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Type 2 diabetes mellitus (T2D) is a disorder of glucose metabolism. It is a complex process involving the regulation of insulin
secretion, insulin sensitivity, gluconeogenesis, and glucose uptake at the cellular level. Diabetic peripheral neuropathy (DPN) is
one of the debilitating complications that is present in approximately 50% of diabetic patients. It is the primary cause of
diabetes-related hospital admissions and nontraumatic foot amputations. The pathogenesis of diabetic neuropathy is a complex
process that involves hyperglycemia-induced oxidative stress and altered polyol metabolism that changes the nerve
microvasculature, altered growth factor support, and deregulated lipid metabolism. Recent literature has reported that there are
several heterogeneous groups of susceptible genetic loci which clearly contribute to the development of DPN. Several studies
have reported that some patients with prediabetes develop neuropathic complications, whereas others demonstrated little
evidence of neuropathy even after long-standing diabetes. There is emerging evidence that genetic factors may contribute to the
development of DPN. This paper aims to provide an up-to-date review of the susceptible and prognostic genetic factors
associated with DPN. An extensive survey of the scientific literature published in PubMed using the search terms “Diabetic
peripheral neuropathy/genetics” and “genome-wide association study” was carried out, and the most recent and relevant
literature were included in this review.

1. Introduction

Diabetes mellitus is nowadays one of the foremost non-
communicable diseases affecting more than 387 million
people worldwide [1]. Type 2 diabetes mellitus (T2D) is
a disorder of glucose metabolism. It is a complex process
involving the regulation of insulin secretion, insulin sensi-
tivity, gluconeogenesis, and glucose uptake at the cellular
level. Dysregulation of one or more of these processes
due to environmental or genetic factors can lead to altered
glucose metabolism causing diabetes mellitus [2, 3]. More
than 90% of cases of T2D show higher incidence of insu-
lin resistance. This phenomenon is acquired due to seden-
tary lifestyle in combination with multifactorial genetic
susceptibility. T2D is associated with increased morbidity
and mortality due to its debilitating and progressive nature

and associated complications. The condition usually leads
to multiorgan failure due to macrovascular and microvas-
cular involvement (Figure 1) [2–5].

Uncontrolled T2D can complicate pregnancy outcomes.
Different kinds of birth defects are more commonly seen in
babies born to women with diabetes [3]. Twin studies can
estimate the multifactorial genetic involvement in T2D more
precisely and have reported high degree of heritability of
diabetes-related conditions such as disorders of first phase
insulin response and basal and insulin-stimulated glucose
uptake [6]. There are different methods for mapping the
genetic susceptibility loci in the pathogenesis of T2D. Candi-
date gene studies and genome-wide studies are commonly
used to identify the association of susceptible genetic loci of
T2D. The latter includes both genome-wide linkage studies
(GWL) and genome-wide association studies (GWAS) [6].
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With the advent of recent molecular genetic techniques and
rapid screening methods, the method of investigation has
shifted to the use of molecular genetic markers for under-
standing the genetic aetiology of T2D and its complications
[6, 7]. The common susceptible genetic variants are known
to have a prominent effect on the risk of T2D across the
world in multiple ethnic groups [8, 9]. Some variants appear
to exert more pronounced genetic effects in specific ethnic
groups. Most loci associated with T2D map to regulatory or
intronic regions of the genome [9].

Diabetic peripheral neuropathy (DPN) is one of the
debilitating microvascular complications of diabetes that
is present in approximately 50% of patients. It is the pri-
mary cause of diabetes-related hospital admissions and
nontraumatic foot amputations [4, 5, 10]. The molecular

