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Abstract: The effect of the application of a rotating magnetic field on the average grain size of IN718
castings was experimentally studied. For the purpose, four parts were produced by investment
casting and characterized. The first casting was produced without application of RMF for comparison.
The remaining ones were submitted to different RMF frequencies for 15 min and subsequently to the
pouring of the nickel-based superalloy. In these three castings, the RMF frequencies applied were,
respectively, 15 Hz, 75 Hz and 150 Hz. All the other process parameters were kept constant during
the execution of the experimental procedure. The average grain size of the samples was determined
according to the ASTM E112-13 standard, using intercept methods. Macro hardness measurements,
tensile testing and SEM-EDS analysis were conducted in order to evaluate the casting’s mechanical
properties and microstructures. The results demonstrate a noticeable grain size reduction in the
samples submitted to rotating magnetic field. An average grain area reduction, greater than 96%, was
achieved in the castings where RMF frequencies of 75 Hz and 150 Hz were applied. The application of
RMF also caused a morphological change in the casting’s dendrites from cellular to almost equiaxed.
Additionally, it originated the decrease of the size and amount of needle-like δ phase. Regarding
mechanical properties of the cast parts, no major differences were verified.

Keywords: investment casting; rotating magnetic field; grain refinement; Inconel 718; superalloy

1. Introduction

Inconel (Nickel-based) superalloys are currently used in the aircraft/aerospace indus-
try, mostly due to their excellent creep properties, hot corrosion resistance and oxidation
resistance. These superalloys can withstand intense mechanical stresses and pressures,
when submitted at high working temperatures (heat resistant alloys), while retaining
reliable creep and corrosion-resistance properties [1–4].

Therefore, Inconel 718, a Ni-Cr-Fe austenite (γ) superalloy [1,2,5] has been mostly
employed in turbojet engines in the form of major parts of turbines wheel, discs and blades.
It is also used in rocket engines, combustion chambers and nuclear reactors as it offers
robustness and prevents the occurrence of brittle transformation in the components at high
temperatures [1–7].

At high operating temperatures, normally up to 700 ◦C, it is desirable as a uniform
and fine crystal structure of the superalloy in order to preserve its excellent mechanical
characteristics [5,8].

Nickel-based superalloys can also be hardened by solid-solution strengthening or
precipitation of intermetallic compounds in the metal matrix. IN718, in particular, is
frequently strengthened by precipitating γ’ (Ni3(Al, Ti)) and γ” (Ni3Nb) phases in the γ

matrix [9–14].
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Another important precipitated phase noticeable in Inconel 718 is δ phase (orthorhom-
bic Ni3Nb), which is incoherent with the γ matrix. The precipitation of acicular δ phase
often starts at 750 ◦C and occurs up to 1020 ◦C, influencing the mechanical properties of
the superalloy. Despite the fact that the significant presence of δ phase at grain boundaries
might drastically decrease the strength and plasticity of the alloy, the moderate presence of
δ phase could promote grain refinement and inhibit its dislocation (δ phase grain boundary
pinning effect—spherical fine δ phases), improving the mechanical properties of Inconel
718 [2,9,10,15]. Typically, the needle-like δ phase forms in the vicinity of or is attached to the
Laves phase, mainly in the Nb-rich areas of the interdendritic regions [13]. Laves phases
have low ductility and their greater incidence causes a decrease in castings’ mechanical
and corrosion properties [13–16].

Usually, Inconel 718 components are fabricated using conventional melting and invest-
ment casting techniques. Nevertheless, other processes that allow one to obtain components
with complex shape and highly precise dimensions, such as selective laser melting (SLM),
are also applied to produce these parts [10,11,14].

The major drawbacks of conventional investment casting of superalloys such as
Inconel are microstructural coarseness and non-uniformity of grain size, which could
negatively affect the performance and reliability of cast turbine components operating at
medium/high temperatures [2,17]. Other melt-related problems that lead to a degradation
of the mechanical properties of Inconel superalloys are segregation, porosities and laves
phase [9,13,18]. Therefore, additional casting techniques are needed to produce very fine
grains and homogenous microstructures.

Nowadays, three major casting techniques are applied aiming grain refinement of
superalloys, such as [8,19]:

• Variation of casting parameters (namely by controlling the casting temperature and
the heat transfer at the interface metal/mould);

• Addition of grain refinement agents (Inoculants, e.g., CoAl2O4);
• Mechanical vibration.

