domain that govern prion activities in mam-
malian cells by testing the ability of deletion mutants to assemble into self-perpetuating
particles. Interestingly, the amino-terminal Q/N-rich tract crucially important for prion in-
duction in yeast was dispensable for the prion life cycle in mammalian cells. Spontane-
ous and template-assisted prion induction, growth, and maintenance were preferentially
driven by the carboxy-terminal region of the prion domain that contains a putative soft
amyloid stretch recently proposed to act as a nucleation site for prion assembly. Our
data demonstrate that preferred prion nucleation domains can differ between lower and
higher eukaryotes, resulting in the formation of prions with strikingly different amyloid
cores.
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Prions are infectious protein aggregates that propagate by autocatalytically convert-
ing normal cellular prion proteins into ordered protein assemblies with cross-�

structure, so-called amyloids. The only bona fide prions identified so far in mammals
cause fatal transmissible spongiform encephalopathies (TSE) (1). The cellular isoform of
the mammalian prion is PrPC, a protein tethered to the cell membrane by a glycosyl-
phosphatidylinositol anchor. Its conformational conversion generates infectious entities
capable of transmitting between cells, within species, and sometimes even between
species (2). Amyloid formation is also a common feature of neurodegenerative diseases
of noninfectious origin (3). While epidemiological evidence is lacking that classical
neurodegenerative diseases are transmissible, the mechanism of intra- and intercellular
molecular templating is shared by many protein aggregates (4).

In analogy to mammalian prions, several proteins of Saccharomyces cerevisiae can
adopt self-replicating prion conformations that induce heritable phenotypic traits (5, 6).
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These fungal protein aggregates are also termed prions and replicate by a mechanism
of seeded polymerization in which a seed of a misfolded protein templates the
conversion of the soluble protein into a self-perpetuating amyloid state. Fragmentation
of existing prion fibrils by the yeast chaperone machinery then leads to the formation
of new seeds and exponential multiplication of heritable entities (7, 8). The prion
domains (PrDs) of most identified yeast prions are inherently disordered and enriched
for asparagine (N) and/or glutamine (Q) residues, with charged and hydrophobic
residues being underrepresented (9–13). The compositional similarity of PrDs of known
S. cerevisiae prions encouraged the development of computational tools that success-
fully identified similar domains in several yeast proteins with unknown prion propensity
(10, 13–16). Surprisingly, scoring of entire proteomes with prion algorithms predicts
that at least 1% of mammalian proteins contain similar prion-like domains (PrLDs) (17,
18). Several mammalian proteins with predicted PrLDs drive liquid-liquid phase tran-
sitions for the transient formation of membrane-less ribonucleoprotein complexes.
Mutations in the respective domains of disease-associated human proteins have been
linked to muscular and neurodegenerative pathomechanisms (19). In light of the many
Q/N-rich proteins in higher eukaryotes, it is possible that prion-like self-replication
underlies other unresolved epigenetic phenomena and diseases of unknown etiology.
So far, however, evidence for bona fide prions derived from human proteins with
predicted PrLDs is lacking. Indeed, a recent study demonstrates limitations of prion
algorithms to accurately predict the prion propensity of prion-like proteins in higher
organisms, likely because host-dependent intracellular factors influence aggregation or
prion behavior of a given protein (20).

On a cellular level, prion characteristics include rare spontaneous or template-
assisted conversion of the protein into its prion conformation, multiplication of seeds,
and natural infection of bystander cells (21, 22). Proof of principle that a prototype yeast
prion domain can behave as an infectious entity in mammalian cells comes from
studies on the aggregation behavior of the best-studied S. cerevisiae prion, Sup35, in
mouse cells (23–25). In yeast, Sup35 serves as a translation termination factor that rarely
switches into an inactive prion conformation (26, 27). Its PrD N domain drives prion
propagation and assembles into fibrils with cross-� structure in vitro (28–31). While the
amino acid composition of the N domain is a major determinant of its activity, distinct
subdomains within the N domain exert specific but somewhat overlapping functions in
prion biogenesis in S. cerevisiae (12, 32, 33). The highly charged middle (M) domain
(amino acids [aa] 124 to 250) stabilizes the prion conformer during yeast mitosis and
meiosis (34) and increases solubility of the protein in its non-prion state (35). The
carboxy-terminal C domain (residues 251 to 685) mediates translation termination
function but is otherwise dispensable for prion formation (35, 36). Sup35 NM does not
share sequence homology with mammalian proteins and is thus ideally suited to study
prion behavior in the absence of a potential loss-of-function phenotype. In analogy to
prion induction in S. cerevisiae (37, 38), cytosolically expressed NM adopts a prion state
in mammalian cells upon exposure to exogenous in vitro-fibrillized recombinant NM
(23). Induced NM aggregates behave as infectious entities that faithfully transmit
vertically and horizontally (24, 39). Here, we set out to define the subdomains in the
Sup35 PrD that mediate the sequential steps of prion formation in mouse neuroblas-
toma cells. We demonstrate that the differential steps of prion biogenesis are prefer-
entially driven by a carboxy-terminal region of the N domain. Importantly, this domain
contains a soft amyloid core proposed to mediate first intermolecular contacts during
prion assembly (40). Initiation of prion assembly by the carboxy-terminal region leads
to the formation of NM prions that differ strikingly from wild-type prion variants
propagating in S. cerevisiae.

