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The relationship between urinary system tumors and urothelial microorganisms remains unexplored. This study is aimed at
exploring the relationship between urinary flora and urinary tumors and identifying potential biomarkers for urinary tumors
and new targets for prevention. We included four healthy adults (control group) and six patients diagnosed with urinary tract
tumors (tumor group). In both groups, 10 and 50ml clean middle urine samples were reserved. The 10ml samples were
analyzed (including pH, specific gravity, and leukocytes) using an automatic urine analyzer, and the 50ml samples were
analyzed by DNA extraction, 16S rRNA gene amplification, and high-throughput sequencing. The correlation between routine
urine analysis and sequencing results was also analyzed. Testing using the DESeq2 method showed that, at the order level,
there were significant differences in the abundance of Caulobacterales between the urinary flora of the two groups (P < 0:05);
family level, Bacteroidaceae, Actinomycetaceae, and Tsukamurellaceae (P < 0:05); genus level, Finegoldia, Varibaculum,
Actinobaculum, Propionimicrobium, Bacteroides, Brevundimonas, and Tsukamurella (P < 0:05). LEfSe analysis found specific
bacteria at the genus level in the urinary flora of the tumor group, namely, Finegoldia (genus Digestiflora) (P < 0:001) and
Varibaculum (P < 0:001). Further correlation analysis showed that both species were positively correlated with the urine pH
(P < 0:05). PICRUSt analysis showed significant differences in the two functional pathways of cell transformation and
metabolism (P < 0:05). Combined with the results of bioinformatics analysis, some differential bacteria may be new biomarkers
for urologic tumors, and there may be a correlation between urine pH and tumor occurrence. However, large-scale prospective
studies and in vitro and in vivo experiments are required to further test and verify these findings.

1. Introduction

Malignant urinary tract tumors, including renal, ureteral,
bladder, and prostate cancers, have high morbidity and mor-
tality. The main causes of death are tumor invasion and
metastasis to distant organs. Because the formation and
development of tumors is a complex process, they exist in
a vast and complex network and involve many factors. It is
difficult to develop an effective method for completely erad-
icating malignant tumors. Epidemiological studies have
shown that the incidence of urinary tract tumors is on the
rise globally, which not only seriously affects the quality of
life of patients but also threatens their lives. Early detection
can significantly improve a patient’s quality of life. Recent
studies have shown that the occurrence and development
of tumors are closely related to the tumor microenvironment

(TME) [1]. The TME refers to the complex microecological
internal environment in which tumors occur and develop
and is another major feature of tumors in addition to the
six major features. The TME is mainly composed of tumor
cells, the extracellular matrix, lymphocytes, vascular-related
endothelial cells, immune cells, fibroblasts, extracellular fac-
tors, and chemokines. These components are interrelated,
affect each other, and play a role in the occurrence and
development of tumors. The main features of the TME are
related to chronic inflammation, environmental pH, immu-
nosuppression, and oxygen supply. In recent years, some
researchers have pointed out that gene mutations caused
by changes in the microenvironment in which cells live are
an important cause of tumorigenesis [2]. Urine is directly
related to the urinary system: it is produced by the kidneys
and excreted through the ureters, bladder, and urethra.
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Balance of the urine microecology is crucial for the health of
the urinary system. Changes in the urine microenvironment
and pH may be closely related to the formation of tract
tumors. With the application of high-throughput sequenc-
ing technologies, such as 16S rRNA gene sequencing [3],
an increasing amount of evidence has proved the existence
of normal human urinary tract microflora. The urinary tract

microbiota forms the urinary tract microecology with the
host and the environment. The microecological imbalance
of urinary tract flora is closely related to the occurrence
and development of diseases, but there is still a lack of corre-
lation research on the characteristics of urinary flora. There-
fore, it was further proposed that the association between
urinary system tumors and urinary tract microbes could be
studied by analyzing the urine microflora. This study is
aimed at further exploring the possible relationship between
urinary flora and urinary tract tumors by comparing the
characteristics of urinary flora between patients with urinary
tract tumors and healthy individuals. Furthermore, the study
sought to identify potential biomarkers and new targets for
the prevention of urinary tumors.

2. Materials and Methods

2.1. Object of Study

2.1.1. General Information. Ten cases were included in this
study: the tumor group (average age, 66:00 ± 4:98 years), 6
cases of urological tumors that were treated in our hospital
in 2020, and the health check-up (control) group (average
age, 59:75 ± 3:30 years), 4 cases that came from the medical
examination center. There were eight men and two women,
and there was no significant difference in age and sex
between the two groups. The study was approved by the
ethics committee, and the patients signed informed consent
forms.