These methods can be grouped into three distinct categories: thermal, chemical and
mechanical.

For example, J. Wenzhong et al. [8] state that fine-grain superalloy castings with a grain
size in the range of 125–65 µm might be achieved by controlling the cooling rate (rapid
cooling preferable), adding inoculants and simultaneously agitating the mould. This agita-
tion of the mould might be performed by submitting the liquid metal to electromagnetic
stirring by the imposition of a rotating magnetic field [8].

Electromagnetic stirring is an effective method to obtain grain refinement and ho-
mogenous refining structure [9]. Its principle is based on the application of a system of two
fields: an electric and a magnetic one. These fields exhibit a mutual relationship described
by the Maxwell equations [20].

The induction coil, powered by electrical current (I0), generates an electromagnetic
field that interacts with the solidifying metal at the mould. Hence, this electromagnetic
field induces a local electromotive force (Em) with a magnitude dependent on the local
speed of the liquid metal (V) and magnetic induction (B) [20]:

Em = V × B (1)

This vector product is a result of the interaction between the magnetic field lines and
the current flow of the liquid metal. Consequently, an eddy current (I) is induced in the
liquid metal (conductor) [20]:

I = σ
(
V × B

)
, (2)

where σ represents the electrical conductivity of the liquid metal.
The Lorentz force (F) is a consequence of the effect of the induced current on the

magnetic field [20]:
F = I × B (3)
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The Lorentz force is responsible for the generation of a torque that gives the liquid
metal a rotational movement with the same direction of the rotating magnetic field. The
generated torque depends mainly on the intensity of supply current, frequency, number
of coil’s windings and system geometry. When the vectors V and B are perpendicular, the
Lorentz force has is maximum magnitude [20].

Finally, the induced current intensity and the speed of the liquid metal in motion
might be related using Ohm’s law [20]:

I = σ
[
E +

(
V × B

)]
(4)

Figure 1 displays the influence of the magnetic field on the liquid metal within the
mould and emphasizes the relationship between the physical quantities expressed in the
last paragraphs.
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Electromagnetic stirring increases the fraction of equiaxed grains [21]. For example,
the forced liquid metal movement promotes the transportation of the crystals from the
mould wall into the liquid metal, where they can be converted in equiaxed crystals [8,20].
Additionally, it reduces the segregation and the formation of shrinkage cavity. This method
is essential for grain refinement of superalloys since ease nucleation is promoted while an
extensive growth of crystals in the melt is avoided (it decreases the velocity of columnar
crystals growth) [17,20,22].

In summary, the strong convection of liquid metal caused by the rotating magnetic field
modifies its velocity distribution in the melt and changes its solidification behaviour. The
magneto–fluid dynamics affect the solid–liquid growing mode and inhibits the segregation
of alloying elements on the front of solid–liquid interface. These effects reduce metallurgical
defects, resulting in finer microstructures and enhanced mechanical properties [9,21,22].

Moreover, coating the internal surface of the ceramic shells with inoculants results in
the refinement of the surface grains of superalloy castings (increasing of heterogeneous
nucleation sites and grain growth hindering) [8,17,23]. Along with pouring temperature,
the presence of inoculants in the facecoat of the mould plays a significant role in grain size
control. One of the most used inoculants in the investment casting process of Nickel-based
superalloys is cobalt aluminate (CoAl2O4) [19,23].

As mentioned previously, Inconel 718 is highly sensitive to metallurgical defects such
as porosities, coarse grain sizes and segregation, which might decrease the mechanical
performance of the structural components produced with this superalloy [18,24].

Therefore, when used in structural components, investment cast IN718 is hot isostati-
cally pressed (HIP treatment) in order to reduce porosities due to alloy contractions and
casting segregation [6,13,24]. In addition to mechanical vibration, HIP treatment is an
important technique to decrease IN718 casting defects by promoting a homogenous and
dense microstructure and enhancing the mechanical properties of the alloy [6,13,18]. By
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simultaneously applying high temperature and high gas pressure to the parts, the HIP
process enables the uniform density of the castings, with a significant decrease of porosity
and resulting in improved creep, fatigue, ductility and tensile properties [13,18,24].

In the present study, the application of a rotating magnetic field on the average grain
size, microstructure and mechanical properties of IN718 castings will be investigated.