RESULTS
The Sup35 N domain drives aggregation in mammalian cells. We have recently

shown that the Sup35 NM domain exhibits prion properties in mammalian cells (23, 24).
Here, we use the term “prion” to describe the self-templating and intercellular trans-
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mission properties of Sup35 NM in our cellular model in analogy to the well-established
fungal prions (41). Myc epitope-tagged N or M domains and a mutant coding for NM
Δ 138-250, shown to maintain the prion phenotype in S. cerevisiae (Fig. 1A) (42), were
tested for their ability to aggregate upon induction by untagged recombinant NM
fibrils or by endogenous green fluorescent protein (GFP)-tagged NM prions. Transiently
transfected N2a cells showed diffuse expression of the Myc-tagged mutants in the
cytoplasm (Fig. 1B). Proteins lacking parts of the M domain also localized to the nucleus.
The reason for the presence of N derivatives in the nucleus is unknown, as the protein
lacks a predicted classical or proline-tryosine nuclear localization signal (43). Exposure
of cells to in vitro-fibrillized untagged recombinant NM revealed that the N domain was
crucial for aggregate induction by exogenous NM seeds (Fig. 1C and D). Myc-tagged
mutants with deletions in the M domain aggregated in cytoplasm and nuclei. In
contrast, M alone was incapable of forming aggregates. A sedimentation assay of cell
lysates from transfected cells confirmed that before (Fig. 1E) or after (Fig. 1F) exposure
to preformed untagged recombinant NM fibrils, M-Myc expressed in N2a cells remained
soluble. When N2a cell clone 2CG11 stably producing NM-GFP prions (24) was trans-
fected with plasmids coding for the Myc epitope-tagged NM mutants (Fig. 1G), aggre-
gation was only observed when the N domain was present, suggesting that, in analogy
to the S. cerevisiae system, NM aggregation in mammalian cells is mediated by the same
domain (Fig. 1H). Significantly more cells with double-stained NM-GFP aggregates were
found for NM-Myc Δ 138-250 than for N-Myc (Fig. 1I). Thus, while the M domain alone
is incapable of forming aggregates, a stretch of amino-terminal amino acid residues in
M engages in the binding to preexisting NM-GFP prions (Fig. 1I). This is consistent with
the finding that residues 124 to 137 are important for variant-specific maintenance of
Sup35-derived prions in yeast (42).

Deletion of the Q/N-rich region increases the rate of spontaneous aggregation.
We constructed a set of truncated NM mutants previously tested in S. cerevisiae for
prion activities (Fig. 2A) (32). The N domain contains a region particularly enriched for
Q/N (generally termed QNR; residues 1 to 39) that is crucially required for aggregate
induction, polymerization, and amyloid core formation in yeast (11, 44). The five and a
half degenerate octapeptide repeats (OPR) promote inheritance over multiple cell
divisions by stabilizing intermolecular interactions (45, 46). Importantly the OPR also act
as a recognition site for the chaperone Hsp104 that mediates fibril fragmentation in
yeast (32, 47, 48). A single-amino-acid substitution (G58D) in the OPR has been shown
to modulate Sup35 prion heritability by affecting either fragmentation or bidirectional
sorting to progeny (49–52). Aggregate persistence in mitotically active cells is taken as
a proxy for effective seed multiplication (22). To restrict expression of the NM deriva-
tives to the cytosol, all deletion mutants contained the M domain. In N2a cell popu-
lations stably transduced with virus coding for hemagglutinin (HA) epitope-tagged
proteins, NM derivatives generally remained soluble (Fig. 2B). Automated confocal
microscopy analysis demonstrated stable transgene expression in at least 38% of the
cells over a period of 13 cell culture passages (Fig. 2C and data not shown). In rare cases,
we noticed cells expressing NM-HA Δ 1-39 that contained visible NM aggregates (Fig.
3A). Sedimentation assays confirmed that NM-HA proteins almost exclusively resided in
a soluble state, with the exception of NM-HA Δ 1-39, where a fraction of the protein
became insoluble (Fig. 3B). This is in line with our quantitative confocal microscopy
analyses of transduced cell populations, demonstrating that up to 2.5% of cells ex-
pressing NM-HA Δ 1-39 exhibited NM aggregates, while spontaneous aggregates were
found in less than 0.3% of cell populations expressing full-length NM-HA or other
mutants (Fig. 3C). The highest numbers of NM-expressing cells with aggregates were
also found in N2a NM-HA Δ 1-39 upon continuous passage (Fig. 3D). Lowest sponta-
neous aggregation was observed when the last 2.5 repeats and/or the carboxy-terminal
N region (CTN) was deleted (Δ 39-123, Δ 75-123, and Δ 98-123). When cells were grown
for several days, we noticed clusters of N2a cells with NM-HA Δ 1-39agg but not Δ
75-123agg, suggesting that spontaneously forming aggregates lacking the QNR were
self-sustained (data not shown).