mechanisms involved in the development of DPN is a com-
plex process that includes activation of the polyol pathway,
exaggerated oxidative stress, overactivity of protein kinase
C and increased formation of advanced glycation end-
products in the presence of hyperglycemia. In addition, there
is increasing evidence that genetic factors could also contrib-
ute to the development of DPN [10, 11]. The consequences of
diabetic neuropathy include neurogenic pain, numbness, lack
of coordination of voluntary movements, and a susceptibility
to foot ulceration that leads to infections and toe or foot
amputations. The rate of toe or foot amputations is 15 times
greater in diabetic patients compared with individuals with-
out diabetes. To date, approximately 80 T2D susceptibility
genetic loci have been reported in different ethnic groups
worldwide [12–14]. Majority of studies on the prevalence
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Figure 1: Mechanisms of diabetic neuropathy. Aetiological factors of diabetes initiate a cascade of events leading to DNA damage,
endoplasmic reticulum stress, mitochondrial complex dysfunction, apoptosis, and loss of neurotrophic signaling. Ultimate activation of
macrophages will cause cell damage in neurons, glial cells, and vascular endothelial cells, all of which can result in nerve dysfunction and
neuropathy. AGE= advanced glycation end-products; LDL= low-density lipoprotein; FFA= free fatty acids; ER = endoplasmic reticulum;
PI3K= phosphatidylinositol-3-kinase; LOX1 = oxidized LDL receptor 1; RAGE= receptor for advanced glycation end-products;
TLR4 =Toll-like receptor 4.
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and associated aetiological factors of DPN have been
conducted in Western countries. There is very limited data
currently available for South Asian populations [15].

The objective of this paper is to provide an up-to-date
review of the published scientific literature on the susceptible
and prognostic genetic variants associated with DPN.

2. Methodology

This is a comprehensive review of the published literature on
the susceptible and prognostic genetic variants associated
with DPN. These variants were identified by an extensive
survey of the scientific literature using the criteria described
below. The most recent and relevant papers published in
the last 15 years from January 2002 to July 2017 were
searched in the PubMed database using the search terms
“Diabetic peripheral neuropathy/genetics” and “genome-
wide association study.” Altogether, sixty studies describing
single nucleotide variants (SNVs) in genes associated with
the susceptibility and prognosis of DPN which were pub-
lished as full text articles in English during the defined period
of study were included in this review. Epigenetic modifica-
tions which regulate gene expression mainly at the tissue/
cellular level were excluded as it was outside the scope of
this review.

3. Diabetic Peripheral Neuropathy

According to the Toronto Consensus Panel on Diabetic
Neuropathy, DPN is defined as a symmetrical, length-
dependent sensorimotor polyneuropathy that develops on a
background of longstanding hyperglycemia, associated
derangements, and cardiovascular risk factors [16]. The
mechanisms underlying the pathogenesis of DPN are differ-
ent between type 1 and type 2 diabetes mellitus [17]. Recent
literature has reported that there are different groups of
susceptible genetic loci which are clearly involved in the
development of DPN. Different studies reported that some
patients with prediabetes develop neuropathic complica-
tions, whereas others reported little evidence of neuropa-
thy even after long-standing diabetes. This observation
confirms the involvement of genetic aetiological factors
associated with the development of DPN [18]. The data
from different studies suggest that T2D and its complica-
tions may have shared genetic risk factors [12, 18].

4. Genetic Aetiology and Pathogenesis of DPN

The pathogenesis of DPN is a complex process and is
involved with hyperglycemia-induced oxidative stress and
altered polyol metabolism that changes the nerve microvas-
culature, growth factor support, and lipid metabolism [4].
It is important to identify these factors alone or in combina-
tion to arrange effective DPN treatment, as better under-
standing of the mechanisms underlying the onset and
progression of DPN is of prime importance in the process
of management [19]. Different groups of cell types in diabetic
complication-prone tissues are targets of damage due to
uncontrolled hyperglycemia. Schwann cells are the prime

target of hyperglycemia which results in cell damage leading
to altered axon integrity and defective growth factor signaling
[20, 21]. Defective inflammatory pathways including
advanced glycation end-product/receptor (AGE/RAGE)
signaling in axons and Schwann cells have been reported in
experimental animals with diabetic neuropathy which
contributed to nerve damage [22].

Lu et al. in China studied SNVs from previously identi-
fied ten genetic loci and analyzed the association of these loci
with peripheral nerve function in patients with T2D. They
found that rs5219 of KCNJ11 gene polymorphism (E23K,
G>A) was associated with peripheral nerve function. The
results obtained from nerve conduction studies (NCS)
showed that the allele “A” had a protective effect on periph-
eral nerve function. They also reported that SNVs
rs7756992 of CDKAL1 and rs7903146 of TCF7L2 were
associated with DPN in the Chinese T2D population [23].