2. Materials and Experimental Procedure
2.1. Materials

The superalloy used in the experimental work was Inconel 718. Its chemical compo-
sition (weight %) is presented in Table 1. This alloy owns a melting point in the range
1210–1344 ◦C. A cylindrical ingot (ø 73 mm; height 164 mm) with 5.6 kg was used for the
investment casting process.

Table 1. Chemical composition of Inconel 718 alloy (wt %).

Element C Mn Si Ti Cu Al Co Mo Nb Fe Cr Ni

Standard
composition (%) ≤0.08 ≤0.35 ≤0.35 0.65–1.15 ≤0.30 0.20–0.80 ≤1.0 2.80–3.30 4.75–5.50 Bal 17.00–21.00 50.00–55.00

Actual
composition (%) 0.032 0.015 0.073 0.871 0.0093 0.65 0.045 3.01 5.36 19.59 18.09 52.00

2.2. Investment Casting Process

The part to be produced by investment casting consists of a cylinder with 95 mm
diameter and 50.95 mm height. Furthermore, a conical feeding section was added to the
top of the part to ensure an enhanced filling of the ceramic shell. The mentioned geometry
can be seen in Figure 2a.
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Figure 2. Initial stages of investment casting: (a) wax pattern produced; (b) ceramic shell (appearance
after 5 of 9 coatings).

Subsequent to the production of the wax patterns and ceramic moulds, dewaxing and
ceramic shell heating process, the casting process was conducted following the seven stages
described below:

1. Pre-heating of the ceramic shells (T = 1000 ◦C), crucible and inconel’s ingot (T = 250 ◦C);
2. Placement of the shell, crucible and metallic ingot in the casting equipment;
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3. Vacuum application inside the casting chamber (pressure: 0.1 mbar);
4. Inconel’s ingot melting initiation;
5. Pouring of the metal into the ceramic shell (by gravity effect);
6. EMS application (duration: 15 min);
7. Air cooling of the ceramic shell.

In order to prevent a shell’s faster cooling and to provide more time to metal’s grain
size refinement through EMS, a thermal blanket (superwool) was applied around the
ceramic shells previously to the casting process. Figure 3a schematizes the equipment
used to perform the castings and to generate the electromagnetic field. This equipment is
composed of a lifting platform (1), an electromagnetic field inducer (5) and an induction
coil (8). In this figure, the position of the ceramic shell (2), pouring cup (3), ceramic crucible
(4), ceramic filter (6), nickel penny (7) and the Inconel ingot (9), inside the chamber when
the lifting platform is raised and the door closed, is visible.
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Figure 3. Equipment used for investment casting and application of electromagnetic field:
(a) schematic representation of the equipment and identification of the main components; (b) picture
of the equipment used in the experiments.

During the process, after the raise of the lifting platform and subsequently close
of the chamber door, vacuum was applied in the casting chamber before the Inconel
ingot melting (vacuum melting start value: 0.1 mbar), aiming to avoid the occurrence of
oxidation reactions.

In order to study the effect of the rotating magnetic field in the grain refinement of
Inconel 718 and its microstructure, four parts were produced with different electromagnetic
field frequencies, according to Table 2. For this purpose, a frequency inverter MOVITRAC
LTP-B was used in the connection between the equipment’s stator and the electrical network.
A rotating magnetic field without reversion was applied. The remaining process parameters
were kept constant during the execution of the experimental procedure. The current
intensity applied represents the maximum value that allows one to use the equipment
without stator’s overheating.
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Table 2. DoE implemented to study the effect of rotating magnetic field application during the
investment casting of Inconel 718.

Casting Number Frequency (Hz) RMF Current Intensity
(A)

RMF Treatment Time
(s)

Power
(kW)

1 0 * - - -
2 15 80 900 65
3 75 80 900 65
4 150 80 900 65

* Casting number 1—rotating magnetic field not applied.

2.3. Casting’s Characterization

The cylindrical cast parts obtained (without the upper conical feeding system) were cut
into six slices by electrical discharge machining (EDM). In order to evaluate the influence
of the rotating magnetic field on the cast parts, average grain size measurements were
performed, followed by a microstructural and mechanical properties analysis.

The determination of the average grain size was executed according to the ASTM
E112-13 standard (intercept method—40 mm test line length). For each casting, this method
was applied both in a section from the center of the cast part and in another from its
periphery. Three measurements were performed for each section. The samples were
ground, polished and chemically etched with 80 mL HCL + 10 mL H2O2 + 10 mL H2O to
expose the macrostructure.