Prion Subdomain Activity in Mammalian Cells Molecular and Cellular Biology

August 2018 Volume 38 Issue 15 e00111-18 mcb.asm.org 3

http://mcb.asm.org


FIG 1 N domain is sufficient for aggregate formation. (A) Schematic diagram of NM constructs. (B) N2a cells 48 h posttransfection of NM
constructs. Ectopically expressed proteins were detected using pAb anti-Myc tag (red). Nuclei were stained with Hoechst (blue). Scale bar,
5 �m. (C) Experimental setup to study NM aggregate induction by untagged recombinant (rec.) NM fibrils. Wild-type N2a cells were
transiently transfected with constructs N-Myc, NM-Myc Δ 138-250, and M-Myc. Twenty-four hours later, cells were exposed to untagged
recombinant NM fibrils. (D) N2a cells transiently transfected with NM mutants and 24 h later exposed to 10 �M (monomer concentration)
in vitro-fibrillized untagged NM. Ectopically expressed proteins were detected using pAb anti-Myc tag (red). Nuclei were stained with
Hoechst (blue). (E) Sedimentation assay of cell lysates from N2a cells 24 h posttransfection with constructs. S, supernatant; P, pellet.
Ectopically expressed protein was detected using MAb anti-Myc. (F) Sedimentation assay following exposure to 10 �M fibrillized untagged
recombinant NM (monomer concentration). Cells were harvested 48 h posttransfection. The M domain alone exhibits an abnormal
migration behavior, potentially due to net charge and/or charge distribution. (G) N2a cell clone 2CG11 stably producing NM-GFP
aggregates was transiently transfected with NM mutants for 48 h. NM encoded by plasmids was detected using pAb anti-Myc tag (red).
GFP is shown in green. Nuclei were stained with Hoechst (blue). Arrows indicate nuclear NM. Scale bar, 5 �m. (H) N2a NM-GFPagg cell clone
2CG11 was transiently transfected with constructs and fixed 48 h posttransfection. Shown is the percentage of NM-GFPagg cells with
Myc-tagged aggregates. Bars represent mean values � SEM (three independent transfection experiments; n � 3). At least 300 cells were
analyzed per cell population. The Cochran-Mantel-Haenszel test was used (****, P � 0.0001; ns, not significant). (I) Percentage of cells that
contain Myc-tagged and GFP-tagged NM aggregates (shown in panel H) that show colocalization of NM-Myc and NM-GFP aggregates. Bars
represent mean values � SEM (n � 3). Statistical analysis was done using the Cochran-Mantel-Haenszel test (****, P � 0.0001).
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FIG 2 N2a cells stably express NM wild type and NM mutants. (A) Eight NM constructs were generated
based on NM mutants already analyzed in S. cerevisiae for their prion propensity (32). QNR, residues 1 to
39; OPR, residues 40 to 97, containing repeats R1 to R5; R1, residues 41 to 49; R2, residues 56 to 64; R3,
residues 65 to 74; R4, residues 75 to 83; R5, residues 84 to 93; R5.5, residues 94 to 97; CTN, residues 98
to 123. Note that the terms Q/N-rich region and Q/N-rich tract are used in the field to refer to this region
of N (32, 50, 84). The carboxy-terminal region of N also is enriched for Q/N, albeit to a lesser degree. All
constructs were tagged with an HA antibody epitope tag at the carboxy termini. (B) Bulk populations of
N2a cells stably expressing wild-type and mutant NM-HA. NM was detected using MAb anti-HA (red).
Nuclei were stained with Hoechst (blue). Scale bar, 5 �m. (C) Percentage of cells in the bulk population
(passage one postthawing) expressing wild-type or mutant NM. Bars represent mean values � SEM (n �
3). At least 14,000 cells were analyzed per cell population.
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FIG 3 Spontaneous aggregation propensities of full-length and mutant NM in the mammalian cytosol. (A) N2a NM-HA Δ 1-39
cell with spontaneously formed NM-HA aggregates. NM was detected using MAb anti-HA. The nucleus was visualized with
Hoechst (blue). The arrow indicates NM-HA aggregates. Scale bar, 5 �m. (B) Sedimentation assay of cell lysates from N2a bulk
populations expressing wild-type or mutant NM-HA. NM was detected using MAb anti-HA. S, supernatant; P, pellet. (C)
Percentage of cells in the bulk population (one passage postthawing) that express the transgene and also spontaneously form
NM aggregates. Bars represent mean values � SEM from three independent experiments (n � 3), with at least 14,000 cells
imaged per cell population. Statistical analysis was done using the Cochran-Mantel-Haenszel test (*, P � 0.05; **, P � 0.01; ****,
P � 0.0001; ns, not significant). (D) Percentage of N2a NM-HA cells that express wild-type or mutant NM-HA and that
spontaneously form NM aggregates over continuous culture (passage 1 to 13 postthawing). Bars represent mean values � SEM
(n � 3). At least 9,800 cells were imaged per cell population per passage. Please note variations in scaling. P, passage. (E)
Expression of wild-type and mutant NM-HA in stable cell populations. NM was detected by Western blotting using MAb
anti-HA. Actin served as a loading control. These data can be compared to the graph shown in Fig. 2C. (F) Stable cell
populations expressing full-length NM-HA or NM-HA Δ 75-123 were transiently transfected with constructs coding for the
homotypic proteins to increase the expression level of the transgene. N2a NM-HA Δ 1-39 cells were mock transfected.
Overexpressed NM-HA Δ 75-123 was partially amino-terminally deleted, as has been observed previously for NM (85). NM was
detected using MAb anti-HA. Actin served as a loading control. Additional lanes were excised for presentation purposes. (G)

(Continued on next page)
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Prion induction in yeast increases with NM expression levels (31). To test if increased
expression resulted in higher aggregate induction efficiencies, cell populations stably
expressing full-length NM-HA or NM-HA deletion mutant Δ 75-123 (Fig. 3E) were
transiently transfected with expression plasmids coding for homotypic NM proteins to
achieve higher expression levels (Fig. 3F). Western blot analysis revealed approximately
2- to 4-fold higher NM levels in lysates of N2a NM-HA or NM-HA Δ 75-123 cells than in
lysates of N2a NM-HA Δ 1-39 cells (Fig. 3G). Still, NM-HA Δ 1-39 spontaneously formed
aggregates at significantly higher rates than NM-HA or NM-HA Δ 75-123 (Fig. 3H).
Increasing transgene expression 3- to 4-fold by transient transfection of N2a NM-HA,
N2a NM-HA Δ 75-123, or N2a NM-HA Δ 98-123 cell populations with corresponding
plasmids only insignificantly increased NM puncta formation, resulting in less than
0.25% positive cells (data not shown). Collectively, these findings suggest that mutant
NM-HA Δ1-39 has an increased ability to self-aggregate into prions.

The last 2.5 repeats and the carboxy-terminal N region are essential for prion
induction by preexisting seeds. To study prion induction by exogenous seeds, N2a
cell populations were exposed to untagged recombinant NM fibrils (Fig. 4A and B), and
cells were analyzed for NM-HA aggregate induction in passage one (Fig. 4C). Indepen-
dent of the NM-HA mutant expressed, untagged fibrils seeded protein polymerization
in all cell populations (Fig. 4C), albeit at different frequencies (Fig. 4D). Deletion of the
QNR (Δ 1-39) or the point mutation G58D only slightly affected numbers of aggregate-
bearing cells compared to those of cells that express full-length NM-HA (Fig. 4D).
Deletion of the first three repeats (Δ 39-74) had some effect on aggregate induction. In
contrast, deletion of the last 2.5 repeats and/or the CTN (Δ 39-123, Δ 75-123, Δ 98-123,
and Δ 75-97) drastically impaired aggregation. Sedimentation assays confirmed smaller
amounts of insoluble NM-HA when the last 2.5 repeats and/or the CTN were deleted
(Fig. 4E).