2.1.2. Entry Criteria. The relevant diagnostic criteria in
Campbell’s Urology (11th edition) were used in the tumor
group, and all cases had a pathological diagnosis. The con-
trol group had no history of underlying diseases, and the
patients were not currently taking any drugs.

2.1.3. Exclusion Criteria

(1) History of urinary tract infection in the past 1 month

(2) History of antibiotic use in the past 1 month

(3) History of transurethral procedures (catheterization,
cystoscopy, cystostomy, and urodynamic examina-
tion) in the past 1 week

2.1.4. Elimination Criteria

(1) Specimen DNA quality inspection Grades C and D

(2) Specimens suspected of contamination during
sequencing

(3) Samples with too few sequences obtained after
sequencing

2.2. Research Methods

2.2.1. Sample Collection. Samples (10ml and 50ml) of clean
midsection urine were collected from both groups. The
details are as follows:

Table 1: Comparison of general characteristics between the two
groups.

Normal group (n = 4
)

Tumor group (n = 6
)

Sex

Male 3 (30%) 5 (50%)

Female 1 (10%) 1 (10%)

Age 59:75 ± 3:30 66:00 ± 4:98
BMI (kg/m2) 28:84 ± 1:29 20:54 ± 3:54
Smoking status

Smoker 1 (25%) 0 (0%)

Ex-smoker 1 (25%) 3 (50%)

Nonsmoker 2 (50%) 3 (50%)

Drinking status

Drinker 0 (0%) 0 (0%)

Abstainers 0 (0%) 0 (0%)

Nondrinker 4 (100%) 6 (100%)

Dietary status

High sodium diet 1 (25%) 2 (33.3%)

High fat diet 2 (50%) 2 (33.3%)

High sugar diet 1 (25%) 2 (33.3%)

Concomitant
disease

Hyperlipidemia 0 (0%) 2 (33.3%)

Diabetes 0 (0%) 2 (33.3%)

Hypertension 0 (0%) 2 (33.3%)

24493347
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Figure 1: Number of common or unique species OTUs between
the two groups. Note: the Venn diagram shows the number of
common or unique OTUs between different groups, and each
ellipse represents a group. In the figure, pink and yellow represent
the normal and tumor groups, respectively. The number of OTUs
contained in all samples is represented by the number of
overlapping areas between the circles, and the number of unique
OTUs in the sample is represented by the number of
nonoverlapping areas.
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(1) 10ml clean midsection urine sample: an automatic
urine analyzer was used to conduct routine urinaly-
sis on the 10ml urine sample, and the analysis
included pH, specific gravity, protein, sugar, red
blood cells, and white blood cells

(2) 50ml clean midsection urine sample: after collection,
the 50ml urine sample was immediately stored in a
refrigerator at 4°C and centrifuged (14000 rpm for
20min) within 2 hours. The supernatant was dis-
carded, and the precipitate was stored at -80°C for
DNA extraction

2.2.2. DNA Extraction and PCR Amplification. Microbial
DNA was extracted from the samples using the E.Z.N.A.®
Soil DNA Kit (Omega Bio-tek, Norcross, GA, USA) accord-
ing to the manufacturer’s protocol. The final DNA concen-
tration and purification were determined using a
NanoDrop 2000 UV-vis spectrophotometer (Thermo Scien-
tific, Wilmington, USA), and the DNA quality was checked
by 1% agarose gel electrophoresis. The V3-V4 hypervariable
regions of the bacterial 16S rRNA gene were amplified using
the primers 338F (5′-ACTCCTACGGGAGGCAGCAG-3′)
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Figure 2: Histogram of the relative microbial distribution in the two groups at the phylum level. Note: the figure is a histogram of the
relative distribution of the two groups at the phylum level (the top 20 species in relative abundance). The abscissa is the group name, the
ordinate (sequence number percent) represents the ratio of the number of sequences annotated to this level to the total annotated data,
and the top-down color order of the histogram corresponds to the color order of the legend on the right. The most dominant 20 species
are shown in the legend, and the remaining species with lower relative abundances are classified and shown in the figure as “other.”

Table 2: Comparison of the abundance of microbial urinary tract
flora in the two groups of samples at the phylum level.

Phylum Normal group Tumor group P value

Firmicutes 59.78% 47.95% P > 0:05
Proteobacteria 28.54% 38.92% P > 0:05
Actinobacteria 2.36% 10.71% P > 0:05
Bacteroidetes 7.39% 2.17% P > 0:05
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and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) using a
PCR thermocycler (GeneAmp 9700, ABI, USA). The PCR
reactions were conducted using the following program:
3min of denaturation at 95°C; 27 cycles of 30 s at 95°C,
30 s for annealing at 55°C, and 45 s for elongation at 72°C;
and a final extension at 72°C for 10min. PCR reactions were
performed in triplicate in a 20μl mixture containing 4μl of
5x FastPfu Buffer, 2μl of 2.5mM dNTPs, 0.8μl of each
primer (5μM), 0.4μl of FastPfu Polymerase, and 10ng of
template DNA.