Yigit et al. identified 230 unrelated patients with DPN at
the outpatient clinics of the Physical Therapy and Rehabilita-
tion Department of Gaziosmanpasa University, Tokat, in
Turkey. They investigated the distributions of the genotype
and allele frequencies of the MTHFR gene C677T variant
among patients with DPN and a matched control group. A
statistically significant difference of MTHFR gene C677T
polymorphism between the patients with DPN and the con-
trol group was identified [24].

Decreased levels of peroxisome proliferator-activated
receptor alpha (PPARA) in chromosome 22 and lipid
metabolism-related gene apolipoprotein E (APOE) in chro-
mosome 19 have been identified confirming the findings that
altered lipid metabolism may play a role in the progression of
DPN [25]. Monastiriotis et al. reviewed the literature to iden-
tify the association between APOE polymorphism and DPN
and found that the ε4 allele of the apolipoprotein E gene is
significantly associated with the pathogenesis of DPN [25].

The alpha2B adrenergic receptor encoded by ADRA2B
gene located on chromosome 2 is associated with an array
of functions. A polymorphism (12Glu9) resulting in the
insertion/deletion of three glutamic acid residues in the third
intracellular loop has been described frequently in the litera-
ture [26]. In the nervous system, this polymorphism has been
reported to be linked with autonomic nervous dysfunction.
This is particularly increased with sympathetic nervous
system activity, and Papanas et al. found a significant associ-
ation in this indel allele distribution of alpha2B adrenoceptor
gene among T2D patients with DPN in comparison with
matched T2D patients without neuropathy [26].

5. Network of Genes Associated with Common
Variants of DPN

Hur et al. examined two groups of DPN patients. A network
of transcription factors jun (JUN), leptin (LEP), serpin
peptidase inhibitor E type 1 (SERPINE1), apolipoprotein E
(APOE), and peroxisome proliferator-activated receptor
gamma (PPARG) was examined to identify their potential
relationship (Figure 2). Further subsets of genes related to
defense response, inflammatory response, regulation of lipid
metabolic processes, and PPAR signaling pathways were then
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analyzed to identify the association of gene expression and
development of DPN (Figure 2) [27]. They demonstrated
that increased glucose metabolism due to hyperglycemia
resulted in increased oxidative stress, mitochondrial dysfunc-
tion, and cell death in both in vitro and in vivo models of
diabetic neuropathy [27].

6. Variants Associated with Defense Response
and Inflammatory Response in the
Pathogenesis of DPN

Hur et al. reported that the molecules which are involved
with the process of inflammation such as chemotactic agents
and cytokines are involved with the development and pro-
gression of DPN as well as diabetic nephropathy [27, 28].
Kakoki et al. identified that the bradykinin receptor B2
(BDKRB2) is of particular interest in disease progression of
DPN. BDKRB2 gene was found to be involved in progressive
glomerulosclerosis and also susceptibility to DPN [29].

Membrane-associated adenosine A3 receptor (ADORA3)
is also involved in the pathogenesis of DPN [30]. Variants of
BDKRB2 and ADORA3 were found to be involved in
enhanced inflammation and dysregulated defense responses,
thus contributing to more substantial nerve damage in
patients with progressive DPN [27, 30]. Gene variants of
TXN, CDKN2C, GSTM3, PTH1R, CKB, AOC1, AOC3,
TIMP1, and PTN have been identified as other additional
genes associated with defense response and inflammatory
response in the pathogenesis of DPN (Figure 2) [27].

7. Variants Associated with Glucose Metabolic
Processes and PPAR Signaling Pathway in the
Pathogenesis of DPN

According to Hur et al., PPARG, which encodes a nuclear
receptor for glitazone, plays a key role in regulating glucose
and lipid metabolism [27, 31]. Agonists of PPARG are
effective in treatment of DPN and nephropathy in experi-
mental animal models [27, 32]. Another key gene is APOE,
encoding an apolipoprotein, which regulates the normal
catabolism of triglycerides and cholesterol. A polymorphism
of this gene is linked to the progression of DPN [33]. Gene
variants of ADIPOQ, IRS2, ACSL1, PLIN, CD36, PNPLA3,
and SCD were identified as other additional gene variants
associated with glucose metabolic processes and PPAR sig-
naling pathway in the pathogenesis of DPN (Figure 2) [27].