To determine if preexisting endogenous NM-GFP prions could sequester NM-HA
mutants, N2a NM-GFPagg cells were transiently transfected with empty vector or
constructs coding for NM-HA wild type or NM-HA mutants (Fig. 5A). Note that NM-
GFPagg cells produce both long fibril-like and punctate NM-GFP aggregates (Fig. 5B).
When transfected with constructs coding for NM-HA derivatives, HA-tagged NM ag-
gregates were found in all cell populations (Fig. 5C). At least 36% of NM-GFPagg-bearing
cells in all NM-HA derivative-expressing cells contained NM-HA aggregates indepen-
dent of the mutant (Fig. 5D). Lowest NM-HA aggregate induction was found when parts
of the OPR and the CTN (Δ 39-123 and Δ 75-123) were deleted. In cells exhibiting both
NM-GFP and NM-HA derivative aggregates, NM-HA Δ 39-123 hardly ever decorated
NM-GFP aggregates (Fig. 5C and E). Deletion of either the last 2.5 OPR or the CTN (Δ
75-97, Δ 75-123, or Δ 98-123) drastically decreased coaggregation with full-length NM.
Instead, aggregated mutants often appeared as individual puncta (Fig. 5C and E). The
presence of independent NM-HA mutant aggregates in cells producing NM-GFP prions
suggests that prions lacking the last 2.5 repeats and the CTN or the CTN alone are
structurally less compatible with full-length NM prions. Collectively, these data suggest
that parts of the OPR and the CTN mediate intermolecular contacts between soluble
NM with preexisting exogenous or endogenous NM seeds.

Vertical transmission of NM aggregates to progeny. A hallmark of mammalian
and yeast prions is their stable maintenance in dividing cell populations (21, 53). The
persistence of aggregates over multiple cell divisions is taken as a proxy for aggregate
multiplication (22, 53). We compared the number of cells bearing NM-HA aggregates to

FIG 3 Legend (Continued)
Quantitative analysis of expression shown in panel F (three independent transfections, n � 3). Shown is the fold difference in
expression level compared to that of mutant NM-HA Δ 1-39. For NM-HA Δ 75-123, only the signal of the upper band was used
for quantification. Bars represent mean values � SEM. Statistical analysis was performed using one-way analysis of variance
(*, P � 0.05; ***, P � 0.001). (H) Spontaneous aggregation of NM-HA and NM-HA mutants in cells shown in panels F and G.
Aggregation was assessed 48 h posttransfection. At least 6,000 cells were analyzed per cell population. Bars represent mean
values � SEM. Statistical analysis was done using the Cochran-Mantel-Haenszel test (****, P � 0.0001).
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the number of cells expressing NM-HA over continuous passages after fibril exposure
(Fig. 6A and B). Independent of the NM-HA construct, the number of aggregate-bearing
cells decreased over time, but loss appeared to slow down between passages six and
nine for full-length NM-HA, mutant G58D, and NM-HA aggregates lacking the QNR (Fig.
6B). The initial presence of unstable prion variants has been observed in yeast (31, 54).
Less than 13% of cells with aggregates were observed for mutants lacking the last 2.5
repeats and/or the CTN (Δ 39-123, Δ 75-97, Δ 75-123, and Δ 98-132). As spontaneous
aggregate induction was less than 0.3% except for the NM-HA mutant without the QNR
(Fig. 3A to D), the persistence of aggregates suggests that at least a subpopulation of
induced aggregates was able to propagate. We used the Cox proportional hazard
model to assess the fold change in the loss of aggregate-bearing cells over multiple cell
divisions. A higher fold change in cells with mutant NM aggregates compared to cells
with wild-type NM aggregates (set to zero) was taken as a measure for lower mitotic
stability (Fig. 6C). Generally, deletions in NM decreased the mitotic stability of aggre-
gates. NM-HA Δ 75-97 and Δ 98-123 aggregates were lost most frequently, suggesting
that the last 2.5 repeats and the CTN are most important for stable inheritance. NM-HA
G58D showed increased mitotic stability compared to that of full-length NM-HA (Fig.
6C). This mutation has been shown to modulate prion activity dependent on prion
variant as well as genetic background of the yeast host by affecting either seed
fragmentation or transmission to progeny (26, 49, 55). To monitor the fate of induced
NM aggregates upon cell division, N2a cell lines were generated that stably express

FIG 4 Template-assisted aggregate induction by fibrillized untagged recombinant NM or endogenous NM-GFP prions. (A)
Experimental setup to study the propensity of the NM mutants to form aggregates upon exposure to in vitro-fibrillized
recombinant NM. (B) Electron microscopy image of untagged recombinant NM fibrils. Scale bar, 100 nm. (C) N2a cell
populations exposed to 10 �M untagged recombinant NM fibrils (monomer concentration) for 24 h. Ectopically expressed
wild-type and mutant NM were detected using MAb anti-HA (red), and nuclei were stained with Hoechst (blue). Scale bar,
5 �m. (D) Percentage of cells harboring NM-HA aggregates upon induction with 10 �M untagged recombinant NM fibrils
(monomer concentration). Bars represent mean values � SEM (three independent induction experiments; n � 3). At least
12,500 cells per cell population were imaged. Statistical analysis was done using the Cochran-Mantel-Haenszel test (****,
P � 0.0001). (E) Sedimentation assay of cell lysates from N2a bulk populations exposed to 10 �M fibrillized untagged
recombinant NM (monomer concentration). Cells were harvested 24 h after aggregate induction. Ectopically expressed NM
was detected using MAb anti-HA. S, supernatant; P, pellet. Additional lanes were excised for presentation purposes.
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FIG 5 Template-assisted aggregate induction by endogenous NM-GFP prions. (A) Illustration of the experiment. N2a
NM-GFPagg cell clone 2CG11 was transiently transfected with empty vector or HA-tagged NM full-length or NM mutant
constructs. Cells were fixed 48 h posttransfection. (B) N2a NM-GFP cell clone 2CG11 stably producing NM-GFP aggregates was
mock transfected. Nuclei were stained with Hoechst (blue). Note that aggregates can exhibit a fibrillar morphology (left) or
exist as puncta (right). Scale bars, 5 �m. (C) 2CG11 cells transiently transfected with HA-tagged NM full-length or NM mutant
constructs. NM-HA was detected using MAb anti-HA (red). Some NM-GFP aggregates also stained with Hoechst, most likely due
to nucleic acids incorporated in the aggregates. Mutant NM-HA Δ 39-123 hardly ever coalesced with NM-GFP aggregates. Scale
bars, 5 �m. (D) Shown is the percentage of NM-GFPagg cells with NM-HA aggregates compared to NM-GFPagg cells expressing

(Continued on next page)
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full-length NM or NM mutant Δ 1-39 or Δ 75-123 fused to GFP (Fig. 6D). Aggregation
was induced by exposure to untagged recombinant NM fibrils. Distribution of NM-GFP
aggregates to both daughter cells also confirmed that mutant NM aggregates that lack
either the QNR or the last 2.5 repeats and the CTN are bidirectionally transmitted to
daughter cells. We conclude that deletion of the last 2.5 repeats and the CTN had
strongest effects on mitotic prion stability.

