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Abstract

Clustering 16S/18S rRNA amplicon sequences into operational taxonomic units (OTUs) is a critical step for the bioinformatic
analysis of microbial diversity. Here, we report a pipeline for selecting OTUs with a relatively low computational demand and
a high degree of accuracy. This pipeline is referred to as two-stage clustering (TSC) because it divides tags into two groups
according to their abundance and clusters them sequentially. The more abundant group is clustered using a hierarchical
algorithm similar to that in ESPRIT, which has a high degree of accuracy but is computationally costly for large datasets. The
rarer group, which includes the majority of tags, is then heuristically clustered to improve efficiency. To further improve the
computational efficiency and accuracy, two preclustering steps are implemented. To maintain clustering accuracy, all tags
are grouped into an OTU depending on their pairwise Needleman-Wunsch distance. This method not only improved the
computational efficiency but also mitigated the spurious OTU estimation from ‘noise’ sequences. In addition, OTUs
clustered using TSC showed comparable or improved performance in beta-diversity comparisons compared to existing OTU
selection methods. This study suggests that the distribution of sequencing datasets is a useful property for improving the
computational efficiency and increasing the clustering accuracy of the high-throughput sequencing of PCR amplicons. The
software and user guide are freely available at http://hwzhoulab.smu.edu.cn/paperdata/.
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Introduction

Determining 16S rRNA gene tags using pyrosequencing has

become an important tool for studying microbial diversity. This

approach has led to many interesting findings relating to both

human and environmental microbial habitats. For instance,

chronic metabolic diseases such as obesity and diabetes are

potentially related to gut microbiome diversity [1,2,3], and

unexpectedly high bacterial diversity is found in aquatic

environments [4,5]. Recently, we developed a barcoded Illumina

paired-end sequencing (BIPES) method for determining 16S

rRNA tags using the Illumina HiSeq 2000 [6]. Illumina

platforms are able to obtain millions of tags relatively cost-

effectively, but they generates new problems for analysis

[6,7,8,9,10]. Within the bioinformatics pipeline, clustering tags

into operational taxonomic units (OTUs) according to sequence

similarity is a rate-limiting step for analyzing microbial diversity,

for which the computational demand increases geometrically

with sequencing read number [11]. In addition to the Illumina

platforms, the upgraded 454 Life Sciences Titanium instrument

also results in millions of reads per run, which also raises new

computational issues.

The present study therefore focused on developing a pipeline for

choosing OTUs for the high-throughput sequencing of PCR

amplicons. We focused on three major issues, namely accuracy,

time, and peak memory, to develop the pipeline. Sun et al. [12]

identified the problem of the biased OTU estimation of clustering

methods. They found that multiple sequence alignment was less

accurate than pairwise alignment for calculating distances for a

large number of sequences, and they reduced the OTU number

using the pairwise Needleman-Wunsch (NW) distances. In

addition to the sequence-alignment algorithms, Huse et al. [13]

found that clustering sequences by average linkage (AL) was more

robust than complete linkage (CL) or single linkage (SL) in terms of

reducing biases. Furthermore, they developed a single-linkage

preclustering (SLP) method that preclustered sequences at the 0.02

distance using SL before the formal clustering of tags at the 0.03

distance using AL, thereby mitigating the effect of ‘noise’

sequences that might be produced by PCR and sequencing errors.

While the above methods increase clustering accuracy, they do

not scale up well for large datasets. For instance, the number of

pairwise NW alignments increases geometrically, which may

require tens of thousands of CPU hours if analyzing millions of

sequences. Moreover, the distance matrix file, which needs to be
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loaded into the memory for AL clustering, would be larger than

1000 GB. In ESPRIT, the calculation demand is reduced by

prescreening tags using the Kmer distance, and a sparse matrix is

produced to reduce the matrix file size. In addition, the authors of

ESPRIT developed an hcluster program, which can perform CL

clustering without loading the matrix file into memory [12].

However, ESPRIT still does not scale up well for calculating a

large number of pairwise NW distances, and only the CL using

hcluster had a relatively low memory demand. The authors of

ESPRIT claim that their improvements of ESPRIT-Tree and

ESPRIT-Forest will resolve the upscaling problems [14,15]. In

addition to these methods, another new algorithm, called

UCLUST, is highly efficient in clustering large datasets [16]; this

algorithm will be included in the comparison in the present study.