8. Genetic Variants Involved in Different
Phenotypes of DPN

According to Cheng et al., in an experiment involving both
human and animal models, sensory neurodegeneration in
the chronic stage of diabetes was found to be associated with
early damage to the distal axons of both upper and lower
limb neurons showing a pattern that accounts for the distri-
bution of “glove-and-stocking” loss of sensation characteris-
tically seen in DPN. These changes accompany widespread
abnormalities involving electrophysiology and alterations in
gene expression that indicate a degenerative phenotype.

ADIPOQ, IRS2, ACSL1,
PLIN, CD36, PNPLA3,
SCD

Cell death
Inflammatory response

BDKRB2, ADORA3,
SOX9, TXN, CDKN2C,
GSTM3, PTH1R, CKB,

AOC1, AOC3, TIMP1,
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Cellular homeostasis
Inflammatory response

Glucose & lipid
metabolism

JUN

PPARGLEP SERPINE1
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Figure 2: Five main genes (in blue circles) associated with diabetic peripheral neuropathy: JUN, PPARG, LEP, SERPINE1, andAPOE and their
relationship with defense response, inflammatory response, glucose, and lipid metabolism pathways (in green-coloured cages) are represented
in the figure. Additional genes involved with DPN in relation to abovementioned metabolic pathways are indicated in purple-coloured cages.
ADIPOQ= adiponectin, C1Q and collagen domain containing; IRS2 = insulin receptor substrate 2; ACSL1 = acyl-CoA synthetase long chain
family member 1; PLIN= lipid storage droplet 2-like; CD36 =CD36 molecule; PNPLA3= patatin-like phospholipase domain containing
3; SCD= stearoyl-CoA desaturase; BDKRB2= bradykinin receptor B2; ADORA3= adenosine A3 receptor; SOX9= sex determining
region Y-box 9; TXN= thioredoxin; CDKN2C= cyclin-dependent kinase inhibitor 2C; GSTM3= glutathione S-transferase mu 3;
PTH1R= parathyroid hormone 1 receptor; CKB= creatine kinase B; AOC1= amine oxidase, copper containing 1; AOC3= amine
oxidase, copper containing 3; TIMP1 =TIMP metallopeptidase inhibitor 1; PTN=pleiotrophin.

4 International Journal of Endocrinology



However, existing knowledge on the development of DPN
which includes oxidative and nitrergic stress, polyol accumu-
lation, microangiopathy, inappropriate AGE-RAGE signal-
ing, and/or mitochondrial dysfunction account for diverse
mRNA changes that alter miRNA expression patterns result-
ing in diverse DPN phenotypes [34].

9. Genetic Variants Involved in Gender
Dimorphism of DPN

Significant gender dimorphisms in the responsiveness of
patients to antidiabetic drugs have been reported in the
literature [35–37]. These observations highlighted the impor-
tance of understanding the gender-specific differences in
manifestation of diabetes mellitus and its complications such
as DPN.

O’Brien et al. reported the first instance of a female
T2D mouse model presenting with a neuropathic pheno-
type including decreased intraepidermal nerve fiber den-
sity, impaired motor and sensory nerve conduction
velocities, and thermal hypoalgesia [38]. A GWAS involv-
ing 961 diabetic neuropathic pain cases and 3260 diabetic
controls in the Genetics of Diabetes Audit and Research
Tayside by Meng et al. found that a cluster in the
1p35.1 region, the zinc finger and SCAN domain contain-
ing 20 (ZSCAN20) with a lowest p value of a variant at
rs71647933 in females, and a cluster in the 8p23.1 region
next to HMGB1P46 with a lowest p value of a variant at
rs6986153 in males were significantly associated with
DPN. This GWAS on diabetic neuropathic pain provides
evidence for the sex-specific involvement of 1p35.1 region
(ZSCAN20) and 8p23.1 region (HMGB1P46) [39].

10. Other Gene Loci Involved in the
Pathogenesis and Prognosis of DPN

A fibrinolysis-regulating gene, SERPINE1, which encodes for
plasminogen activator inhibitor 1 (PAI-1) has been identified
in association with higher incidences of diabetic complica-
tions such as diabetic neuropathy and nephropathy in knock-
out PAI-1mice [40, 41]. The cell cycle controlling JUN is also
involved in the progression of DPN and is associated with
inflammation and insulin resistance which is activated in
multiple tissues including the peripheral sensory nerves of
patients with types 1 and 2 diabetes [42].