2.2.3. Illumina MiSeq Sequencing. The PCR products were
recovered using a 2% agarose gel, purified using an AxyPrep
DNA Gel Extraction Kit (Axygen Biosciences, Union City,
CA, USA), eluted with Tris-HCl, and detected by 2% agarose
gel electrophoresis. QuantiFluor™-ST (Promega, USA) was
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Figure 3: Histogram of the relative microbial distribution in the two groups at the class level (the top 20 species in relative abundance).
Note: the figure is a histogram of the relative distribution of the two groups at the class level (the top 20 species in relative abundance).
The abscissa is the group name, the ordinate (sequence number percent) represents the ratio of the number of sequences annotated to
this level to the total annotated data, and the top-down color order of the histogram corresponds to the color order of the legend on the
right. The most dominant 20 species are shown in the legend, and the remaining species with lower relative abundances are classified
and shown in the figure as “other.”

Table 3: Comparison of the abundance of microbial urinary tract
flora in the two groups of samples at the class level.

Class Normal group Tumor group P value

Bacilli 51.37% 29.11% P > 0:05
Clostridia 8.40% 18.84% P > 0:05
Gammaproteobacteria 26.06% 16.54% P > 0:05
Betaproteobacteria 1.83% 14.97% P > 0:05
Actinobacteria 1.80% 10.67% P > 0:05
Alphaproteobacteria 0.62% 6.03% P > 0:05
Bacteroidia 7.26% 2.11% P > 0:05

4 BioMed Research International



used for detection and quantification. The purified amplified
fragments were constructed into a PE 2 × 300 library accord-
ing to the standard operating procedures of the Illumina
MiSeq platform (Illumina, San Diego, USA). Sequencing
was performed on the MiSeq PE300 platform (Illumina)
[4, 5].

2.2.4. Bioinformatics Analysis. The original sequencing data
were first filtered, and further operational taxonomic unit
(OTU) clustering was performed. The species information
abundance spectrum of OTUs and other species classifica-
tions were then formed [6, 7]. The species annotation infor-
mation was obtained using QIIME software (http://qiime2
.org/) [8], and the bacteria (biomarkers) with significant dif-
ferences were identified by LEfSe analysis combined with the

DESeq2 test [9, 10], and their influence was analyzed by lin-
ear discriminant analysis (LDA). The R language pheatmap
package was used to draw the correlation heatmap [11].
The correlation heatmap can be used to analyze whether
there is a significant correlation between environmental fac-
tors or other clinical phenotypic data and microbial commu-
nities or species. Furthermore, it can calculate the Spearman
correlation coefficient between environmental factors or
clinical phenotypic data and microbial species and display
it with the heatmap. By providing data on environmental
factors, such as pH, temperature, and clinical test results,
species significantly related to a certain disease can be ana-
lyzed. The functional pathway of floral differences was pre-
dicted using the PICRUSt analysis tool [12]. The
sequencing and bioinformatics services used in this study
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order of the legend on the right. The most dominant 20 species are shown in the legend, and the remaining species with lower relative
abundances are classified and shown in the figure as “other.”
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were completed by Microeco Tech Co. Ltd., Shenzhen,
China.

2.2.5. Statistical Methods. Data were analyzed using SPSS 22.0
(IBM Corp., Armonk, N.Y., USA), R software (V3.0.3), and
QIIME (V2.0). If the measurement data obeyed a normal dis-
tribution, a t-test was used and expressed by x ± s, and P <
0:05 was considered statistically significant.

3. Results

3.1. Comparison of General Conditions between the Tumor
and Control Groups. We compared demographic variables,
such as BMI, smoking, alcohol consumption, diet, hyperlip-
idemia, diabetes, and hypertension, between the tumor and
control groups (Table 1).

3.2. Analysis of Species Shared between the Two Groups. A
Venn diagram was used to analyze the unique or shared
OTUs between the different sample groups. It can more
intuitively display the number of shared and unique OTUs
in different sample groups and can clearly show the overlap
and composition similarity at the OTU level. There were dif-
ferences in the composition and abundance of urinary flora
between the normal and tumor groups (Figure 1), and the
number of bacterial OTUs shared between the two groups
was 93. The numbers of bacterial OTUs unique to the nor-
mal and tumor groups were 244 and 347, respectively.