Rather than developing new alignment and clustering algo-

rithms, the present study aimed to improve the computational

efficiency from a different angle: the characteristics of the

sequencing dataset. High-throughput sequencing results for PCR

amplicons have a unique characteristic: they usually have a small

fraction of abundant sequences and a majority of rare sequences,

whether they are amplified from mock libraries with a known

number of templates or from real community samples with diverse

templates [4,13]. In particular, singletons plus doubletons usually

make up approximately 70–80% of the total number of unique

tags, meaning that only ,20% of all tags are present in three or

more copies [13,17]. Accordingly, we separated tags into two

groups and clustered them sequentially in a two-stage clustering

(TSC) pipeline to reduce the computational demand for

calculating the large matrix of pairwise NW distances. The results

suggest that the TSC pipeline not only increases the efficiency of

OTU selection but also improves accuracy by reducing the

spurious OTUs incurred by low-abundance ‘noise’ sequences and

leads to comparable or improved performance in beta-diversity

comparisons of microbial communities.

Methods

The TSC algorithm
We used C++ to program the TSC pipeline. The program is

standalone software and can run on Linux systems directly after

download. The workflow of the TSC pipeline is shown in Fig. 1.

Dividing tags into two groups. The first step in the TSC

pipeline is to divide tags into two groups according to their

abundance. The cutoff value can be any number greater than or

equal to 1. The cutoff value 1 is used only for testing the algorithm,

not for analyzing real samples. The default cutoff value is 3

because many singleton or doubleton sequences might be

sequencing or PCR errors [13,17,18]. We obtained unique tag

sequences from the original data, and the tags were sorted from

high to low frequencies and divided into two files according to the

cutoff value.

First-stage clustering. We used a hierarchical clustering

algorithm with pairwise NW distances to cluster the tags in the

abundant tag file. An algorithm similar to ESPRIT, but OpenMP

enabled, was used to calculate pairwise NW distances of sequences

in the abundant tag file. We set options 2g 210 2e 21 2x, and

the maximum value for Kmer distance was 0.5 for TSC. All of

these parameters are the same as the defaults in ESPRIT and can

be changed by the user. We then performed one round of the NW

alignment-dependent preclustering step (preclustering 1) similar to,

but more stringent than, that in the SLP pipeline [13]. The

rationale is that some tag sequences in the abundant group might

be ‘noise’ sequences produced as a result of PCR-induced

mutation or sequencing errors. These sequences theoretically are

highly similar to, but less abundant than, their parent tags [13,18],

and they should be merged into their corresponding parent tags

rather than participate the OTU clustering [13]. Because the first-

stage clustering in the TSC pipeline only treats the abundant tags,

we only performed 1 round of preclustering, which is different

from SLP and includes two rounds of SL for OTUs with fewer

than 10 unique tags [13]. All tags in the abundant group were

sorted from high to low abundance. We began the search with the

most abundant sequence. If any sequence with lower frequency

had a pairwise NW distance equal to or less than 0.02 from the

highest frequency sequence, the lower-frequency tag was removed

from the list, and the frequency of the highest tag was increased by

1. Next, the second-most abundant sequence served as the seed

sequence, and tags merged into the highest seed were not

compared again. The remaining seed sequences after the final

denoising comparison were clustered with pairwise NW distances.

The clustering method at this step can be selected for CL, AL, or

SL algorithms, and the resulting OTUs were labeled as highly

abundant OTUs (HAOTUs).

Second-stage clustering. We used a greedy heuristic

algorithm for assigning rare tags into OTUs. We first used an

alignment-free preclustering algorithm (preclustering 2) to improve

the efficiency. Each pair of sequences was directly compared from

the 59 to the 39 end one base at a time, and all mismatches were

counted. If the distance calculated directly using the mismatch

number was lower than the expected distance, the two sequences

could be merged directly.