Microstructures were characterized using a FEI Quanta 400FEG ESEM high resolu-
tion scanning electron microscopy (SEM) (FEI Company, Hillsboro, OR, United States)
equipped with an EDAX Genesis X4M energy-dispersive x-ray spectroscopy microanalysis
(EDS)(Oxford Instruments, Oxfordshire, UK). In order to expose the different intermetal-
lic compounds, the samples were ground, polished and chemically etched with 60 mL
C2H5OH + 40 mL HCL + 2 g CuCl2.

Mechanical properties were analyzed by macro hardness measurements and tensile
testing. The macro hardness measurements were performed using a EMCO M4U Universal
Hardness Tester (EMCO-Test, Kuchl, Austria). Three measurements were done for each
casting, in the section closest to the center of the cast part. The tensile tests were accom-
plished using an MTS 810 Material Testing System. For each casting, three specimens were
machined from the section closest to the center of the cast part to prepare standard tensile
samples (ISO 6892-2). The specimens’ dimensions can be visualized in Figure 4.
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3. Experimental Results and Discussion
3.1. Grain Size Evaluation

The grain measurement results obtained for the castings submitted to four distinct
RMF frequencies are presented in Table 3. The number of intercepts per unit length of test
line (NL), the mean lineal intercept length (l) and the ASTM macroscopic grain size number
(G) were calculated, respectively, using the following equations, in accordance with ASTM
E112-13 standard:

NL =
NI

L/M
(5)

l =
1

NL
(6)

G = +10.00− 2× log2 l (7)

where L represents the test line length (40 mm) and M is the magnification used (1× in
this case).

Table 3. Grain measurement results for the different castings.

Casting
Number

RMF
Frequency

(Hz)
Section Test Line

No. Ni NL
¯
l (mm)

¯
l Section
(mm)

ASTM Macro
Grain Size-G

1
without

magnetic field

Center
1 5 0.125 8.00

8.00 M-4.002 5 0.125 8.00
3 5 0.125 8.00

Periphery
1 4 0.100 10.0

8.667 M-3.772 5 0.125 8.00
3 5 0.125 8.00

2 15

Center
1 23 0.575 1.74

1.771 M-8.352 24 0.600 1.67
3 21 0.525 1.91

Periphery
1 19 0.475 2.11

2.183 M-7.752 18 0.450 2.22
3 18 0.450 2.22

3 75

Center
1 26 0.650 1.54

1.465 M-8.902 28 0.700 1.43
3 28 0.700 1.43

Periphery
1 24 0.600 1.67

1.545 M-8.752 26 0.650 1.54
3 28 0.700 1.43

4 150

Center
1 28 0.700 1.43

1.454 M-8.922 30 0.750 1.33
3 25 0.625 1.60

Periphery
1 25 0.625 1.60

1.702 M-8.472 25 0.625 1.60
3 21 0.525 1.91

Where: Ni—number of intercepts; NL—number of intercepts per unit length of test line; l—mean lineal intercept
length for each test line; and lSection—average of mean lineal intercept length for each section.

The number of grains per unit area (NA [No./mm2]) and the average area of the grain
sections (A [mm2]), for macroscopically determined grain sizes, can be obtained using the
following relation with ASTM grain size (G):

G = −2.9542 + 3.3219× log10(NA × 1002) (8)

So,
NA = 10

G+2.9542
3.3219 /1002 (9)
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And,
A = 1/

(
NA

)
(10)

The results regarding the number of grains per area unit and the average area of the
grain sections, for each casting, are exhibited in Table 4. As can be perceived from these
results, the grain size was highly reduced from the first casting (without RMF application)
to the other ones submitted to rotating magnetic field. Additionally, for all the four castings,
the average grain size measured was smaller in the center of the cast part rather than in its
periphery. That was unexpected for casting no. 1, produced without RMF, since the early
solidification of the periphery means faster cooling time and, consequently, should have
resulted in finer grain size in this section. Nevertheless, due to the small number of grains
intercepted by a test line in the samples of the first casting, the difference in the grain size
measured in the central and peripheral sections can be neglected. In the samples submitted
to RMF, this fact can be explained due to the earlier cooling and subsequent solidification
of the castings’ peripheral sections when compared to the central ones since the periphery
has less time to engage in inconel’s grain size refinement through electromagnetic stirring.

