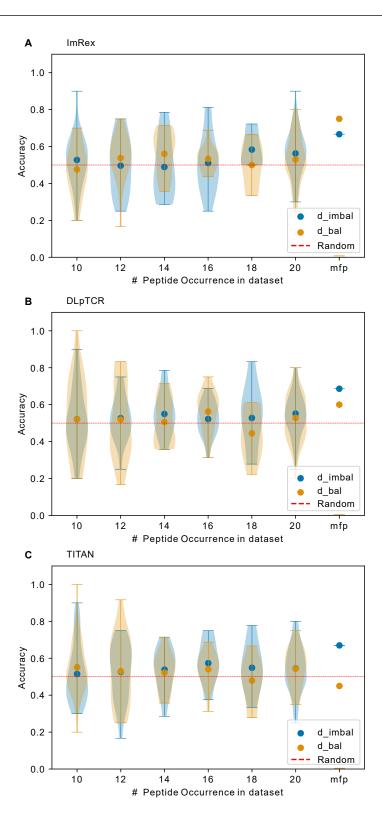

## 7 SUPPLEMENTARY INFORMATION

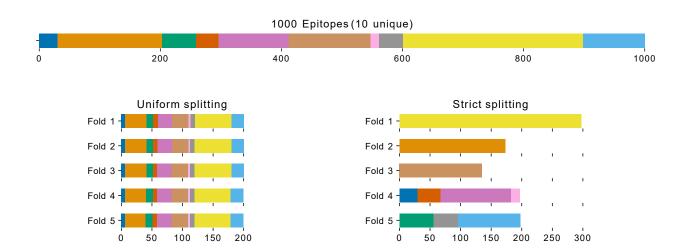


**Figure S1.** Disease origin for peptides. Peptides origin for the six major resources based on the related disease. Numbers in the plot show the corresponding records for disease origin in each resource.


**Table S1.** Peak model performance ROC-AUC in the original work and based on  $d_{base,uniform}$ .

| -          |                       |                    |
|------------|-----------------------|--------------------|
| model      | peak original ROC-AUC | $d_{base}$ ROC-AUC |
| TITAN      | $0.87 \pm 0.01$       | $0.70 \pm 0.01$    |
| NetTCR-2.0 | 0.80                  | $0.66 \pm 0.01$    |
| ERGO AE    | 0.958                 | $0.69 \pm 0.00$    |
| ERGO LSTM  | 0.970                 | $0.50 \pm 0.00$    |
| DLpTCR     | 0.91                  | $0.63 \pm 0.01$    |
| ImŘex      | $0.68 \pm 0.01$       | $0.69 \pm 0.01$    |

Table S2. Overview of constructed datasets.


|                    | $d_{base,strict}$ | $d_{base,uniform}$ | $d_{bal}$ | $d_{imbal}$ |
|--------------------|-------------------|--------------------|-----------|-------------|
| # entries          | 15964             | 28716              | 2812      | 12268       |
| # unique peptide   | 691               | 174                | 174       | 174         |
| # unique CDR3 Beta | 7805              | 14141              | 1397      | 7678        |
| Shannon entropy    | 0.65              | 0.49               | 0.99      | 0.33        |

Frontiers 16



**Figure S2.** Performance trained on  $d_{imbal}$  and  $d_{bal}$  for A) ImRex, B) DLpTCR and C) TITAN. Data points indicate accuracy for models (trained on different datasets) testing on unique peptide with different occurrence. mfp: most frequent peptide 20 examples in  $d_{bal}$  and 9476 examples in  $d_{imbal}$ .

Frontiers 17



**Figure S3.** Uniform and strict splitting schematically demonstrated with an imbalanced dataset of 1000 entries and 10 unique peptides.

Frontiers 18