NM mutants are infectious. Contrary to known behavior in S. cerevisiae, NM prions
in mammalian cells infect naive bystander cells (24). To explore if NM deletion mutants

FIG 5 Legend (Continued)
NM-HA (soluble or aggregated). Bars represent mean values � SEM (four independent transfection experiments; n � 4). At
least 630 cells were analyzed per cell population. Statistical analysis was done using the Cochran-Mantel-Haenszel test (*, P �
0.05; ****, P � 0.0001; ns, not significant). (E) Percentage of NM-GFP/NM-HA aggregate-bearing cells (D) that show colocal-
ization of NM-HA and NM-GFP aggregates. Bars represent mean values � SEM. Statistical analysis was done using the
Cochran-Mantel-Haenszel test (****, P � 0.0001; ns, not significant).

FIG 6 Maintenance of NM-HA aggregates over multiple cell divisions. (A) Experimental setup to study aggregate maintenance over
several cell passages. In a given population, the number of cells stably expressing the transgene was determined for each passage.
These cells were then analyzed for NM-HA aggregates. (B) Percentage of cells expressing wild-type or mutant NM-HA that harbor
aggregates over multiple cell divisions. Cell populations were exposed to 10 �M untagged recombinant NM fibrils (monomer
concentration) and subsequently passaged every 2 to 3 days. Cells with aggregates were determined by automated confocal
microscopy analysis (n � 3 biological replicates). Bars represent mean values � SEM. P, passage. At least 7,900 cells were analyzed
per cell population per passage. Proliferation doubling time for N2a NM-HA cells is approximately 13 h (data not shown). This
corresponds to approximately 51 doublings within 13 passages. (C) Fold change of the probability for NM-HA mutant cell populations
to lose aggregate-harboring cells over time compared to cells expressing full-length NM-HA. �0 denotes lower mitotic stability than
NM-HA, and �0 denotes higher mitotic stability than NM-HA. Bars represent mean values, and error bars represent the upper limit
for the confidence interval (n � 3). The Cox proportional hazard model was used for statistics (cell count, �12,500; ****, P � 0.0001).
(D) Time-lapse analysis of N2a cell lines stably expressing NM-GFP full-length, Δ 1-39, or Δ 75-123. Cells were exposed to 10 �M
untagged recombinant NM fibrils for 24 h (monomer concentration). Two passages postinduction, cells were subjected to live cell
imaging for a total of 15 h. Scale bar, 10 �m.
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exhibit infectious properties, we first generated donor populations with a higher
number of aggregate-bearing cells by transfecting untagged recombinant NM fibrils
into N2a NM-HAsol, Δ 1-39sol, and Δ 75-123sol cell populations using Effectene (Fig. 7A).
Cloning was subsequently performed (Fig. 7B) to isolate cell populations with high
prion replication ability (56). A total of 24 N2a NM-HA clones was isolated, 14 of which
produced aggregates in 80 to 100% of total cells. For NM-HA Δ 1-39, 16 out of 20 clones
stably propagated aggregates. For NM-HA Δ 75-123, the initial round of cloning
generated only 2 out of 144 clones with aggregates in only 40 to 70% of cells,
suggesting mitotic instability. Subcloning generated 86 clones, with 21 clones harbor-
ing visible aggregates in at least 50% of the cells. Four clones/subclones were chosen
for the NM-HA wild type and the two NM-HA mutants that exhibited a high percentage
(�80%) of cells harboring aggregates (Fig. 7B). Cell clones displayed punctate aggre-
gates that were evenly distributed throughout the cytosol or clustered in certain areas,
and occasionally large, fibrillar aggregates were observed (Fig. 7C). SDD-AGE analysis
(23) confirmed high-molecular-weight NM aggregates (Fig. 7D), demonstrating that NM
deletion mutants also were able to form amyloid fibrils (57).

All clones, except one subclone producing large aggregates (NM-HA Δ 75-123; clone
64H-3), induced aggregation of NM-GFP in recipient cells upon direct coculture (Fig.
7E). Consistent with our previous findings, intercellular NM prion induction was a rare
event (24). Generally, intercellular induction appeared to be higher when donor cells
produced small, punctate aggregates. We were unable to detect donor NM-HA aggre-
gates in the recipient cells, as transmitted, seeding-competent NM polymers are usually
too small to be visualized by confocal microscopy (25). A significantly increased
induction rate was found for aggregates lacking the QNR compared to full-length NM;
however, clonal differences cannot be excluded (Fig. 7F) (24). In summary, neither the
QNR nor the last 2.5 repeats and the CTN are essential for intercellular aggregate
transmission.