Table 4. Grain size determination for the different castings.

Casting No. RMF Frequency
(Hz) Section NA

(No./mm2)

¯
A

(mm2)

Grain Size
Reduction * (%)

1 without magnetic
field

Center 0.0124 80.64 -
Periphery 0.0106 94.64 -

2 15
Center 0.2533 3.95 95.10

Periphery 0.1665 6.01 93.65

3 75
Center 0.3697 2.70 96.65

Periphery 0.3327 3.01 96.82

4 150
Center 0.3754 2.66 96.70

Periphery 0.2741 3.65 96.14

Where: NA—number of grains per unit area; A—average area of the grain sections; * Grain Size Reduction
calculated relatively to casting no. 1 grain size.

For the section closest to the center of the cast part, the major difference noticed was
between casting no. 1 and 4, with a reduction of 96.70% in the average grain area. A similar
grain size reduction was obtained for casting no. 3 (96.65%). Despite this, casting no. 4 in
its central section presented a great number of casting defects due to shrinkage porosity.
These casting defects can be observed in Figure 5d.

Regarding the section furthest from the center of the cast part, the main decrease in
the average grain area was among casting no. 1 and 3 (96.82% reduction). Amongst the
castings submitted to RMF, the highest decrease in the average grain area was achieved
between casting no. 2 and 3 (49.92% reduction for the peripheral section of the cast part).

The greatest overall results were obtained for casting number 3 (rotating magnetic
field frequency: 75 Hz). The grain size refinement that occured due to the application of
rotating magnetic field can be noticed at Figures 5 and 6, where the macrostructures of the
four different castings are presented, in their central and peripheral sections, respectively.
From the visualization of these pictures, it is possible to verify the enormous difference
between the grain size of castings no. 1 (coarse grain) and the grain size of the castings
submitted to RMF (fine grain).
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The evolution of the average grain area with the rotating magnetic field frequencies
applied can be visualized in Figure 7. In this figure, the major dissimilarity in the grain size
between the casting produced without magnetic field application and the ones submitted
to rotating magnetic field is noticeable. The results achieved prove that the forced liquid
metal movement caused by the RMF, during the beginning of the casting’s solidification,
effectively contributed to grain refinement.
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3.2. Microstructures and Metallographic Evaluation

Figure 8 displays the backscattered SEM images of the four castings produced. From
its analysis, the morphological change caused by the application of the rotating magnetic
field is noticeable. Therefore, at casting no. 1 sample, produced without application of
RMF, dendrites with cellular morphology are predominant (Figure 8a). On the other hand,
in the samples representative of the three castings submitted to RMF, the dendrites have an
equiaxed morphology.

As characteristic of cast IN718 [14], extensive segregation is observed in the microstruc-
tures of the castings produced, mainly in the interdendritic space but also in the dendritic
(γ) region. This segregation is intensified due to the large section size of the cast parts since
longer solidification process occurs [13].

Figure 9 exhibits the phase distribution in the as-cast IN718 without application of
RMF. Subsequent to the nucleation of the γ phase, the initial phase formed is the Nb and Ti
primary carbides [13]. Despite the fact this primary carbide is scattered throughout the ma-
trix (Z1 and Z3), it is more predominant in the Nb rich interdendritic regions (Z2 and Z4).
The interdendritic phases are principally Laves (Z5 and Z7) and Carbides—MC (Figure
11-Z9). Nevertheless, as the cast parts’ temperature decreased, a needle-like phase called
delta (orthorhombic Ni3Nb) formed in the close vicinity of the Laves phase (Z6 and Z8). Ad-
ditionally, cooling resulted in the formation of γ” precipitates, smaller plate-like structures
that represent a metastable form of Ni3Nb [9,18]. In the interdendritic regions, porosities
are also noticeable, mostly associated with Laves islands.
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Figure 9. Phase distribution and identification in as-cast IN718 (Casting no. 1): (a) Overview of
the dendritic (Z1 and Z3) and interdendritic (Z2 and Z4) regions; (b) Phases identification within
interdendritic region.
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The SEM-EDS analysis of the as-cast Inconel 718 (Figure 10) confirms a low Nb content,
about 2–3% (wt%), in the dendritic matrix, and a higher Nb content, greater than 7%
(wt%), in the interdendritic region. It is also perceptible that the segregation areas of the
interdendritic region are enriched with Nb, Ti and Mo but have reduced concentrations
of Fe and Cr when compared to the dendritic core. The Nb content of the Laves phase is,
approximately, 28% (wt%). Regarding δ phase, its Nb content is 8–10% (wt%).
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Niobium plays a fundamental role in achieving chemical and mechanical property
uniformity in IN718 castings. IN718 cast alloys with Nb contents greater than 5% might
require extended homogenization treatments, in order to obtain optimized mechanical
properties, since the uniform precipitation of fine γ’ and γ” phases requires dissolution of
the Laves phase along with Nb interdiffusion.