Subsequently, residual rare sequences were sequentially clus-

tered. We first calculated the Kmer distance of an enquiring rare

tag against sequences already in OTUs and sorted them

accordingly. This Kmer calculation was the memory-limiting step

for the TSC pipeline. The pairwise NW distance was calculated

Figure 1. A workflow of the TSC pipeline.
doi:10.1371/journal.pone.0030230.g001
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for 10 (a changeable parameter) sequences with the lowest Kmer

distances with the new enquiring rare tag. If any pairwise NW

distance fit the input threshold, for example 0.03, the program

calculated NW distances for the next 10 pairs of sequences and

repeated the process until all 10 NW distances were larger than the

threshold. With these NW distances, there were a total of 5

possibilities for clustering according to the type of abundant or

rare tags with NW distances from the new rare tag equal to or less

than 0.03. First, if the new rare tag showed NW distances larger

than 0.03 with any tags, it formed a new low-abundance OTU

(LAOTU). Second, if the new rare tag had less than 0.03 NW

distance from tags from only one OTU, it was assigned into the

specific OTU whether the OTU had high or low abundance.

Third, if the new rare tag fit the distance threshold with abundant

tags from more than one HAOTU, it was linked with the tag with

the highest abundance and assigned into the same HAOTU. The

rare tag did not link these HAOTUs, although all of them

harbored tags showing 0.03 or shorter pairwise NW distances from

the new rare tag. Fourth, if the new rare tag was connected with

rare tags from more than one LAOTU, it grouped all LAOTUs

into one LAOTU. Finally, if the rare tag fit distance thresholds

with tags from both HAOTUs and LAOTUs, we grouped all

LAOTUs together and merged all of them into the HAOTU with

the most abundant tag. In brief, we allowed rare tags to group

LAOTUs but not HAOTUs.

The computing environment
We used a desktop computer with an Intel CoreTM i7-980X

processor (6 cores), 12 GB memory, and a 500 GB hard disk. The

operating system was Linux with OpenMP enabled.

The operational parameters for the methods compared
in the present study

TSC. The default parameters were 2g 210 2e 21 2a 1 2b

21 2k 6 2f 0.5 2d 0.03 2n 10 2x 1 2s 10 2m [al/cl/sl].

Detailed explanations of these parameters can be found in the

user’s guide.

ESPRIT. We used kmerdist with default parameters; for

needledist, we used 2g 10 2e 1 and added 2x.

SLP-PW-AL. We used ESPRIT needledist to calculate the

pairwise NW distance. The parameters were the same as those in

ESPRIT. We used the default parameters for SLP, and we used

mothur to carry out AL clustering with the pairwise NW distance

calculated by ESPRIT.

Mothur. for CL and SL, we used cutoff = 0.10 in dist.seqs,

whereas for AL, we used cutoff = 0.42 in dist.seqs to generate

enough distances to obtain an AL of 0.03 distance in mothur.

Default settings were used for the remaining parameters.

UCLUST. First, we sorted the tags by abundance and ran

them with the 2usersort 2id 0.97 2iddef 3 2nofastalign. We

used the OTU with 97% identity in UCLUST for the comparison

with the 0.03 distance OTUs in other methods.

Results and Discussion

TSC estimates of the expected OTU number using mock
library data

We first focused on the accuracy of the clustering result. We

used a dataset named clone43_97up, which was initially reported

by Huse et al. for evaluating and developing the SLP pipeline [13].

This dataset was generated using 454 sequencing of V6 tags

amplified from a clone library consisting of only 43 taxa, from

which sequences with NW distances greater than 0.03 from their

initial templates were further removed. The dataset contained

193,958 total and 4,034 unique tags, which ideally should be

clustered into 43 OTUs at the 0.03 distance [13].

When the cutoff value was set as 1, all tags were put into the

abundant group, and the TSC pipeline only ran the first-stage

clustering, which was similar to the approach of SLP-PW-AL

except that a more stringent preclustering was employed. Only the

TSC-SL method obtained 43 OTUs, whereas the other two

methods showed excessive OTU estimation (Fig. 2). In the SLP

report, Huse et al. suggested that SL caused underestimation, CL

lead to overestimation, and AL was preferable because it obtained

the expected 43 OTUs using SLP-PW-AL [13]. In our study, the

TSC-AL (cutoff 1) obtained more than 43 OTUs because TSC

only ran 1 round of sequential SL preclustering using the 0.02

distance, whereas the SLP performed 2 rounds for OTUs with

fewer than 10 unique tags (Methods).