Efficiently propagating NM prions contain a carboxy-terminal protease-resistant
core. The amyloid core of Sup35 prions propagating in S. cerevisiae has been experi-
mentally mapped to the QNR (58). We used limited proteolysis (Fig. 8A) to characterize
differences in prion cores of NM-HA wild type and Δ 1-39 and Δ 75-123 mutants (59).
Chymotrypsin preferentially cleaves at the carboxyl side of amide bonds of tyrosine,
tryptophan, and phenylalanine. These residues are abundant in the N domain, but
except for one residue (aa 129), they are not present in the M domain. Three tyrosine
residues are also part of the HA antibody epitope tag. As expected, chymotrypsin
cleavage sites became inaccessible to partial proteolysis in the tightly packed untagged
recombinant NM fibril (Fig. 8B). When cell lysates of N2a cells with soluble or aggre-
gated (Fig. 8C) full-length or mutant NM-HA derivatives were incubated with chymo-
trypsin, polymers exhibited higher resistance to proteolysis. Proteolysis of full-length
NM-HAagg resulted in a sequential decrease in protein size, suggesting that amino-
terminally located cleavage sites were accessible to proteases (Fig. 8C). Increasing
chymotrypsin concentrations resulted in the appearance of a wild-type NM-HAagg band
at approximately 38 kDa, a size approximately similar to that of the NM deletion
mutants. Both NM-HAagg mutants Δ 1-39 and Δ 75-123 sustained proteolysis, gener-
ating approximately similarly sized fragments (Fig. 8C). Very weak low-molecular-
weight bands of NM-HA Δ 75-123 most likely represent proteolytic fragments of
residual soluble protein (compare to Fig. 8C, top panel). These findings argue that the
entire carboxy termini of wild-type and mutant NM, including the HA tag, were
protected (Fig. 8D). The involvement of the M domain in the amyloid core has recently
been reported for some Sup35 prions in S. cerevisiae (60, 61). The fact that we observed
similarly sized fragments for the chymotrypsin-treated NM-HAagg wild type and the
undigested NM-HAagg deletion mutants that still harbor the carboxy-terminal HA tag
strongly suggests that (i) the QNR in full-length NM-HAagg does not engage in the
tightly packed core, (ii) aggregated NM-HA full-length and mutant NM-HA Δ 1-39 likely
share a similar core, and (iii) NM-HAagg Δ 75-123 has a different amyloid core that also
includes the QNR.

Prion Subdomain Activity in Mammalian Cells Molecular and Cellular Biology

August 2018 Volume 38 Issue 15 e00111-18 mcb.asm.org 11

http://mcb.asm.org


FIG 7 Induction of the prion state in bystander cells. (A) Untagged recombinant NM fibrils (10 �M monomer concentration) were
either added directly or mixed with Effectene transfection reagent before addition to full-length and mutant NM-HA cell
populations. Induction efficiency was determined at passage three postexposure. At least 400 cells per treatment were examined.
Bars represent mean values � SEM. (B) Cloning strategy to isolate N2a clones with stable NM aggregates. Cell populations were
exposed to 10 �M untagged recombinant NM fibrils (monomer concentration) with Effectene for 24 h. Cell clones with NM-HA
aggregates were subsequently isolated by limiting dilution cloning. For mutant NM-HA Δ 75-123, subcloning was required to
isolate four subclones with stable aggregate propagation. (C) Confocal microscopy analysis of cell clones isolated by limiting
dilution cloning. For NM-HA wild type and both NM-HA mutants, four clones/subclones were analyzed. NM was detected using
MAb anti-HA (red). Nuclei were stained with Hoechst (blue). Scale bar, 5 �m. (D) SDD-AGE assay of cell lysates from N2a NM-HAagg

clone 7A, Δ 1-39 clone 5D, Δ 75-123 subclone 8H-23, and the corresponding soluble bulk cell lines. NM-HA was detected using
MAb anti-HA. (E) Clones with NM-HA aggregates were cocultured with recipient cell line N2a NM-GFPsol for 42 h. Cells were
analyzed for recipient cells with NM-GFP aggregates (arrows). NM-HA was detected using MAb anti-HA (red). Nuclei were stained
with Hoechst (blue). GFP is shown in green. Note that large NM-GFP aggregates also stained brightly with Hoechst dye. Scale bar,
5 �m. (F) Percentage of recipient cells harboring NM-GFP aggregates after 42 h of coculture with donor clones. Bars represent
mean values of the combined data from the four NM-HA clones/subclones � SEM (n � 4). Cell count, �79,000; ****, P � 0.0001;
ns, not significant. Statistical analysis was done using the Cochran-Mantel-Haenszel test.
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FIG 8 Partial protease resistance of wild-type and mutant NM-HA. (A) Experimental setup to define the
protected aggregate core of wild-type and mutant NM-HA by enzymatic proteolysis. (B) Limited prote-
olysis of in vitro-fibrillized untagged recombinant NM. Fibrils were treated with chymotrypsin at the
indicated protease/total protein ratio for 1 h on ice or were left untreated. Proteins were analyzed by
Western blotting. NM was detected by 4A5 anti-M domain antibody (epitope, aa 229 to 247). (C) Limited
proteolysis of N2a NM-HAsol/agg wild type, Δ 1-39, and Δ 75-123 cells. Lysates of N2a NM-HAagg wild-type
clone 7A, Δ 1-39 clone 5D, Δ 75-123 subclone 8H-23, and the corresponding bulk cell lines expressing
soluble NM-HA were subjected to chymotrypsin at the indicated protease/total protein ratio or left
untreated. Proteins were analyzed by SDS-PAGE and Western blotting. NM was detected by anti-HA
antibody or 4A5 anti-M domain antibody. Differences in exposure times are indicated by separate boxes.
(D) Putative fragments of full-length and mutant NM after limited proteolysis with chymotrypsin.
Arrowheads indicate putative cleavage sites of chymotrypsin. Blue, QNR; green or black, OPR and CTN;
gray, M domain; red, HA tag. Numbers refer to amino acid residues.
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DISCUSSION

Q/N-rich PrLD reminiscent of prion domains of lower eukaryotes are abundant in the
proteomes of higher eukaryotes (17, 18). Experimental evidence is lacking that their
putative PrLDs can turn the protein into a bona fide prion. To understand in more detail
the sequence features in Q/N-rich domains that can drive prion formation in mamma-
lian cells, we made use of the prototype yeast prion domain Sup35 NM that also
amplifies as a prion in the mammalian cytosol (23–25). Strikingly, subdomains that
preferentially drive the sequential steps of prion biogenesis differ between S. cerevisiae
and our murine cell line (Fig. 9A). In S. cerevisiae, the QNR mediates de novo prion
induction (11, 32). This region is crucially required for propagation of all so-far tested
wild-type Sup35 prion variants in S. cerevisiae, and its deletion abrogates prion activity
(11, 32, 37, 47, 48, 62). In N2a cells, the QNR was not required for prion induction.
Instead, de novo NM aggregate induction, exogenous and endogenous NM seed-
induced prion formation, and maintenance were preferentially driven by the last 2.5
repeats of the OPR and the CTN. Depending on the prion variant and/or genetic
background of the host, the minimal region required for stable prion maintenance in
S. cerevisiae varies but consistently includes the amino-terminal OPR (32, 37, 42, 45–48)
proposed to enhance fibril fragmentation by disaggregase Hsp104 (32, 50, 51, 63, 64).
As Hsp104 has no homologue in the mammalian cytosol (65), NM seed multiplication
in N2a cells must proceed by other means. Potentially, the metazoan Hsp70 machinery
in conjunction with Hsp110 (66) or autophagy-related processes contribute to prion
partitioning (67). Alternatively, NM prions might also form through a fibril-catalyzed
secondary nucleation of oligomers, a process reported for A�-42 seed proliferation (68).