Based on the state-of-art analysed, the amount of segregation and the presence of
shrinkage porosities can be decreased with the execution of HIP treatments [18,24].

Figure 11 displays the SEM visualization of a MC carbide and its respective composi-
tion obtained by EDS analysis. Due to the high Nb concentration, almost 70% (wt%), it is
most likely to be a NbC carbide.

Similar phase composition and distribution within the dendritic or interdendritic areas
were found in the four castings produced. The major difference is exposed when comparing
the SEM images of casting no. 1, produced without application of rotating magnetic field,
with the ones of the castings submitted to RMF, i.e., the needle-like δ phase (orthorhombic
Ni3Nb) suffered an evident reduction of size and quantity with the application of RMF
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(Figure 12). In the samples where rotating magnetic field was applied, the precipitation of
the γ” smaller plate-like phases seemed to be pronounced.
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3.3. Mechanical Properties

The mechanical properties achieved for the samples regarding the four different
castings produced were rather similar.

Due to the great amount of casting defects (shrinkage porosities) present in the central
section of casting number 4 (RMF frequency 150 Hz), it was not possible to produce enough
valid specimens for mechanical properties characterization of this casting. According to
the literature review performed, these casting defects could be minimized with application
of a HIP treatment, where the cast IN718 is hot isostatically pressed in order to reduce the
porosities generated due to alloy contractions [18,24].

Therefore, the mechanical properties achieved for the casting produced without RMF
application, and subsequently with coarser grain size, were only compared with the ones
attained for the casting submitted to rotating magnetic field where the enhanced grain
refinement was accomplished.

The engineering stress-strain curves obtained for a specimen of casting number 1, not
submitted to rotating magnetic field, and a specimen of casting number 3, submitted to a
rotating magnetic field with a frequency of 75 Hz, are presented at Figure 13. Despite the
great dissimilarity in the average grain size results attained for these two castings (casting
no. 1—coarser grain with average grain area of 80.64 mm2; casting no. 3—finest grain
with average grain area of 2.70 mm2 in the central section of the casting), there seem to be
no major differences in their mechanical properties, as might be expected from the tensile
testing results.
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Figure 13. Tensile testing results for casting no. 1 (specimen 3) and casting no. 3 (specimen 1).

For the casting produced without the application of the RMF, a yield strength (Rp0.2)
of 575 MPa, an ultimate tensile strength (Rm) of 828 MPa and an elongation (A5,01) of 29.8%
were achieved. Similar to these results, for casting number 3 (RMF frequency 75 Hz), a yield
strength (Rp0.2) of 575 MPa, an ultimate tensile strength (Rm) of 833 MPa and an elongation
(A5,01) of 27.5% were obtained. The results denoted in this paragraph are exhibited in
Table 5.

From the tensile testing results achieved for both castings number 1 (without RMF)
and 3 (RMF frequency 75 Hz), it might be concluded that the application of electromagnetic
stirring during the beginning of the casting solidification did not significantly affect its
mechanical properties. Since the use of RMF significantly contributed to the reduction of
the average grain size of the castings, it was expected that the castings submitted to RMF
possess improved mechanical properties. Nevertheless, the existence of shrinkage porosities
in the center of the cast parts due to its great massiveness might have influenced the tensile
testing results. The presence of these defects negatively affected the mechanical properties
of the specimens extracted from the central section of the castings, preventing one from
differentiating between the results from the samples with and without RMF application.
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Table 5. Mechanical properties obtained for casting no. 1 (without RMF application—coarse grain)
and casting no. 3 (RMF Frequency 75 Hz—fine grain).