With the cutoff value of 2, the TSC pipeline showed the

expected 43 OTUs (Fig. 2). At a cutoff of 2, tags with 2 or more

copies were first clustered and grouped into the expected 43 OTUs

using any of the CL/AL/SL algorithms; at the second stage,

singleton tags were clustered into the existing 43 OTUs using the

greedy heuristic SL algorithm, and no additional OTUs formed

from these singleton tags. In other words, some singleton tags

caused spurious OTU numbering using CL/AL algorithms at the

cutoff value of 1. In addition to OTU number, we manually

verified that the 43 OTUs were correctly represented by the

original 43 template sequences.

Among our tested methods, only TSC (with a cutoff of 2 or

higher), ESPRIT-SL, and SLP-PW-AL obtained the expected 43

OTUs; all other methods resulted in much higher values (Fig. 2

Figure 2. Clustering of the clone43_97up data. (A) The clustering
results at different cutoff values. (B) The clustering results using
different methods. The cutoff value for TSC was 3.
doi:10.1371/journal.pone.0030230.g002
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and Table 1). A direct comparison of the OTU numbers obtained

from different methods might be misleading in terms of accuracy

because different alignment methods, e.g., multiple sequence

alignment vs. pairwise alignment, and clustering algorithms

including CL/AL/SL were employed. For the clone43_97up

dataset, the tags were screened, and only those sequences with a

0.03 or smaller pairwise NW distance to the original 43 templates

were included. Therefore, these tags should be expected to be

grouped into 43 OTUs, represented by the 43 initial templates, at

the 0.03 distance, as demonstrated with SLP-PW-AL [13]. Our

results show that the TSC pipeline can reproducibly group these

tags into 43 OTUs with a large window for selecting the cutoff

value. In addition to the clone43 dataset, we tested the method

using the clone 90 dataset as described by Quince et al. [19], and

the TSC pipeline obtained the expected 30 OTUs at a cutoff value

of 3, demonstrating that the TSC pipeline can be used for various

datasets.

TSC significantly reduces computing time and peak
memory usage

To demonstrate the efficiency of the TSC pipeline for analyzing

real community data, we used the Costello dataset (ERA000159),

which was the first report on the microbial diversity in 12

individual humans at four sampling times [20]. Within this dataset,

we used the ‘day 3’ dataset, which contained 116,736 total tags

with 38,572 unique sequences sampled at day 3, to compare

different algorithms because the full Costello dataset was

computationally too expensive to analyze on our desktop

computer using ESPRIT, SLP-PW-AL, and Mothur-AL.

Separating tags into 2 groups significantly reduced the

computational demand. The runtime for the Costello day 3

dataset with a cutoff value of 1 (1 group) was approximately

2,500 s with 10 CPU threads, which significantly decreased to

under 380 s at cutoff 2 (Fig. 3A and Table 1). The reason was that

at a cutoff value of 1, the whole dataset needed to be calculated for

pairwise NW distances with Kmer screening. For the day 3

dataset, a total of 42,257,396 NW distances were calculated at

cutoff 1, which took approximately 26,260 s (single CPU thread).

With the cutoff value of 2, only the abundant group, which made

up less than 30% of the initial read number, was calculated,

meaning that the number of pairwise NW alignments was reduced

to ,9% of the initial number. For the day 3 dataset, only

1,612,237 NW distances were calculated at cutoff 2 (3.8% of that

at cutoff 1), and only 1,008 seconds (single CPU thread) were used

for this step. In comparison, the ESPRIT and SLP-PW-AL

methods require more than 200 times as long as TSC. In addition,

because the computation time increases geometrically, the TSC

pipeline saves even more computing resources than ESPRIT and

SLP-PW-AL for larger datasets.

In addition to saving computing time, TSC also significantly

reduced the peak memory usage for AL. To perform AL

clustering, a distance matrix needs to be loaded into the memory,

which is different from the hcluster for CL [11]. However, as the

distance matrix file increases geometrically with the sequence

number, the peak memory usage becomes a bottleneck for

analyzing large datasets. By dividing tags into two groups, we were

able to greatly reduce the tag number in the abundant group;

therefore, the peak memory usage for TSC was an order of

magnitude lower than that of other AL methods (Table 1).

Furthermore, the cutoff value could further tune the peak memory

usage because the higher the cutoff value, the smaller the

intermediate-distance matrix file.

Table 1. A comparison of different methods.