3.3. Comparison of the Relative Abundance of Urine
Microflora at Each Level between the Tumor and Control
Groups. Figure 2 shows the relative abundance of urinary
flora at the phylum level in the tumor and control groups.
According to species annotation analysis at the phylum level,
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the dominant strains in the tumor group were Firmicutes,
Proteus, Actinomycetes, and Bacteroidetes, in order of rela-
tive abundance (Figure 2 and Table 2). There was no signif-
icant difference between the two groups (P > 0:05).

At the class level, the dominant bacterial species in the
tumor group were Bacilli, Clostridia, Gammaproteobacteria,
Betaproteobacteria, Actinobacteria, Alphaproteobacteria,
and Bacteroidia, in order of relative abundance (Figure 3
and Table 3). There was no significant difference between
the two groups (P > 0:05).

At the order level, using the DESeq2 method, there were
significant differences in the abundance of Caulobacterales
(P = 0:02) between the urinary flora of the two groups
(Figure 4).

At the family level, as shown in Figure 5, using the
DESeq2 method, there were significant differences in the

abundance of Bacteroidaceae (P = 0:004), Actinomycetaceae
(P = 0:04), and Tsukamurellaceae (P = 0:04) between the uri-
nary flora of the two groups.

At the genus level, using the DESeq2 method, there were
significant differences in the abundance of Finegoldia
(P = 0:0001), Varibaculum (P = 0:0003), Actinobaculum
(P = 0:002), Propionimicrobium (P = 0:004), Bacteroides
(P = 0:004), Brevundimonas (P = 0:03), and Tsukamurella
(P = 0:04) between the urinary flora of the two groups
(Figure 6). Table 4 shows the comparison of the abundance
of microbial urinary tract flora at the order, family, and
genus levels.

3.4. Specific Bacteria Associated with Urinary Tract Tumors.
The LEfSe method is a combination of nonparametric tests
and linear discriminant analysis and is suitable for testing
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differences in flora abundance. The LEfSe method was used
to identify specific bacterial genera associated with urinary
system tumors. At the genus level, there were specific bacte-
rial genera in the tumor group, and the following two bacte-
rial groups were isolated: Finegoldia and Varibaculum
(Figure 7).

Further application of the DESeq2 test showed that Finegol-
dia (tumor group vs. control group, P = 0:0001) and Varibacu-
lum (tumor group vs. control group, P = 0:0003) were
statistically significant.

3.5. Correlation between Specific Bacteria and Urine pH. The
correlation heatmap can be used to analyze whether there is a
significant correlation between environmental factors, clinical
phenotype data, and microbial communities or species.
According to the analysis results, the Spearman correlation
coefficient between the environmental factors and microbial
species can be further calculated and displayed as a heatmap.
By providing data on environmental factors, this analysis can
identify species that are significantly associated with the dis-
ease. The environmental factors provided in this study were
clinical phenotype data, including urinalysis and blood analy-
sis data. Urinalysis data include urine pH and urine specific
gravity (SG), and blood analysis data include white blood cells,
neutrophils (N), alanine aminotransferase (ALT), serum cre-
atinine (Cr), and blood urea nitrogen (BUN).

The two specific species, Finegoldia and Varibaculum,
were positively correlated with urine pH (Figure 8), and
the difference was statistically significant (P < 0:05).

3.6. Potential Functional Pathways Associated with Urinary
Tumors. PICRUSt analysis was used to predict the metabolic
functions of the flora. Figures 9–11 are column charts of the
predicted composition of the microbial community function
at the KEGG L1, L2, and L3 levels, respectively. The KEGG
database (http://www.kegg.jp/) was subjected to KEGG

enrichment analysis, and analysis of variance showed signif-
icant differences in two functional pathways, namely, the cell
transformation (P = 0:03) and metabolism pathways
(P = 0:04). The cell transformation pathway in the tumor
group was higher than that in the control group, and the
metabolic pathway was lower than that in the control group.

Upon further refining of the classification from L1 to L3,
the cellular transformation pathway manifests as bacterial
chemotaxis at the L3 level. Epithelial-mesenchymal transi-
tion (EMT) is a process of cell transformation in which the
characteristics of epithelial cells are lost and those of mesen-
chymal cells are expressed by many regulatory factors
through various regulatory pathways. Most solid tumors
arise from epithelial cells throughout the body. Tumors are
closely associated with long-term chronic inflammatory
stimuli, and the inflammatory TME contributes to the
malignant transformation of tumors. EMT in tumor cells
depends on the participation of cytokines and chemokines
in the microenvironment. The inflammatory microenviron-
ment can induce and activate various pathways to promote
tumor development, including EMT. In addition, an acidic
microenvironment can promote EMT of tumor cells, which
is conducive to tumor growth and metastasis.