The amino-terminal QNR (approximately aa 9 to 39) and the CTN (approximately aa
90 to 120) have been identified recently as short recognition elements that mediate
intermolecular contacts during de novo amyloid assembly and in mature fibrils gener-
ated in vitro (69, 70). Accumulating evidence suggests that Sup35 prion variants are
composed of distinct parallel and in-register superpleated �-structures that differ in the
extent of their �-sheets (58, 60–62). Recombinant full-length NM fibril preparations
contain mixtures of conformers (35, 71) with QNR-containing amyloid cores (58, 60, 72)
that induce prion variants with similar core structures in S. cerevisiae (37, 38). However,
amyloid fibrils generated from a synthetic NM peptide (aa 98 to 118) can induce a
Sup35 prion phenotype when transformed into S. cerevisiae. It is unclear if the induced
prion variant exhibits a tightly packed core extending to the QNR as other variants in
yeast do (73). The emergence of the new wild-type NM prion variant in N2a cells that
lacks the QNR in its tightly packed core could be due to the selective amplification of
few NM conformers with a carboxy-terminal amyloid core already present in the
recombinant fibril mixture. Alternatively, initially induced NM prions with amino-
terminal amyloid cores could interconvert into conformers with greater fitness in
mammalian cells (74, 75). The reason for increased fitness of NM prions with tightly
packed cores lacking the QNR is unknown but could relate to the cellular machinery
involved in fibril assembly and/or maintenance or inhibitory factors. NM prions prop-
agating in N2a cells exhibit reduced infectivity in yeast, potentially because this prion
variant is not adapted to the yeast disaggregating machinery (23). In line with this, a
recent study showed that yeast Hsp104 inefficiently fragments NM prions whose
amyloid core extends to the carboxy-terminal N region (76). So far, however, molecular
mechanisms or cofactors required for prion biogenesis in mammals are ill defined (77).

Bioinformatic predictions of proteins with prion-like behavior have been notoriously
difficult (10, 12–14, 78). Importantly, prion prediction algorithms have been developed
and trained on Q/N-rich yeast prion domains active in S. cerevisiae. While even for lower
eukaryotes developed prion predictors suffer from significant limitations (10), predic-
tions can be even more challenging when it comes to predicting the aggregation
propensity of human PrLD-containing proteins in more complex organisms (20). PLAAC
and PAPA algorithms support the compositional model that predicts that weak inter-
molecular interactions over a long Q/N-rich disordered domain confer prion propensity
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FIG 9 Carboxy-terminal OPR and the CTN are involved in nucleation, template-assisted aggregation, and prion maintenance. (A) Summary
of results. Spontaneous aggregation, template-assisted aggregation, maintenance, and transmission to bystander cells by bulk cell
populations or cell clones stably expressing the respective NM-HA proteins. Coaggregation with endogenous NM-GFP aggregates was
determined following transient overexpression of wild-type and mutant NM-HA in N2a NM-GFPagg cells. Shown is the percentage of cells
showing NM-GFP/NM-HA aggregate colocalization per NM-GFP/NM-HA aggregate-bearing cell. Aggregate maintenance was assessed as a
proxy for seed multiplication: ����, slightly increased mitotic stability compared to NM-HAagg control cells (fold change, ��0.5 and �0);
���, only slightly altered mitotic stability compared to NM-HAagg control (fold change, �0 and �0.5); ��, lower mitotic stability
compared to control (fold change, �0.5 and �1); �, lowest mitotic stability (fold change, �1 and �2). For transmission to bystander cells,
a plus sign indicates that at least 1 in 1,000 recipient cells contained NM-GFPagg. n.d., not done. (B) Amino acid composition of different
subdomains of the N domain. The position of the region within NM and its length are indicated at the top. The abundances of specific
residues within the region are given as percentages. (C) Prediction of disorder (FoldIndex [86]) and prion domains according to PAPA (16),
PLAAC (15), or pWaltz/PrionW (80). Images were designed using PLAAC (http://plaac.wi.mit.edu/). The region identified as the prion
nucleating domain by PrionW is shown at the bottom. This region falls within the CTN (aa 98 to 123). (D) Putative model of NM prion
nucleation and seeding in N2a cells. NM contains two putative nucleation sites. Within the mammalian cytosol, the carboxy-terminal site
comprising aa residues 98 to 123 preferentially drives nucleation and template-assisted seeding (left). The amino-terminal nucleation site
(residues 1 to 38) likely mediates self-recognition and assembly when the carboxy-terminal site is deleted (right).
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(15, 16). pWaltz (webserver PrionW) postulates that a short sequence in the disordered
Q/N-rich context acts as a soft amyloid core that mediates prion assembly (79, 80).
Importantly, the putative amyloid core element identified by pWaltz/PrionW (aa 98 to
118) (Fig. 9B and C) is basically identical to the CTN that, together with the last 2.5
repeats, is involved in spontaneous and fibril-assisted prion induction in our N2a cell
model. The CTN could therefore act as the nucleation site for initial assembly, while the
adjacent repeats stabilize intermolecular contacts within the aggregate (Fig. 9D) (45).
Collectively, our results are in line with the hypothesis that short amyloidogenic
stretches embedded in Q/N-rich disordered domains drive prion assembly.