Casting No. Frequency (Hz) Specimen No.
Yield

Strength—Rp0.2
(MPa)

Engineering Ultimate
Tensile Strength—Rm

(MPa)

Elongation—A5,01
(%)

1 0

1 566.65 826.29 26.69
2 570.78 824.84 32.57
3 586.24 833.77 30.23

Average 574.56 828.30 29.83
Std. Deviation 10.327 4.789 2.959

3 75

1 572.88 836.33 26.19
2 571.93 823.86 25.90
3 579.72 837.98 30.31

Average 574.84 832.72 27.47
Std. Deviation 4.252 7.717 2.468

The macro hardness measurements results are in line with the tensile testing ones. For
the four different castings produced, the average hardness accomplished was quite similar.
These results are presented in Table 6.

Table 6. Macro hardness measurements results (values presented in HV).

Macro Hardness (HV)

Casting
No.

Frequency
(Hz) Meas. 1 Meas. 2 Meas. 3 Average Standard

Deviation

1 0 271 298 249 272.67 24.54
2 15 282 267 270 273.00 7.94
3 75 300 261 276 279.00 19.67
4 150 253 271 315 279.67 31.90

Comparing the average macro hardness results attained for each one of the four
castings, a slight increase of its value with the increment of the RMF frequency is noticeable.
Despite this evidence, the major increase on the average macro hardness was only about
2.57% (amongst casting no. 1 and casting no. 4), which can be neglected. The comparison
between the average macro hardness results obtained for the four castings submitted to
different RMF frequencies is displayed at Figure 14.
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4. Conclusions

The effects of the application of a rotating magnetic field on the average grain size,
microstructures and mechanical properties of Inconel 718 castings were investigated in this
study. Therefore, four cast parts were produced by investment casting: the first one without
application of rotating magnetic field and the remaining ones submitted to distinct RMF
frequencies of 15 Hz, 75 Hz and 150 Hz, respectively. Based on the research developed,
several conclusions can be summarized as follows:

1. The application of rotating magnetic field subsequent to the pouring of IN718 signifi-
cantly contributed to the reduction of the average grain size of the castings. Therefore,
the results accomplished demonstrate that the forced liquid metal movement during
casting’s solidification caused by the RMF effectively generates grain refinement.

2. An average grain area decrease greater than 96% was achieved in the castings where
RMF frequencies of 75 Hz and 150 Hz were applied. The greatest reduction (96.82%)
was attained in the peripheral section of casting no. 3 (RMF frequency: 75 Hz), which
represents a grain area decrease from 94.64 mm2 to 3.01 mm2.

3. The application of RMF caused a morphological change in the cast parts: at casting
no. 1, produced without application of RMF, dendrites with cellular morphology are
predominant; in the remaining three castings, submitted to RMF, dendrites’ morphol-
ogy is mainly equiaxed.

4. Regarding the microstructural evaluation, similar phase composition and distribution
within the dendritic and interdendritic areas were visualized in the four castings
produced. The major dissimilarity perceived in the samples submitted to RMF was
the evident decrease in size and quantity of the needle-like δ phase (orthorhombic
Ni3Nb). Additionally, in these samples, the precipitation of the γ” smaller plate-like
phases seems to be pronounced.

5. Concerning the mechanical properties of the cast parts, no major differences were
observed in the tensile testing and macro hardness measurements performed in the
specimens of the castings submitted, or not, to rotating magnetic field. Therefore, the
application of RMF during the beginning of the castings’ solidification appears not to
have significantly affected their mechanical properties.

6. Since the application of rotating magnetic field vastly contributed to the reduction of
the average grain size of the cast parts and caused the reduction of the needle-like
δ phase, which is responsible for the decrease of strength and ductility of IN718, it
was expected that the mechanical properties of the castings would increase due to
RMF. However, as pointed out in the previous paragraph, that was not verified in
the tensile testing results. This effect might be related to the great size of the castings,
which contributes for the generation of shrinkage porosities in its center, the section
from where tensile testing specimens were extracted. The presence of these defects
negatively affected the mechanical properties of the specimens, preventing one from
differentiating between the results from the samples with and without application.

7. Due to the great size of the cast parts, most of the samples produced presented
shrinkage porosities. Casting no. 4 (RMF frequency 150 Hz) was the one with the
greatest number of these casting defects, mainly in its central section. According to
the state-of-art, these casting defects could be minimized with the execution of a HIP
treatment, where the IN718 cast parts would be hot isostatically pressed in order to
reduce the porosities generated due to alloy contractions.
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