TSC-CL TSC-AL TSC-SL ESPRIT-CL ESPRIT- AL ESPRIT- SL SLP-PW-AL UCLUST Mothur-CL Mothur-AL Mothur-SL

clone43_97up dataset

OTU number 43 43 43 2289 1383 43 43 170 888 627 466

Costello day 3 dataset

OTU number 5002 4993 4939 9552 7733 4894 6420 9321 16817 14892 11585

Execution time(s) 370 371 369 43243 43653 43213 45583 38 3073 19750 3073

Peak memory (MB) 185 185 185 152 1419 152 2200 144 834 8600 834

The running parameters for TSC were at cutoff value of 3 with 10 CPU threads.
doi:10.1371/journal.pone.0030230.t001

Figure 3. TSC clustering of the Costello day 3 dataset. (A) The
computing time at different cutoff values. (B) The OTU number at
different cutoff values using the CL, AL and SL algorithms.
doi:10.1371/journal.pone.0030230.g003
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TSC results for CL/AL/SL merge with increasing cutoff
values

One interesting phenomenon we observed was that the

clustering results for the three algorithms tended to merge as the

cutoff value for defining the two groups increased. At a cutoff value

of 1, TSC-CL, AL, and SL showed significantly different OTU

estimations (Fig. 2 and 3), whereas these three lines quickly merged

from cutoff value 2 to 3. This trend was not unique to the

clone43_97up and Costello day 3 datasets. We further analyzed 10

datasets that were determined using either the 454 or the Illumina

Figure 4. TSC clustering of 11 datasets at distances of 0.03, 0.05, and 0.10. All datasets were downloaded from MG-RAST. 4455655.3,
4455656.3, 4455657.3, 4455670.3, 4455679.3, and 4456579.3 were V2 fragments from soil; 4455848.3 and 4455861.3 were V2 tags from tundra
communities; 4457768.3, 4457769.3, and 4457770.3 were V4 tags from human-associated habitats.
doi:10.1371/journal.pone.0030230.g004
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platform from environmental or human microbiome samples at

distances of 0.03, 0.05 and 0.1, and all of them showed the

merging of CL, AL, and SL results with increasing TSC cutoff

value (Fig. 4). These results indicate that the abundant tags were

grouped into similar numbers of OTUs using any of the three

algorithms, whereas the significantly different OTU numbers

among CL, AL, and SL in previous reports [13] were mainly

caused by the rarest tags, mostly singletons and doubletons, similar

to what was observed at the cutoff of 1.

Rare sequences receive much attention in both clustering

algorithm and microbial diversity studies. With next-generation

sequencing techniques, researchers have found an unexpectedly

large number of rare species in various environments [4].

However, further studies demonstrated that pyrosequencing errors

and PCR mutations contributed substantially to the large number

of rare tags [13,18,19,21]. For instance, Quince et al. found that

most of the remaining error tags after denoising were singletons

[17]. Additionally, in the clone43_97up dataset, all rare sequences

were ‘noise’ because there were only 43 templates in the initial

PCR cocktail. The best way to mitigate the effect of ‘noise’

sequences while maintaining the true rare biosphere is an

intriguing topic [13,17].

In our TSC pipeline, we presumed that the distance between a

‘noisy’ rare sequence and its parent tag was within a certain

distance (such as 0.03). Accordingly, we first clustered the

abundant group using highly accurate methods. Subsequently,

we merged rare tags into these abundant OTUs if they fit the

distance to any tags in the abundant OTUs, thereby minimizing

the ‘noise’ effect, as demonstrated in the clone43_97up result. It is

possible that diversity could be under-evaluated in the TSC

pipeline, e.g., if some rare tags within 0.03 distances to abundant

OTUs came from true rare species or if many real rare sequences

were linked together using the SL algorithm. According to our

analysis, even with this underestimation risk, a large fraction of

singleton or doubleton OTUs were retained in the TSC results

(Table S1), indicating that a highly diverse rare biosphere could be

characterized with the TSC pipeline.

Even though the TSC pipeline can reduce the noise effect from

rare tags, the method is not a denoising program. We recommend

using Ampliconnoise [17] and Uchime [22] to screen pyrose-

quencing errors and chimeras before performing the clustering

because these types of error sequences with large differences from

their parent tags cannot be removed by the pipeline.