MATERIALS AND METHODS
Cell culture and reagents. N2a cells were grown in Dulbecco’s modified Eagle’s medium (DMEM)

(Gibco) supplemented with 10% fetal bovine serum (FBS) (PAA). HEK 293T/17 cells were grown in Iscove’s
modified Dulbecco’s medium (Sigma) supplemented with 1% glutamine, 10% FCS, and 3.024 g/ml
NaHCO3. Chemicals were purchased from Sigma or Carl Roth, unless stated otherwise. Monoclonal
antibody (MAb) rat anti-HA clone 3F10 (1:1,000) (Roche Diagnostics), MAb 4A5 rat anti-NM (M domain)
(1:10) (81), MAb mouse anti-Myc epitope (Miltenyi Biotec), MAb antiactin clone C4 (1:5,000) (MP
Biomedicals), MAb mouse anti-HA (1:200) (Santa Cruz), MAb mouse anti-HA–Alexa Fluor 647 (1:500)
(Biozol), or polyclonal antibody (pAb) rabbit anti-Myc tag (Abcam) was used. Horseradish peroxidase-
conjugated antibodies were from Dianova, and fluorescently labeled antibodies were from Life Tech-
nologies. Cytoplasm was stained with HCS CellMask (Life Technologies). Effectene (Qiagen) or Lipo-
fectamine 2000 (Thermo Scientific) was used for transfection.

Generation of NM-HA- and NM-GFP-expressing cell lines. Constructs for N, M, NM Δ 138-250, and
NM Δ 39-123 were ordered from Thermo Scientific or DNA 2.0. All other NM constructs were generated
by PCRs with mutation-specific primers using the previously described NM-HA construct (33) as the
template. Carboxy-terminally Myc- or HA-tagged constructs were cloned into the mammalian expression
vector pJ602 and the lentiviral vector pRRL.sin.PPT.hCMV.Wpre (82). Gateway technology was used to
generate lentiviral plasmids coding for GFP-tagged full-length NM and NM mutants (24). Viral particles
were produced as described previously and used for transduction of N2a cells (24).

Sedimentation assay. Cells were incubated with 10 �m in vitro-fibrilized NM (monomer concen-
tration) for 24 h or left untreated. Cleared cell lysates (10 mM Tris-HCl, pH 7.5, 100 mM NaCl, 10 mM EDTA,
0.5% Triton X-100, 0.5% sodium deoxycholate, protease inhibitors) were centrifuged at 20,000 � g for 20
min at 4°C (the pellet was the insoluble fraction). Supernatant fractions were precipitated with 4�
methanol at �20°C, and protein was pelleted at 2,120 � g for 25 min at 4°C (soluble fraction). The
insoluble fraction and 1/6 of the soluble fraction dissolved in TNE buffer (50 mM Tris-HCl [pH 7.4], 100
mM NaCl, 0.1 mM EDTA) were loaded. Protein was detected using Pierce ECL (Life Technologies) or ECL
Prime (GE Healthcare).

SDD-AGE. The semidenaturing detergent-agarose gel electrophoresis (SDD-AGE) assay was per-
formed as described previously (83). Cells were lysed (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% NP-40,
complete protease inhibitor) for 30 min on ice. Cleared supernatant was mixed with 4� sample buffer
(2� TAE, 20% glycerol, 8% SDS, bromphenol blue), incubated at room temperature for 5 min, and
separated on a 1.5% agarose gel supplemented with 0.1% SDS. Proteins were transferred onto a
nitrocellulose membrane using capillary transfer.

Immunofluorescence staining and confocal microscopy analysis of N2a cells. Cells were fixed
with 4% paraformaldehyde and permeabilized for 10 min (0.5% Triton X-100). Antibodies were added in
2% blocking solution overnight at 4°C. Nuclei were visualized with Hoechst 33342 (1:10,000). Confocal
microscopy was performed using an LSM 700 or LSM 710 (Zeiss, Jena, Germany). Cells on 96-well plates
were stained with HCS CellMask blue stain (1:5,000), imaged with an automatic Cell Voyager 6000
confocal microscope (Yokogawa), and analyzed with Cell Profiler cell image analysis software. Time-lapse
images of N2a NM-GFP cells were taken two passages after fibril exposure over a period of 15 h with an
ApoTome (Zeiss) at 37°C and 5% CO2.

Aggregate induction by recombinant NM fibrils. Untagged recombinant NM protein was prepared
as described previously (24). To generate fibrils, NM was rotated head over tail for 24 h at 4°C at a
concentration of 10 �M to 100 �M (monomer concentration). NM fibrils were sonicated for 3 min and
added to cells (end concentration, 10 �M; monomer concentration). After 24 h the medium was
exchanged.

Generation of N2a full-length NM-HAagg and mutant cell clones and coculture. To enhance the
fibril induction rate, untagged recombinant fibrils were mixed with the appropriate amount of Effectene
transfection reagents (Qiagen) used for transfections in 24-well plates prior to addition to N2a cells. Cells
were cultured for three passages, and the percentage of aggregate-bearing cells was determined.
Aggregate-bearing cell clones were isolated. For NM-HAagg Δ 75-123, a second cloning step was
necessary, as the first round yielded clones with a lack of mitotic stability. N2a NM-HAagg donor clones
were cocultured with N2a NM-GFPsol cells (ratio, 1.5:1). After 42 h, cells were fixed and stained as
described above. Confocal images were taken with an LSM700 (Zeiss) or Cell Voyager 6000.

EM analysis of fibril morphology. Ten �M untagged recombinant NM fibrils (monomer concen-
tration) was transferred to glow-discharged Formvar/carbon-coated electron microscopy (EM) grids
(Plano GmbH). Samples were contrasted in 2% uranyl acetate and examined using a JEM-2200FS
transmission electron microscope (JEOL) at 200 kV.
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Image data analysis. Confocal images were obtained using a Cell Voyager CV6000 with �40
magnification. For NM aggregate colocalization, the LSM 700 with �63 magnification was used. Images
were analyzed with Cell Profiler. Nuclei and the associated cytoplasm were identified based on mor-
phology parameters and intensities of Hoechst 33342 and HCS CellMask. NM-expressing cells were
identified using intensity levels of immunofluorescently labeled NM. Aggregates were classified using the
Ilastik segmentation tool kit. The numbers of wild-type or mutant NM-expressing cells and aggregate-
bearing cells were determined.

Statistical analysis. Individual experiments were performed at least three times, and for statistically
analyzed data at least 550 cells per cell population were imaged. All data displayed in bar graphs are
depicted as the means. Error bars represent the standard errors of means (SEM) or the upper limit of the
confidence interval. P values of �0.05 were considered significant.
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