Three other subsets of important gene variants were
documented in literature associated with “cell projection
and axonogenesis” involving nerve growth factor receptor
(NGFR) and “cellular homeostasis and inflammatory
response” involving thioredoxin, and “cytoskeletal protein
binding” with stathmin 1 (STMN1) genes. NGFR exhibits
protection against nerve cell and axonal damage, and the
expression of nerve growth factor receptor protein in
plasma correlates with DPN progression in diabetic rat
models [43]. Thioredoxin, which regulates cellular oxida-
tive stress with its antioxidant activity, also plays an
important role in associated diabetes. Thioredoxin’s anti-
oxidant activity is significantly inhibited by hyperglycemic
states in the blood. It complicates diabetes by playing an

important role by deregulating vascular oxidative stress
and inflammation in diabetic patients [44].

A study in North Catalonia, Spain, by Jurado et al. iden-
tified the protective effect of a single angiotensin-converting
enzyme (ACE) gene polymorphism on the development of
DPN in T2D patients. Despite ACE gene variants which are
associated with diabetic renal disease and/or diabetic reti-
nopathy, the heterozygous genotype stands as a protective
factor against the development of DPN [45]. Heterozygous
(D/I) ACE gene polymorphism reported a statistically signif-
icantly reduced risk of developing DPN whereas homozy-
gous (D/D) ACE gene polymorphism reported an increased
risk [45].

Mitochondrial transcription factor A (TFAM) is located
in mitochondria, and its level regulates mitochondrial DNA
(mtDNA) copy number. Chandrasekaran et al. showed that
TFAM over expression prevented a decrease in mtDNA copy
number in diabetic dorsal root ganglia (DRG) neurons,
helped prevent DPN, and protected DRG neurons from oxi-
dative stress in experimental mouse models [46].

Aldo-keto reductase family 1 member B (AKR1B1) in
chromosome 7 encodes a member of the aldo-keto reduc-
tase superfamily, which consists of more than 40 known
enzymes and proteins. This catalyzes the reduction of a
number of aldehydes and is thereby implicated in the
development of diabetic complications by catalyzing the
reduction of glucose to sorbitol. Saraswathy et al. identified
significant association of AKR1B1 gene mutations in pain-
ful diabetic neuropathy [47].

There is increasing evidence that microRNAs (miRNAs)
act as regulators of gene expression in multiple biological
processes and associated complications [48]. Ciccacci et al.
looked for an association between variants in miRNA genes
and DPN. The results of this study identified a role for
MIR146a and MIR128a SNVs in the susceptibility to DPN
and were shown to have a significant association [49]. The
rs2910164 (G>C) in MIR146a is associated with lower risk,
and rs11888095 (C>T) inMIR128a is associated with higher
risk of susceptibility to DPN [49].

Nitric oxide (NO) production and local release in the
tissues significantly contributed to endothelial dysfunction.
The process takes place by the modulation of the nitric
oxide synthase (NOS) enzymes responsible for NO synthe-
sis. Endothelium-derived NO plays a key role in the regu-
lation of vascular tone and has vasoprotective effects by
removing superoxide radicals and suppressing platelet
aggregation, leukocyte adhesion, and smooth muscle cell
proliferation. However, dysfunctional endothelial nitric-
oxide synthase (eNOS) might play a critical role in the
pathogenic pathway leading to diabetic vascular complica-
tions including DNP. Therefore, eNOS is considered as a
candidate for the progression of DPN [50, 51].

In the early stages of DPN, abnormalities in the vasa ner-
vorum and loss of nerve fibers can be seen in association with
hyperglycemia. Damage to the nervous tissue results in
increased intravascular endothelial growth factor (VEGF)
plasma levels in diabetic animal models [52]. The ischemia
and hypoxia in the nerves of patients with T2D due to micro-
angiopathy of vasa nervorum have always been observed and
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may be a key pathogenic mechanism of DPN [53]. An asso-
ciation study by Ghisleni et al. showed a clear association
between diabetic polyneuropathy and the C936T polymor-
phism of the VEGF gene and the C242T polymorphism of
the p22phox allele of CYBA gene [52].