Compared with the other methods, TSC (cutoff 3) obtained

relatively conservative OTU numbers for the Costello day 3

dataset (Table 1). Although there is concern about the spurious

OTU estimation, this does not imply that a method with a lower

number of estimated OTUs is better. Our TSC pipeline achieved

a lower estimation by minimizing the contribution of rare tags.

TSC shows comparable or improved performance for
beta-diversity comparisons

One of the major reasons to group tags into OTUs is to

compare the beta diversity of microbial communities to charac-

terize the clustering patterns of communities and to explore their

underlying biological explanations. We compared the clustering

patterns of Costello day 3 samples using OTUs clustered with

various methods (Fig. 5). In general, TSC, UCLUST, and

ESPRIT results could separate gut (blue) and oral (green) samples

from the others, which was in accordance with the conclusion in

the Costello paper [20]. The unweighted UniFrac-based principal

coordinates analysis (PCoA) showed similar resolutions for the

three approaches and a group of samples from external auditory

canal (EAC, red) could also be identified from the skin samples

(purple) (Fig. 5 D–F), which was more obvious than the detrended

correspond analysis (DCA) results (Fig. 5 A–C). In addition to the

Costello dataset, we tested several in-house data (both 454 and

Illumina) with TSC and UCLUST, as both methods can analyze

Figure 5. DCA and PCoA analysis of the Costello day 3 dataset using OTU results clustered with different methods. For A–C, we used
the abundance data of OTUs clustered using the three methods as input for DCA analysis using Canoco v4.2; For D–F, we picked the most abundant
tag from each OTU clustered using various methods as input for calculating unweighted UniFrac distance and used the UniFrac distance for PCoA
analysis.
doi:10.1371/journal.pone.0030230.g005

TSC for Selecting OTUs

PLoS ONE | www.plosone.org 6 January 2012 | Volume 7 | Issue 1 | e30230



datasets with millions of tags. The TSC and UCLUST generally

performed similarly for beta-diversity comparison, but sometimes

the TSC pipeline worked slightly better than the UCLUST or vis-

versa (data not shown). We suggest users to try both methods and

select the one showing better results as expectations.

TSC clusters datasets with over 1 million sequences with
high efficiency

To evaluate the computational efficiency of TSC, we used the

full Costello dataset and its subsamples, varying from 1,000 to 1.07

million sequences. The TSC method showed quasilinear compu-

tational complexity, and the peak memory usage of TSC increased

linearly with the sequence number (Fig. 6). Four major traits of our

TSC pipeline contribute to the improvement of computational

efficiency. First, only the abundant tags are clustered using the

hierarchical algorithm; therefore, the time required to perform the

pairwise NW alignment and the peak memory usage is

significantly reduced. Second, the alignment-free preclustering

(step 2) treats a large proportion of rare tags, which is more rapid

than the alignment methods. Third, a Kmer screening further

reduces the number of NW distances that need to be calculated in

the second-stage clustering. Finally, TSC enables the use of

multiple CPU threads throughout the program, which further

reduces the computation time. In brief, the TSC algorithm retains

the accuracy of clustering with pairwise NW distances for every tag

grouped into OTUs, and it accelerates the speed by minimizing

the number of NW distances to be calculated.

The TSC program can be used to analyze both 454 and

Illumina data. There is a parameter named 2r 454 that uses a

penalty value of 0 for continuous extension gaps and end gaps;

thus, it calculates these gaps as a single indel, which fits the 454

sequencing error characteristic [18]. In contrast, in the default

mode for Illumina (BIPES) reads, each extension and end gap has

a penalty value of -1 because the Illumina method tends to have

error types of mismatches rather than continuous indels [6]. We

used the TSC program to analyze both 454 and Illumina data,

and all datasets showed well-clustered OTUs.

In conclusion, the present study demonstrated that rare tags

caused both computation and accuracy problems for OTU

clustering. Currently, sequencing throughput is increasing rapidly

with the advancement of new sequencing techniques, and our

study suggests that the characteristics of a sequencing dataset

should also be considered for future improvements to bioinfor-

matic analysis pipelines. TSC can analyze large datasets of tags

using common personal computers, and we suggest that it will be

useful for both large studies and labs without requiring advanced

computational resources.
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