The metabolic pathways were further refined into the
metabolism of terpenes and polyketones, which were subse-
quently refined into the biosynthesis of polyketose units.
Energy metabolism plays an important role in tumor occur-
rence and development. Abnormal cell microenvironments
change the metabolic activity of tumor cells, and cell metab-
olism changes to support the synthesis of new proteins,
lipids, and nucleic acids to ensure cell growth and split.
These proteins are classified according to their roles in cellu-
lar metabolism, including the metabolic processes of sugars,
lipids, energy, and amino acids. Regulation of cancer cell
metabolism by regulating energy, lipids, amino acids, and
protein synthesis enables better access to energy and nutri-
ents from the TME. Low pH, hypoxia, and low glucose con-
centrations in the TME play an important role in tumor
metabolism.

4. Discussion

Urinary tract tumors result from multiple internal and exter-
nal factors. However, the specific mechanisms of action have
not been fully elucidated. In recent years, multiple studies
have shown that an imbalance in urinary flora is closely
related to various urinary diseases, including urge inconti-
nence [13], overactive bladder [14], interstitial cystitis [15],
and diabetic bladder dysfunction [16]. The urinary tract
flora is an important part of the urinary tract microenviron-
ment. Therefore, further understanding of the characteristics
of urinary flora may provide new ideas for research on the
mechanisms and treatment of urinary tract tumors.

4.1. Urinary Flora May Become a New Biomarker for
Urinary Tract Tumors. We analyzed the urinary flora char-
acteristics of urinary tract tumors using 16S rRNA high-
throughput sequencing. The Venn diagram shows that the
urinary flora abundance of the tumor group was different

Table 4: Comparison of the abundance of microbial urinary tract
flora at the order, family, and genus levels.

P value Phylum level

Order

Caulobacterales 0.02 Proteobacteria

Family

Bacteroidaceae 0.004 Bacteroidetes

Actinomycetaceae 0.04 Actinobacteria

Tsukamurellaceae 0.04 Actinobacteria

Genus

Finegoldia 0.0001 Firmicutes

Varibaculum 0.0003 Actinobacteria

Actinobaculum 0.002 Actinobacteria

Propionimicrobium 0.004 Actinobacteria

Bacteroides 0.004 Bacteroidetes

Brevundimonas 0.03 Proteobacteria

Tsukamurella 0.04 Actinobacteria

Note: the genera that are meaningful at the order, family, and genus levels
belong to the phylum level.
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from that of the control group. At the phylum level, the
abundance of Proteobacteria and Actinobacteria in the
tumor group was significantly higher than that in the control
group, and that for Firmicutes and Bacteroidetes was signif-
icantly lower than that in the control group, but the differ-
ence was not statistically significant (P > 0:05). Using the
DESeq2 method, we found that, at the order level, the abun-
dance of Caulobacterales in the urinary flora of the two
groups was significantly different (P = 0:02). At the family
level, Bacteroidaceae (P = 0:004), Actinomycetaceae
(P = 0:04), and Tsukamurellaceae (P = 0:04) showed signifi-
cant differences in abundance between the urinary flora of
the two groups. At the genus level, Finegoldia (P = 0:0001),

Varibaculum (P = 0:0003), Actinobaculum (P = 0:002), Pro-
pionimicrobium (P = 0:004), Bacteroides (P = 0:004), Bre-
vundimonas (P = 0:03), and Tsukamurella (P = 0:04)
showed significant differences in abundance between the
urinary flora of the two groups. Caulobacterales and Brevun-
dimonas belong to the phylum Proteobacteria; Actinomyce-
taceae, Tsukamurellaceae, Varibaculum, Actinobaculum,
Propionimicrobium, and Tsukamurella belong to Actinobac-
teria; Bacteroidaceae and Bacteroides belong to Bacteroi-
detes; and Finegoldia belongs to Firmicutes. Current
studies have shown that most of the bacteria in the Actino-
mycetes and Proteobacteria phyla are pathogenic [17]. These
include the Actinomycetes Mycobacterium tuberculosis and
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Mycobacterium leprae. Proteobacteria include Escherichia
coli, Salmonella, and well-known species, such as Vibrio cho-
lerae and Helicobacter pylori. The phylum Proteobacteria is
the largest among bacteria. In recent years, an increasing
number of studies have identified Proteobacteria as micro-
bial markers of dysbacteriosis [18]. Many studies have
shown that an increase in the number of members of Proteo-
bacteria is a potential microbial feature of disease occurrence
and is related to inflammatory factors [19].

Complicated interactions are formed between the ure-
thral flora and the host, as well as within the flora, to ensure
the stability of the microbial ecosystem. In a pathological
state, the imbalance of the urethral microecology leads to

the weakening of the urethral mucosal barrier function,
which causes the urethral flora to be disordered. The
decrease in the abundance of beneficial bacteria and increase
in the abundance of harmful bacteria are its main character-
istics. The disorder of the group in turn further affects the
immune function of the urethral mucosa, triggering nonspe-
cific inflammation of the urethra, and its inflammatory
response further aggravates the damage and promotes tumor
formation [20].