Functional GRP78 variants in heat shock protein family
A (Hsp70) member 5 (HSPA5) genes are likely to have some
influence on the gene expression, which results in the dys-
function of peripheral nerves and neuropathy. According to
Jia et al., functional GRP78 rs391957 variants, which are
located in the promoter region, 57168556T>C, are known
to cause abnormal promoter activities significantly associated
with DPN [54].

Adiponectin gene (ADPN) serves as a protective factor
in preventing diabetes progression by suppressing inflam-
matory responses and increasing insulin sensitivity [55].
SNVs of ADPN may influence T2DM, but ADPN variants
SNV45 (45T/G, rs2241766) and SNV276 (276G/T,
rs1501299) are the two most prominent variants influenc-
ing the disease progression, especially pathogenesis of
DPN [56, 57]. A case-control study conducted by Ji
et al. to evaluate the association between ADPN gene var-
iants and pathogenesis of DPN in T2D patients indicated
an increased risk of DPN in T2D patients, by downregu-
lating ADPN expression which resulted in significantly
reduced circulating ADPN plasma levels. Furthermore,
they reported that the polymorphism frequencies of GG
and GT haplotypes in the DPN group were significantly
lower than those in the matched control group, while the
frequency of the TG haplotype in the DPN group was
markedly higher than that in the control group, showing
a clear association between ADPN gene variants and the
risk of DPN [58].

11. Genetic Variants of DPN in Different
Ethnic Populations

Up to now, only few ethnic groups have described
population-specific genetic variants associated with DPN.
In a study conducted by Lu et al., 10 SNVs associated with
pathogenesis of T2DM were studied. They reported that
rs5219 on KCNJ11 (E23K) gene is significantly associated
with peripheral nerve function in a Chinese population with
T2D [23]. Jia et al. studied the significance of functional
GRP78 gene variants in predicting the onset of type 2 DPN
in the Chinese population. They suggested that the GRP78
rs391957 promoter polymorphism is a potential risk factor
for type 2 DPN in this population [54]. Prasad et al. studied
forty-two patients with T2D from the Institute of Diabetol-
ogy, Madras Medical College, and Rajiv Gandhi Government
General Hospital in Chennai, Tamil Nadu, India. In this
study, the extent of DNA damage in patients suffering from
T2D, both with and without neuropathy, was analyzed. No
genetic variants were evaluated in this study. The data dem-
onstrated that the frequency of DNA damage was signifi-
cantly higher in the T2D patients with DPN than in the
controls [59]. Stoian et al. conducted a study in the Univer-
sity Center of Tırgu Mures, Romania. In their case-control
study, which included a total of 182 participants, including

84 unrelated patients with T2D and an age-matched control
group consisting of 98 unrelated individuals without T2D,
they evaluated the influence of GSTM1, GSTT1, and GSTP1
variants on T2D and DPN risk. Their data suggested that
GSTM1, GSTT1, and GSTP1 gene variants were not associ-
ated with individual susceptibility to developing DPN in
patients with T2D in the Romanian population [60].

An association study of C936T polymorphism of the
VEGF gene and the C242T polymorphism of the p22phox
gene with T2D and DPN in a population of Caucasian eth-
nicity was studied by Ghisleni et al. According to their
results, the C936T polymorphism of the VEGF gene and
C242T polymorphism of the p22phox gene did not correlate
with the risk of developing diabetes mellitus or neuropathic
signs and symptoms. When considering the results of other
studies, a substantial heterogeneity in the findings is
observed, which demonstrates a complex link between the
risk factors of DM and genetic predisposition to DPN [52].
Common susceptible and prognostic genetic factors associ-
ated with DPN in T2D are diverse in different pathophysio-
logical pathways, and it is difficult to separate each genetic
variant from the other as most of the variants are interrelated
with each other (Table 1).

12. Conclusions

Although targeted gene sequencing is still a method of choice
to identify rare functional mutations in monogenic disorders,
exome sequencing becomes an attractive and cost-effective
alternative when other disease-mapping strategies provide
few or ambiguous results. This review has attempted to iden-
tify the common susceptibility and prognostic genetic factors
associated with DPN in T2D. Knowledge about these factors
is vital as DPN is one of the debilitating complications asso-
ciated with T2D and identification of the common genetic
variants would be valuable for the future development of
gene panels targeted for the early detection and prognosis
of DPN. Together with these gene panels, further gene
expression studies will need to be conducted to modulate
effective targeted therapies for DPN in these patients.
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