We further used the LEfSe method to identify specific bac-
terial genera related to urinary tract tumors in the tumor
group at the genus level, namely, Finegoldia and Varibaculum.
Finegoldia is a Gram-positive obligate anaerobe that is an
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opportunistic pathogen. Immunosuppression and malnutri-
tion are currently recognized causes of symbiotic bacteria
[21]. Recent studies [22] have found that some virulence fac-
tors related to the pathogenicity of Finegoldia bacteria include
the L protein, peptostreptococcal albumin binding protein
(PAB), SufA, and Finegoldia bacteria. Bacteria have the ability
to form biofilms, which can evade host immune defense and
antimicrobial treatment [23]. The pathogenic factors of Vari-
baculum are mainly related to enterotoxins, cytotoxins, endo-
toxins, adhesion, and colonization ability, which mainly cause
human intestinal infections and various extraintestinal infec-
tions [24].

We used the PICRUSt analysis method to predict the
metabolic function of the flora and found that the cell trans-
formation pathway of the tumor group was higher than that
of the control group, and the metabolic pathway was lower
than that of the control group. The cell transformation path-
way is mainly through the movement of cilia or flagella,
which is manifested by chemotaxis of bacteria. Basic experi-
ments have shown increased cell proliferation and cytokine
or chemokine secretion in infected cells, which promotes
immune escape and destroys the epithelial barrier, thereby
inducing inflammation and leading to the occurrence and
development of diseases [25].
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Inflammation and tumors are closely related. Inflamma-
tory reactions can stimulate the occurrence and develop-
ment of tumors, and inflammation caused by tumors can
cause gene mutations and malignancy [26]. The abundance
of proinflammatory bacteria in the tumor group was rela-
tively high, and the existing specific bacterial genera are
related to the induction of inflammation and play a certain
role in the occurrence of urinary system tumors [27]. These
different bacterial genera may serve as new biomarkers for
urinary system tumors. This provides a further reference
for prognostic risk stratification of urinary system tumors.

4.2. Urine pH May Be Related to the Occurrence of Tumors.
Changes in the urine microenvironment and pH can induce
and activate the development of tumors. We identified spe-
cific bacterial genera, namely, Finegoldia and Varibaculum,
in the tumor group using the LEfSe method. Furthermore,
we conducted a correlation analysis, and the results showed
that these two specific bacteria were positively correlated
with urine pH (P < 0:05), and the difference was statistically
significant. Tumor growth is closely related to the epidermal
growth factor (EGF) in urine, and the EGF receptor (EGFR)
is highly expressed in tumor cells [28]. The EGF is a low-
molecular-weight peptide compound, composed of 53 amino
acids, which promotes the proliferation of epithelial tissue. It
exerts its physiological effects by specifically binding to the
EGFR on the target cell membrane. The EGFR is regulated
by the c-erbB-1 gene in the Src family of protooncogenes
and is highly expressed in many tumors. As a normal compo-
nent of the human body, the EGF concentration is highest in
urine at approximately 25–250ng/ml, which is dozens of
times the blood concentration. The EGF is mainly produced
by renal tubular epithelial cells in the kidneys [29, 30]. The
binding of the EGF and EGFR is affected, to a certain extent,
by the pH of the environment. Therefore, pH is an important
factor affecting the binding of the EGF to its receptor [31].
Urine pH gradually increases from the renal pelvis to the
bladder, and when the pH value is increased from 5.0 to
7.5, the binding rate of the EGF to its receptor increases 20
times. The increase in pH greatly increases the affinity of
the EGF and EGFR and increases the growth-promoting
effect of the EGF in urine on tumors. Therefore, there may
be a correlation between urine pH and tumor occurrence.

However, this study had a small sample size and some
shortcomings.

5. Conclusions

Symbiotic microorganisms play an important role in the
human microenvironment. Their interactions with the host
are comprehensive and extensive, and together they main-
tain the balance of the human microenvironment. Microeco-
logical imbalances are closely related to the occurrence and
development of diseases. In this study, we discuss the possi-
ble carcinogenic effects of urinary tract bacteria and other
microorganisms. The presence of specific bacteria may serve
as a new biomarker for urinary tract tumors. Proinflamma-
tory microorganisms and chronic inflammation mediated
by an imbalance of the flora play a role in the occurrence

of urinary system tumors. There may be a correlation
between urine pH and tumor occurrence. Large-scale,
large-sample prospective studies and in vivo and in vitro
experiments are needed to further explore the relationship
between urinary flora and urinary tumors.

Data Availability

The data used to support the findings of this study are avail-
able in Genbank: sequence data: SUB9924783.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Authors’ Contributions

All authors approved the submitted version and agreed to be
accountable for all aspects of this work. Jin Qiu is the first
author and Wang Liu is the co first author.

Acknowledgments

The authors acknowledge the technical support provided by
the Shanghai TCM-Integrated Hospital for sampling and
analytical measures. This study was supported by the Health
Commission of Hongkou, Shanghai (grant number 1901-
02). This study was also supported by the Health Industry
Clinical Research Program, Shanghai (grant number
201940426), and Science and Technology Commission of
Shanghai Municipality Scientific Research Program Project
(grant number 19401971600).

References

[1] B. Arneth, “Tumor microenvironment,” Medicina (Kaunas,
Lithuania), vol. 56, no. 1, 2020.

[2] Y. Xiao and D. Yu, “Tumor microenvironment as a therapeu-
tic target in cancer,” Pharmacology & Therapeutics, vol. 221,
article 107753, 2021.

[3] M. G. Langille, J. Zaneveld, J. G. Caporaso et al., “Predictive
functional profiling of microbial communities using 16S rRNA
marker gene sequences,” Nature Biotechnology, vol. 31, no. 9,
pp. 814–821, 2013.

[4] Y. Vázquez-Baeza, M. Pirrung, A. Gonzalez, and R. Knight,
“EMPeror: a tool for visualizing high-throughput microbial
community data,” GigaScience, vol. 2, no. 1, 2013.

[5] N. Segata, J. Izard, L. Waldron et al., “Metagenomic biomarker
discovery and explanation,” Genome Biology, vol. 12, no. 6,
article R60, 2011.

[6] J. R. White, N. Nagarajan, and M. Pop, “Statistical methods for
detecting differentially abundant features in clinical metage-
nomic samples,” PLoS Computational Biology, vol. 5, no. 4,
article e1000352, 2009.

[7] S. Anders and W. Huber, “Differential expression analysis for
sequence count data,” Genome Biology, vol. 11, no. 10, article
R106, 2010.

[8] N. A. Bokulich, B. D. Kaehler, J. R. Rideout et al., “Optimizing
taxonomic classification of marker-gene amplicon sequences

13BioMed Research International



with QIIME 2’s q2-feature-classifier plugin,” Microbiome,
vol. 6, no. 1, 2018.

[9] B. J. Callahan, P. J. McMurdie, M. J. Rosen, A. W. Han, A. J.
Johnson, and S. P. Holmes, “DADA2: high-resolution sample
inference from Illumina amplicon data,” Nature Methods,
vol. 13, no. 7, pp. 581–583, 2016.

[10] M. I. Love, W. Huber, and S. Anders, “Moderated estimation
of fold change and dispersion for RNA-seq data with DESeq2,”
Genome Biology, vol. 15, no. 12, 2014.

[11] F. Rohart, B. Gautier, A. Singh, and K. A. Lê Cao, “mixOmics:
an R package for 'omics feature selection and multiple data
integration,” PLoS Computational Biology, vol. 13, no. 11, arti-
cle e1005752, 2017.

[12] S. Mandal, W. Van Treuren, R. A. White, M. Eggesbø,
R. Knight, and S. D. Peddada, “Analysis of composition of
microbiomes: a novel method for studying microbial composi-
tion,” Microbial ecology in Health and Disease, vol. 26, article
27663, 2015.

[13] M. M. Pearce, E. E. Hilt, A. B. Rosenfeld et al., “The female uri-
nary microbiome: a comparison of women with and without
urgency urinary incontinence,” mBio, vol. 5, no. 4, 2014.

[14] P. Wu, Y. Chen, J. Zhao et al., “Urinary microbiome and psy-
chological factors in women with overactive bladder,” Fron-
tiers in Cellular and Infection Microbiology, vol. 7, p. 488, 2017.

[15] H. Siddiqui, K. Lagesen, A. J. Nederbragt, S. L. Jeansson, and
K. S. Jakobsen, “Alterations of microbiota in urine from
women with interstitial cystitis,” BMC Microbiology, vol. 12,
no. 1, p. 205, 2012.

[16] F. Liu, Z. Ling, Y. Xiao et al., “Dysbiosis of urinary microbiota
is positively correlated with type 2 diabetes mellitus,” Oncotar-
get, vol. 8, no. 3, pp. 3798–3810, 2017.

[17] A. G. Ochoa and M. D. L. A. Sandoval, “Characteristics of the
most common pathogenic Actinomycetes,” Revista del Insti-
tuto de Salubridad y Enfermedades Tropicales, vol. 15, no. 3,
pp. 147–161, 1955.

[18] N. R. Shin, T.W.Whon, and J.W. Bae, “Proteobacteria: micro-
bial signature of dysbiosis in gut microbiota,” Trends in Bio-
technology, vol. 33, no. 9, pp. 496–503, 2015.

[19] G. Rizzatti, L. R. Lopetuso, G. Gibiino, C. Binda, and
A. Gasbarrini, “Proteobacteria: a common factor in human
diseases,” BioMed Research International, vol. 2017, Article
ID 9351507, 7 pages, 2017.

[20] C. Ainsworth, “Microbiome: a bag of surprises,” Nature,
vol. 551, no. 7679, pp. S40–S41, 2017.

[21] L. Boyanova, R. Markovska, and I. Mitov, “Virulence arsenal of
the most pathogenic species among the Gram-positive anaerobic
cocci, Finegoldia magna,”Anaerobe, vol. 42, pp. 145–151, 2016.

[22] F. Guérin, S. Lachaal, M. Auzou et al., “Molecular basis of
macrolide-lincosamide-streptogramin (MLS) resistance in
Finegoldia magna clinical isolates,” Anaerobe, vol. 64, article
102220, 2020.

[23] E. C. Murphy, R. Janulczyk, C. Karlsson, M. Mörgelin, and
I. M. Frick, “Identification of pili on the surface of Finegoldia
magna - a Gram-positive anaerobic cocci,” Anaerobe, vol. 27,
pp. 40–49, 2014.

[24] E. H. A. Niang, C. I. Lo, S. Brahimi et al., “Varibaculum massi-
liense sp. nov., a new bacterium isolated from human urine
with culturomics,” New Microbes and New Infections, vol. 32,
article 100591, 2019.

[25] W. Liang, X. Huang, C. J. J. Carlos, and X. Lu, “Research prog-
ress of tumor microenvironment and tumor-associated mac-

rophages,” Clinical and Translational Oncology, vol. 22,
no. 12, pp. 2141–2152, 2020.

[26] J. Todoric, L. Antonucci, and M. Karin, “Targeting inflamma-
tion in cancer prevention and therapy,” Cancer Prevention
Research, vol. 9, no. 12, pp. 895–905, 2016.

[27] X. Jiang, J. Wang, X. Deng et al., “The role of microenviron-
ment in tumor angiogenesis,” Journal of Experimental & Clin-
ical Cancer Research, vol. 39, no. 1, 2020.

[28] U. Marti, S. J. Burwen, and A. L. Jones, “Biological effects of
epidermal growth factor, with emphasis on the gastrointestinal
tract and liver: an update,” Hepatology, vol. 9, no. 1, pp. 126–
138, 1989.

[29] J. Dong, Y. Zhang, and Z. Zhang, “pH dependence of ligand-
induced human epidermal growth factor receptor activation
investigated by molecular dynamics simulations,” Journal of
Molecular Modeling, vol. 22, no. 6, p. 131, 2016.

[30] I. Singh, G. Singh, V. Verma, S. Singh, and R. Chandra, “In
silico evaluation of variable pH on the binding of epidermal
growth factor receptor ectodomain to its ligand through
molecular dynamics simulation in tumors,” Interdisciplinary
Sciences, Computational Life Sciences, vol. 11, no. 3, pp. 437–
443, 2019.

[31] B. A. Webb, M. Chimenti, M. P. Jacobson, and D. L. Barber,
“Dysregulated pH: a perfect storm for cancer progression,”
Nature Reviews Cancer, vol. 11, no. 9, pp. 671–677, 2011.

14 BioMed Research International


	Analysis of Urinary Flora Characteristics in Urinary Tumor Based on 16S rRNA Sequence
	1. Introduction
	2. Materials and Methods
	2.1. Object of Study
	2.1.1. General Information
	2.1.2. Entry Criteria
	2.1.3. Exclusion Criteria
	2.1.4. Elimination Criteria

	2.2. Research Methods
	2.2.1. Sample Collection
	2.2.2. DNA Extraction and PCR Amplification
	2.2.3. Illumina MiSeq Sequencing
	2.2.4. Bioinformatics Analysis
	2.2.5. Statistical Methods


	3. Results
	3.1. Comparison of General Conditions between the Tumor and Control Groups
	3.2. Analysis of Species Shared between the Two Groups
	3.3. Comparison of the Relative Abundance of Urine Microflora at Each Level between the Tumor and Control Groups
	3.4. Specific Bacteria Associated with Urinary Tract Tumors
	3.5. Correlation between Specific Bacteria and Urine pH
	3.6. Potential Functional Pathways Associated with Urinary Tumors

	4. Discussion
	4.1. Urinary Flora May Become a New Biomarker for Urinary Tract Tumors
	4.2. Urine pH May Be Related to the Occurrence of Tumors

	5. Conclusions
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments

