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Abstract

ES cells are defined as self-renewing, pluripotent cell lines derived from early embryos. Cultures of ES cells are also
characterized by the expression of certain markers thought to represent the pluripotent state. However, despite the
widespread expression of key markers such as Oct4 and the appearance of a characteristic undifferentiated morphology,
functional ES cells may represent only a small fraction of the cultures grown under self-renewing conditions. Thus
phenotypically ‘‘undifferentiated’’ cells may consist of a heterogeneous population of functionally distinct cell types. Here
we use a transgenic allele designed to detect low level transcription in the primitive endoderm lineage as a tool to identify
an immediate early endoderm-like ES cell state. This reporter employs a tandem array of internal ribosomal entry sites to
drive translation of an enhanced Yellow Fluorescent Protein (Venus) from the transcript that normally encodes for the early
endodermal marker Hex. Expression of this Venus transgene reports on single cells with low Hex transcript levels and reveals
the existence of distinct populations of Oct4 positive undifferentiated ES cells. One of these cells types, characterized by
both the expression of the Venus transgene and the ES cells marker SSEA-1 (V+S+), appears to represent an early step in
primitive endoderm specification. We show that the fraction of cells present within this state is influenced by factors that
both promote and suppress primitive endoderm differentiation, but conditions that support ES cell self-renewal prevent
their progression into differentiation and support an equilibrium between this state and at least one other that resembles
the Nanog positive inner cell mass of the mammalian blastocysts. Interestingly, while these subpopulations are equivalently
and clonally interconvertible under self-renewing conditions, when induced to differentiate both in vivo and in vitro they
exhibit different behaviours. Most strikingly when introduced back into morulae or blastocysts, the V+S+ population is not
effective at contributing to the epiblast and can contribute to the extra-embryonic visceral and parietal endoderm, while
the V2S+ population generates high contribution chimeras. Taken together our data support a model in which ES cell
culture has trapped a set of interconvertible cell states reminiscent of the early stages in blastocyst differentiation that may
exist only transiently in the early embryo.
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Introduction

ES cells are an in vitro cell line derived from the inner cell

mass (ICM) of the early mammalian blastocyst [1,2]. In mouse

they are defined functionally as a karyotypically normal immortal

cell line that can give rise to all the future lineages of the

conceptus [3]. Thus they can self-renew indefinitely and

continually generate progeny with equivalent pluripotent prop-

erties. The pluripotent properties of ES cells can be demonstrat-

ed by in vitro differentiation or by reintroduction of these cells

back into chimeric embryos by blastocyst injection or morula

aggregation.

ES cells can be described based on a characteristic morphology,

the presence of cell surface markers such as SSEA-1 and Pecam1,

or the expression of the key transcription factors such as Oct4,

Sox2, Nanog, and a number of ES cell-specific transcripts

(ECATs) [4–6]. However, while these markers are useful tools,

ES cells can only be defined based on retrospective function. A

culture can be said to contain ES cells, if a chimera generated from

the injection of these cells contains ‘‘ES cell derived,’’ somatic, and

in particular, germ line tissue. Interestingly, attempts to define the

number of founder ES cells in chimera experiments suggest that

most somatic tissues are formed from one or two of the 10–15 cells

injected into a typical blastocyst [7]. Thus despite indistinguishable
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morphology and apparent homogenous expression of pluripotent

markers such as Oct4, functional ES cells may represent only a

small component of any ES cell culture.

Recent observations suggest that there may be lineage-specific

markers expressed in sub-populations of ES cell cultures. In

particular, the expression of the ICM markers Nanog, Rex1, and

Stella has been shown to be heterogeneous [8–12]. Does this

heterogeneity define a functional subpopulation of cells in ES cell

cultures? While levels of Nanog can affect the propensity to

differentiate, Nanog2/2 ES cells are able to contribute to all

lineages of the conceptus with the exception of the germ cells [8].

Moreover, all of these studies compare the pluripotent potential of

the marked ICM-like population to mixed fractions that are

considered a single further differentiated intermediate cell type.

Interestingly, while not linked to Nanog, the somite segmentation

clock gene Hes1 also displays heterogeneous expression that is

related to periodic oscillations and differential rates of differenti-

ation [13].

ES cells are derived from a stage of development in which key

early lineage specification events are occurring. ICM cells are

formed from the inner cells of the morula as the outer cells form

the first extra-embryonic or trophoblast lineage. A day later, at

implantation (4.5 dpc.), the ICM then gives rise to two lineages,

primitive ectoderm (PrEc or epiblast) and primitive endoderm

(PrEn). The epiblast is the source of all embryonic tissue and the

PrEn the source of both extra-embryonic endoderm lineages,

visceral and parietal. Although the visceral endoderm (VE) itself

does not contribute to the embryo proper, an important early

embryonic signalling centre is formed in VE at the embryo’s distal

tip and these cells will then migrate anteriorly to form the anterior

visceral endoderm (AVE) [14–16].

When injected into host blastocysts, cells derived directly from

the ICM of an expanded blastocyst stage can contribute to the

PrEn as well as the fetus [17,18]. However, cells derived from the

early epiblast are only able to contribute to embryonic lineages

and not those derived from the PrEn [18–20], while PrEn cells can

only contribute to their own lineage by colonizing the visceral and

mostly parietal endoderm in chimera experiments [20–22]. While

ES cells are derived from the ICM, they predominantly contribute

to embryonic lineages. This notion, that ES cells can contribute

only to the somatic lineages, has been exploited for the study of

embryonic versus extra-embryonic phenotypes [14] and is the

reason they are defined as pluripotent, rather than totipotent.

However, despite this consensus view there is some evidence from

blastocyst injection that ES cells can colonize the yolk sac

descendants of the PrEn [23]. In vitro, ES cells can generate

PrEn-like cells either in response to LIF withdrawal [24] or

through forced expression of the transcription factors Gata4 or

Gata6 [25,26]. ES cell cultures also express low levels of Gata4

and Gata6, suggesting the presence of either background levels of

PrEn gene expression or basal levels of PrEn differentiation

[25,27].

One of the earliest markers of anterior asymmetry in the AVE is

the homeobox transcription factor Hex. While Hex is discretely

expressed in the VE on the anterior side of the embryo, it is

initially expressed throughout the early PrEn [28] and like the

GATA factors, Hex transcripts are also detectable in some ES cell

cultures [29]. However, the levels of this transcript are presumably

extremely low as they were not detected in fluorescent Hex

reporter ES cell lines [30]. Here we explore the significance of this

low transcript level and ask what it represents in ES cell culture.

We use an ES cell line in which low levels of Hex transcript are

visualized based on the expression of the enhanced YFP, Venus

coupled to a unique translational amplifier. Using this cell line we

show that apparently undifferentiated ES cell cultures consist of at

least three cell types defined by this lineage-specific low-level

transcription and the expression of the ES cell markers Oct4 and

Nanog. Venus positive cells experiencing low-level transcription at

the Hex locus, but still expressing the ES cell markers SSEA-1 and

Oct4, show elevated levels of PrEn gene expression and reduced

levels of early ICM markers such as Nanog. This early PrEn state

does not appear to represent differentiation but rather exists in

equilibrium with the Venus negative cell states. Manipulation of

either FGF signalling or Nanog expression levels can alter the ratio

of cell types present in this state and single Venus positive or

negative cells can regenerate this equilibrium with apparently

identical kinetics under self-renewing conditions. However, when

ES cells are purified based on expression of this Venus allele and

the ES cell marker SSEA-1, and then followed in differentiation

either in vivo or in vitro, the two populations of ES cells have very

different properties. The Venus negative population contributes

efficiently to the epiblast in chimeras and remains in the centre of

differentiating embryoid bodies (EBs). The Venus positive

population does not efficiently contribute to somatic lineages,

appears at the outside of EBs, and has the capacity to colonize the

visceral and parietal endoderm in chimeras. Taken together, our

data suggest that ES cell culture may represent trapped steady-

state equilibrium between immediate early states of differentiation

normally present in the early mammalian embryo. This state

of equilibrium may exist in vivo for a limited period of time

but in vitro is established by the active maintenance of

blocks to differentiation in all available lineages and selective cell

growth.

Results

Generation of a Sensitive Reporter of Early Endoderm
Differentiation

To generate a reporter cell line that gives real time read outs of

low-level early endodermal gene expression, we introduced a

Author Summary

Embryonic stem (ES) cells are karyotypically normal,
embryo-derived cell lines that are pluripotent, i.e. capable
of generating all the cell types of the future organism, but
not the extra-embryonic lineages. What gives ES cells this
unique capacity? Here, we use a fluorescent reporter cell
line that employs translational amplification to visualize
single ES cells expressing low levels of lineage-specific
genes. With this reporter we split ES cell cultures into two
fractions that both express certain stem cell markers but
only one of which expresses low levels of an endodermal
marker gene. Following purification, single cells from
either fraction are equally competent to re-establish a
heterogeneous culture. However, when challenged to
differentiate immediately after purification, each exhibits
strong lineage bias, with the endoderm marker-expressing
fraction unexpectedly able to contribute to the extra-
embryonic endoderm in chimeric embryos. These data
suggest that ES cells expand under steady-state conditions
as a heterogeneous mix of lineage-biased—but not
lineage-committed—cell types. We propose that these
observed uncommitted substates exist temporarily in vivo,
but are perpetuated in vitro under the selectively self-
renewing conditions of ES cell culture. Our findings
suggest that pluripotency is determined by the capacity
of a mixed population of lineage-biased intermediates to
commit to different cell fates in specific contexts.

Lineage Bias and ES Cell Heterogeneity
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synthetic internal ribosomal entry site (IRES) designed to amplify

translation upstream of a fluorescent reporter [31] into the first

exon of the Hex genomic locus (Figure 1A). This IRES consisted of

10 tandem reiterations of nine base pair elements from the Gtx

locus, previously shown to generate synergistic translation of a

bicistronic message [32], driving expression of the enhanced

fluorescent protein Venus. The reporter and a LoxP flanked

selection cassette was inserted downstream of a tagged Hex cDNA

to generate the Hex-IRES-Venus (HV) (Fig. 1A) targeting vector.

The tagged Hex cDNA ensured wild-type levels of Hex expression

and contains a sequence for in vivo biotinylation by the BirA

ligase. ES cells were targeted and hygromycin resistant clones

screened by Southern blot. Three clones were expanded for

removal of the selection cassette by transfection with a plasmid

expressing the Cre recombinase (Figure 1B, 1C). We confirmed

that all three clones had a normal karyotype and contained the

modification based on direct sequencing of the region containing

the insertion (Figure S1 and unpublished data).

To confirm that the expression of the Venus allele reflects

endogenous Hex expression [28,33,34], we used two HV clones to

generate chimeras and examined the sites of high-level Venus

expression during embryonic development. As expected, Venus

expression was detected in the pharyngeal pouch endoderm,

endocardium, inter-somitic vessels, and dorsal aorta (Figure 1D).

We also tested the expression of the Venus allele during

differentiation of the HV cells towards ES cell derived ADE that

normally expresses high levels of Hex. This protocol was

established with another Hex reporter line, Hex RedStar (HexRS),

and requires 5 d of continuous exposure to the Nodal related

TGF-b, activin [30]. Thus we differentiated these cell lines

alongside HexRS reporter cells and examined the activin

dependence of Venus expression (Figure S2). We also confirmed

that this high level of Venus expression reflected quantitative

induction of both endogenous Hex and another anterior

endoderm marker Cerberus (Figure S2). Interestingly, while high

levels of fluorescence and the expression of Hex and Cerberus

mRNA required activin, low levels of Venus fluorescence were

detected in the absence of activin. The detection of this level of

Venus expression in the presence of low levels of Hex mRNA

suggests that this reporter is indeed extremely sensitive to the low

levels of Hex transcript produced in the absence of activin, earlier

in differentiation, and in undifferentiated ES cells.

Low Levels of Hex Expression Define a Unique Sub-
population of Undifferentiated ES Cells

The low levels of Hex transcript observed in undifferentiated ES

cells (Figure S2C) were sufficient to generate a significant Venus

positive (V+) sub-population in undifferentiated ES cell cultures

grown under standard feeder free conditions. Intriguingly, this

population also expresses the ES cell marker, SSEA-1 (Figure 2A).

Figure 2A shows that in the presence of the cytokine LIF, the

majority of Venus-positive cells (70%) were also SSEA-1 positive

(V+S+), while LIF withdrawal both increased the percentage of the

population expressing high levels of the Venus transgene (mean

level of fluorescence increases approximately 2-fold, Figure 2A)

and led to a substantial increase in a second Venus positive

population that is SSEA-1 negative (V+S2). Morphologically the

majority of V+ cells grown in the presence of LIF appear

indistinguishable from their V2 counterparts and the level of

fluorescence in these morphologically normal V+ cells is

substantially lower than that observed in cells that either appear

differentiated or have been differentiated in response to LIF

withdrawal (Figure 2B). Thus while the majority of the V+

population existing in ES cell cultures are indistinguishable from

undifferentiated ES cells, we also observe differentiated cells

expressing high levels of the Venus transgene (arrows in Figure 2B)

that resemble the high-level Venus expressors generated in

response to differentiation and that probably represent spontane-

ous PrEn differentiation.

As we were initially surprised by these observations, we asked

whether the expression level of Venus RNA was equivalent to that

generated by endogenous Hex. Using quantitative PCR, we

compared the levels of Hex transcript from the wild-type and

Figure 1. Targeting of the Hex locus with an amplified IRES
Venus reporter. (A) Schematic representation of the gene targeting
strategy. Hex cDNA tagged with a recognition site for the bacterial BirA
ligase (B), followed by an artificial IRES sequence composed of a tandem
array of reiterated 9 bp elements from the Gtx promoter and DNA
encoding the fluorescent reporter, Venus, was inserted into the first
exon of the Hex locus. (B) Southern blot analysis of targeted cell lines.
Each blot depicted with an indication of the specific probe and digest.
Genomic DNA digested with EcoRV was hybridised with either probe 1
to reveal WT (11.3 kb) or targeted (9.3 kb) bands, or probe 2 to produce
a 9.3 kb band representing a single integration only in the Hex locus.
Genomic DNA was also digested with ScaI and hybridised with probe 3
to reveal WT (17.8 kb) or targeted bands (11.5 kb). Genomic DNA from
wild-type E14 cells is in the lanes labelled with a C. (C) Removal of
selection cassette by transfection with the Cre recombinase. Following
removal of the selection cassette through identification of GancR clones
a PCR based strategy was used to confirm excision. Primers specific for
the hygromycin resistance gene were used alongside control primers to
sites in the Hex promoter region. (D) HV reporter is faithful to Hex
expression in chimeras. ES cells from two HV clones (5.1 and 16.1) were
used to generate chimeras by morula aggregation. Embryos were
obtained at E9.5 and imaged with fluorescence microscopy. Images
show expression of Venus derived from two different clones in the
thyroid (black arrow), intersomitic vessels (white arrowheads), the
dorsal aorta region (white arrow), and liver primordium (black
arrowhead).
doi:10.1371/journal.pbio.1000379.g001

Lineage Bias and ES Cell Heterogeneity
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transgenic alleles to those from the transgenic allele only. We

found that the endogenous Hex was expressed at extremely low

levels with the transgene representing between 50% and 75% of

this value (Figure 2C). Thus, Hex reporter gene expression

appears to faithfully reflect the very low level of endogenous Hex

transcript.

The Venus Positive Population Represents an Early PrEn-
Like State

Since V+ cells were found abundantly in the SSEA-1 positive

population, we asked whether this population expressed other

markers of the undifferentiated state. Antibody staining for Nanog

and Oct4, imaged alongside YFP/Venus fluorescence, indicated

that while the Venus positive cells were also Oct4 positive, they

expressed low levels of Nanog (Figure 3A).

To further address what the co-expression of these markers

represented, we purified populations of cells from ES cell culture

based on the expression of the Venus transgene and SSEA-1 by

flow cytometry. Quantitative real time PCR based on RNA

extracted from both SSEA-1 positive fractions revealed that while

Oct4 levels remained constant, the Venus positive fractions from

two different clones expressed higher levels of the PrEn markers

Gata4, 6, Dab2, Sox7, and Hnf4a and lower levels of ICM

markers such as Nanog, Klf4, Stella, and Rex1 (Figure 3B).

Interestingly, we observed no enrichment of epiblast, neural, or

mesodermal markers in the V+S+ fraction (Figure 3B, bottom

panel) indicating that this fraction likely contained only progenitor

cells specific to PrEn differentiation. During pre-implantation

development Gata6 expression precedes Pdgfra in putative PrEn

precursors[35] and our V+S+ and V2S+ fractions expressed the

same low to non-existent level of this transcript supporting the

notion that V+S+ fractions contains early PrEn progenitors.

Interestingly we observed approximately a 2-fold change in

Nanog transcript levels between the two populations, and thus

while the V+S+ cells appear Nanog negative based on antibody

staining, they still express some Nanog transcript.

To test the notion that this low level of transcription at the Hex

locus producing the V+S+ fraction in ES cell culture represented

an immediate early state in PrEn differentiation, we examined

global differences in gene expression. RNA was isolated from all

four fractions (V2S+; V+S+; V2S2; V+S2) in two independent

clones of HV ES cells and hybridised to NIA Mouse 44K

Microarray chips v2.3 (GEO Accession GSE13472) [36].

Hierarchical clustering of differentially expressed genes identified

in a pair-wise analysis of all four fractions in both clones is shown

in Figure 4A. Significant changes in the expression of 2,169 genes

(FDR ,0.05) resulted in the identification of three to four

expression groups, depending on whether clonal variation is taken

into account (Table S1). The greatest changes in gene expression

were seen when the V2S2 and V+S2 fractions were compared

(Figure 4B) with over a thousand genes changing in each direction.

However, the differences between the two SSEA-1 positive

fractions were relatively small, with only 139 non-redundant

genes overexpressed and 123 underexpressed (FDR ,0.05, 1.5-

Figure 2. Expression of Venus in a subpopulation of SSEA 1
positive HV cells under self-renewing conditions. (A) Flow
cytometry of two independent HV clones (HV 5.1 and HV 16.1) cultured
either under self-renewing conditions or in the absence of LIF show the
presence of a subpopulation of cells positive for Venus and/or the ES
cell surface marker SSEA-1. Gates for expression of Venus and the
presence of SSEA 1 were based on unstained E14 ES cells. Upon the
removal of LIF for 3 d, the percentage of cells negative for SSEA 1
increased in both HV clones and the E14 cell line. (B) Fluorescence
microscopy of the HV cell line in the presence or absence of LIF.
Cultures were differentiated as (A). Note the brighter intensity of Venus
in the tightly apposed pavement-like cells in the LIF negative culture
(white arrows). Venus expression is absent from giant flat cells (white

arrowheads). (C) Expression of the Venus transgene is similar to the low-
level expression of the Hex cDNA. RNA was prepared from self-
renewing cultures of three HV clones, parental R26BirA cells, and Cgr8
cells. Quantitative PCR analysis was carried out to monitor levels of
mRNA derived from both targeted and untargeted alleles of Hex (1f, 2r)
or targeted allele only (Bf, 1r). The schematic diagram depicts the
different primers used. Values for each primer set used were normalised
to the levels of Actin value obtained for each sample.
doi:10.1371/journal.pbio.1000379.g002

Lineage Bias and ES Cell Heterogeneity
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fold). While this group of genes is not large, what became apparent

from inspection of the heat map in Figure 4A is that the majority

of genes upregulated in the V+S2 cells are also marginally

upregulated when the V2S+ to V+S+ fractions are compared. The

size of this gene set varies somewhat depending on the particular

clone, but this trend is particularly obvious when one considers sets

of PrEn markers (Figure 4C and Figure S3). Thus for every PrEn

marker examined we found subtle increases in gene expression

were detected when the V2S+ and V+S+ fractions were compared

and that these then translated into more robust increases in the

V+S2 fraction.

We analyzed overrepresentation of Gene Ontology (GO) terms

in the non-redundant genes that were overexpressed in the V+S2

and V+S+ fractions based on 1.5-fold change with a 0.05 FDR

(Tables S2 and S3). We found that the V+S+ population expressed

sets of genes that fell into major functional categories that were

associated with ‘‘Cell adhesion’’ and ‘‘Cell migration.’’ The V+S2

fraction also featured these categories in addition to ‘‘Prolifera-

tion,’’ ‘‘Apoptosis,’’ and ‘‘Cytoskeleton.’’

An equally consistent pattern of gene expression is observed in

the set of ICM markers (contained within Group 2 in Figure 4A,

Figure 4C, and Figure S3). Most of these genes were significantly

down-regulated in both V+ fractions and remain high in the V2S2

fraction, indicating that this fraction contained a significant

proportion of undifferentiated ES cells. This is consistent with

the small number of gene expression changes (40 genes), with no

Figure 3. Venus positive population may represent an early state in PrEn differentiation. (A) Venus positive cells express Oct4, but not
Nanog. Colonies of HV cells were fixed and immunostained for both Oct4 and Nanog. Primary antibodies specific to Oct4 and Nanog were detected
using Alexa 568 conjugated secondary antibodies (red). Images include Venus fluorescence, antibody staining, overlay of Venus and antibody, and
bright field for each cell line and the indicated antibodies. (B) Quantitative RT-PCR showing the relative expression of endodermal and pluripotency
genes between Venus positive and negative cells obtained from the SSEA-1 positive fractions of two HV clones following flow cytometry.
Quantitative PCR analysis was performed to compare transcript levels of Venus with PrEn (Hex, Gata4, Gata6, Dab2, Sox7, Hnf4a, and Pdgfra),
pluripotency (Nanog, Klf4, Rex1, Stella, and Pou5f1) and other lineage (T, Fgf5, Eomes, Flk1, Mixl1, Cdx2, Sox1, Pax6, and Six3) markers in purified cell
fractions. Venus positive fractions are represented as green bars and Venus negative black bars. Transcript levels were normalised to the TBP value
obtained for each sample. Normalised values are related to the level obtained for the Venus positive fraction in each case.
doi:10.1371/journal.pbio.1000379.g003

Lineage Bias and ES Cell Heterogeneity
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significant pattern or common G0 annotation, that fluctuate with

SSEA-1 when these two populations are compared to each other

(Figure S4). While the majority of pluripotency genes were down-

regulated in both V+ populations, there were some exceptions,

including Oct4 and a class of differentiation inhibitors normally

regulated by BMP4 including Id1, Id2, and Id3 [37]. Oct4 was

expressed through the V2S+, V+S+, V2S2 fractions and down-

regulated in V+S2, while the Id transcripts appeared to follow the

PrEn genes, suggesting that they function to block neural

differentiation in an early endoderm sub-population.

To confirm that early differentiation pattern exhibited in the

V+S+ fraction was indeed an early state in PrEn differentiation,

rather than a metastable pro-differentiation state similar to that

described for the Oct4 positive populations that do not express

Nanog, Rex1, or Stella [8–11], we examined the behaviour of

gene sets representing other lineages in our data set (Figure 3C and

Figure S3). Neither neuroectoderm nor mesodermal genes were

upregulated in V+S+ fraction.

Nanog Expression Suppresses the Venus Positive Early
PrEn State

As Nanog is rarely expressed in the Venus positive cells, we

asked whether enforced Nanog expression would suppress baseline

transcription at the Hex locus and thereby reduce expression of

the Venus reporter. Nanog was misexpressed in HV ES cells under

control of the CAG promoter driving an IRES puro cassette [38].

Western blotting showed increased levels of Nanog in 2 clones

compared to parental and control cells (Figure 5A). As

overexpression of Nanog in ES cells supports LIF independent

growth [6,38], we confirmed Nanog overexpression in the HV line

by observing the persistence of ES cells following 10 d culture in

the absence of LIF (Figure 5B).

Nanog overexpressing HV cells were grown in the presence of

LIF and the fraction of these cultures that expressed the amplified

Venus transgene quantitated by flow cytometry. In two indepen-

dent clones we observed a dramatic reduction in V+S+ population

(3–6-fold, Figure 5C), suggesting that Nanog can regulate low

transcription at the Hex locus.

Manipulation of FGF Signalling Alters the Levels of Venus
Expression

The ability of Nanog to suppress early Hex positive endoderm

states is consistent with both the mutually exclusive nature of

Figure 4. Microarray analyses of purified HV fractions. Analyses
of global gene expression in fractions defined by expression of the
Venus transgene and SSEA-1. HV ES cells grown under self-renewing
conditions were fractionated by flow cytometry into four fractions
based on Venus (V) and SSEA-1 (S) expression. RNA was isolated from
the following fractions: V2,S+; V+,S+; V2,S2; V+,S2 and hybridised to a
NIA Mouse 44K Microarray v2.1. (A) Heat map illustrating hierarchical
clustering of differentially expressed genes identified in a pair-wise
analysis of all four fractions. Significant changes in the expression of
2,169 genes (FDR ,0.05) resulted in the identification of three to four
expression groups, depending on whether clonal variation is taken into
account. (B) Pair-wise comparisons (FDR ,0.05, .1.5-fold expression
levels) of the two ES cell populations, V+S+ and V2S+ depicted alongside
the comparison between differentiated PrEn V+S2 fraction and the
Venus negative ES cell fraction (V2S+). (C) Gene expression changes
characteristic of PrEn, ICM/pluripotency, neurectoderm, and mesoderm
genes (expression of individual markers are included as supplementary,
Figure S3). Plots are shown comparing mean log intensity values of
genes among the four populations. Error bars (see supplementary data)
represent standard deviation between expression levels in independent
clonal lines of HV cells.
doi:10.1371/journal.pbio.1000379.g004

Lineage Bias and ES Cell Heterogeneity
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Nanog and Gata6 expression in vivo [17] and the ability of

Nanog to suppress Gata6 positive PrEn differentiation, in vitro

[39]. The shift between a Nanog positive ICM-like state and

Gata6 positive PrEn is also regulated through FGF signalling via

the Grb2/Mek pathway [17,40]. As the V+S+ population

appeared to be an immediate early state of PrEn differentiation

in which extremely low levels of PrEn determinants (e.g. Hex) are

expressed, we wanted to ask whether FGF signalling promoted

this state or acted to push cells already in this state further into

differentiation. Thus we examined whether FGF signalling could

alter the dynamics between the V+ and V2 states within the S+

population by culturing HV cells in the presence of the FGFR

inhibitor PD173074 [41] for 48 h. As expected, treatment of HV

cultures with PD173034 suppresses background levels of PrEn

differentiation at the level of Gata6 and Nanog transcription

(Figure 6A). However, the inclusion of PD173034 in these

cultures also reduced the size of V+S+ fraction (Figure 6B). In

addition to feeder free serum and LIF containing media, ES cells

can be cultured in minimal serum free media (referred to as 2i)

containing the MEK inhibitor PD0325901 that targets the

phospho ERK branch of the FGF pathway and the GSK3-b
antagonist CHIR99021 [42]. When maintained in 2i culture,

cells are grown under constant blockade to phospho-Erk

signalling. As expected the culture of HV cells under these

conditions resulted in a significant reduction in the V+S+

population (Figure 6B). Thus induction of a robust V+S+ state

of low-level PrEn transcription requires FGF signalling. However,

while the expression of the Venus transgene is greatly reduced in

2i, it is still present (Figure 6B, 6D). Moreover, while antibody

staining and microscopy of ES cell colonies grown in 2i showed

uniform morphology, no detectable Gata6 expression and

reduced Nanog heterogeneity, Venus positive cells were visible

within these colonies and this Venus positive expression was

rarely found within cells expressing high levels of Nanog

(Figure 6D). While expression of the Nanog protein in the

V+S+ fraction appears largely reduced or absent, we have been

unable to detect differences between 2i generated V+S+ and

V2S+ cells by RT-PCR (unpublished data). This is not surprising

as the amplified transgene was already detecting very low

transcript levels in serum and the levels of Venus expression in

2i were 2–3-fold lower.

We confirmed the ability of Fgf signalling to regulate the V+S+

population by treating suspension cultures with the phosphatase

inhibitor sodium vanadate to stimulate the FGF/Grb2/Mek

pathway. Treatment of cell aggregates with sodium vanadate in

the presence of LIF has been shown to repress Nanog and

stimulate PrEn differentiation [40]. Thus when HV cells were

cultured under these conditions, the addition of sodium vanadate

suppressed Nanog expression, lead to a significant increase in

Gata6 (Figure 6B), and produced a 25% increase in the percentage

of the culture that was V+S+ (Figure 6B). These observations

appear specific for early PrEn, as treatment of Sox1-GFP cells with

either PD173034 or sodium vanadate had little effect on GFP

expression (unpublished data). Taken together these data support

the notion that low-level transcription at PrEn promoters such as

Hex is dependent on signalling via the FGF/Grb2/Mek pathway.

Interestingly when ES cells were fractionated based on the Venus

transgene, the V+S+ cells contained almost all detectable phospho-

Erk activity (Figure 6C).

Reversibility of Early PrEn States in vitro
Heterogeneous ES cell states have been observed with respect to

Nanog, and while the Nanog expression state appears reversible,

there are significant differences in the ability of Nanog positive and

Figure 5. Nanog expression suppresses the Venus positive early PrEn precursor state. (A) Western blot demonstrating Nanog
overexpression from the CAG promoter in two clones of HV cells. Control clones were derived in parallel with an empty vector. (B) Nanog
overexpression makes HV ES cells resistant to LIF withdrawal. Nanog overexpressing and control cell lines were cultured in the absence of LIF for 10 d
and assessed for ES cell-like morphology. (C) Nanog overexpression suppresses the V+S+ population. Expression of Venus and SSEA-1 were
quantitated by flow cytometry in two independent clonal lines and compared to both control and parental cells.
doi:10.1371/journal.pbio.1000379.g005
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negative cells to clonally reconstitute each other in vitro [8]. Thus

we asked whether the V+S+ population and V2S+ could efficiently

interconvert. To test this we plated cells sorted by flow cytometry

clonally and assessed the extent to which colonies could re-

establish steady-state equilibrium. While the plating efficiency of

the V+S+ fraction was reduced and produced 4-fold less colonies

than the V2S+ fraction, both fractions gave rise to identical

colonies that contain equivalent populations of V+ and V2 cells

(Figure 7A, Table 1). Thus, while there appears a difference in the

colony forming potential of the two fractions, once colony

formation is initiated, the two cell types are identical in their

ability to give rise to each other.

To determine the length of time required for the two states to

interconvert we purified populations V+S+ and V2S+ cells and

examined the extent to which the original distribution was

re-established and observed significant changes in both popula-

tions within 24 h of plating (Figure 7B). To further test the notion

that V+ and V2 cells were both equally capable of clonally

regenerating the equilibrium normally present in ES cell cultures,

we deposited single cells in 96 well plates following sorting by flow

cytometry. Consistent with our previous observations, single V+S+

and V2S+ cells were equivalent in their ability to regenerate

normal Venus distribution upon expansion in 30 independent

clonal cultures (Figure 7C). In this instance we did not detect a

plating difference in the populations and approximately 16% of

the deposited cells survived to give rise to day 10 cultures

(unpublished data). Taken together these data support the notion

that the V+S+ fraction represents an early state of PrEn

differentiation that exists in equilibrium with other cell states

present in ES cell cultures.

Early PrEn States Exhibit Functional Bias
The ability of these populations to interconvert in vitro combined

with their subtle differences in gene expression lead us to ask if there

was any functional significance to this low level of PrEn gene

expression. As ES cells are defined based on their ability to

contribute to all tissues of the future conceptus in chimeras, we

asked whether the embryo contribution activity of ES cells was

Figure 6. Manipulation of FGF signalling alters the levels of Venus expression. (A) FGF signalling modulates Nanog and Gata6 expression
in HV cells. Inhibition of FGF signalling with PD173074 (10 nM) increases the levels of Nanog gene expression in two HV clones while slightly reducing
low-level Gata6 expression. Conversely, potentiation of this pathway with the phosphatase inhibitor Sodium Vanadate (50 mM) in aggregate cultures
(EB + Na3VO4) reduces the levels of Nanog while increasing those of Gata6. Transcript levels were assessed by qPCR and normalised to the TBP value
obtained for each sample. Normalised values are related to the untreated sample for each clone. (B) The V+S+ fraction responds to FGF signalling.
Cells grown as in (A) were subject to flow cytometry. Inhibition of the FGF pathway by PD173074 or culture in 2i reduces the extent of Venus
expression, while Sodium Vanadate stimulates it. (C) Measurement of Phospho-Erk levels in V+S+ and V2S+ fractions shows an enrichment of activated
Erk with Venus positive ES cells. (D) Venus cells persist in 2i culture. Immunocytochemistry of HV cells in 2i culture show the persistence of some
Venus cells that have lower levels of Nanog expression, whereas Venus and Oct4 co-express.
doi:10.1371/journal.pbio.1000379.g006
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contained in either V+S+ or V2S+ fraction or both. Initially we

injected purified fractions of HV ES cells into Rosa26 blastocysts

that constitutively express b-galactosidase (b-gal) and examined

embryos at 9.5 dpc for ES cell (b-gal negative) contribution (Table S4

and Figure S5). In these experiments the Venus positive fraction

never gave rise to high-contribution chimeras and less than half of

the injected embryos showed any contribution whatsoever. This

contrasted starkly with the Venus negative fraction, which

contained cells that were effective at generating high-contribution

chimeras. Thus the modest changes in gene expression that

accompany basal level PrEn expression interfere with the capacity

of these cells to actively contribute to blastocysts.

The loss in ability to contribute to blastocysts generated in this

transient PrEn-like state was interesting, but we wanted to

establish if these cells had gained new properties. To ascertain

this we generated cell lines that both contained the HV cassette

and constitutively expressed b-gal as a lineage label. We used this

cell line for morula aggregation and obtained the chimeric

embryos shown in Figure 8A. These results validate our

observations obtained with blastocyst injection and indicate that

the V2S+ fraction is particularly effective at contributing to the

epiblast (Table 2).

Interestingly, while the V+S+ cells did not effectively contribute

to the epiblast, V+S+ ES cells were found in both the visceral and

parietal endoderm (Figure 8A, Table 2), suggesting that their

reduced ability to contribute to the epiblast may reflect a change in

potency. To confirm this observation by another method we asked

about the potency of these fractions to differentiate in EB

aggregates. However, while V2S+ cells generated normal EBs,

the V+S+ cells formed small irregular aggregates (Figure 8B),

suggesting that the adhesive properties of the cells within these

fractions were different. This would not be surprising as early PrEn

delaminates from the ICM during the transition between ICM and

epiblast and this cell sorting behaviour is reproduced in EB culture

where the VE is always found on the outside. Thus when Xen

(extra-embryonic endoderm) cells are mixed with ES cells, the Xen

Figure 7. Reversibility of Venus positive and negative populations. (A) Reconstitution of Venus distribution from single V+S+ or V+S2 cells.
HV cells cultured under self-renewing conditions were subjected to flow cytometry to separate Venus positive and negative subpopulations within
the SSEA-1 positive fraction. A sample purity check is shown in the top panel. Representative clones produced from each fraction plated at clonal
density and imaged by fluorescence microscopy are shown. (B) Flow cytometry on cells from each fraction 24 h after plating. (C) Flow cytometry on
cells plated at single cell density in 96 well plates from each sorted fraction. Cells were cultured for 10 d following plating and 12 wells derived from
each fraction were subjected to flow cytometry. All appeared identical and a representative image of each is shown in the figure.
doi:10.1371/journal.pbio.1000379.g007

Table 1. Numbers of clones produced from clonal density
plating of cell from FACS purified fractions of the HIV cell line.

Number of Clones
Obtained

% of Clones Fluorescent
by Microscopy

Venus2, SSEA1+ 90 100

Venus+, SSEA+ 21 100

doi:10.1371/journal.pbio.1000379.t001
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cells segregate to end up on the outside layer [43] of the EB. In a

similar way, we used HV lacZ ES cells to ask whether the V+S+

fraction would preferentially segregate to the outside of chimeric

EBs. Figure 8C shows that this is indeed the case. Labelled

fractions of V+S+ cells ended up on the outside of chimeric EBs,

while the reciprocal fraction of V2S+ populated the centre of the

aggregate. We then stained these EBs with three antibodies to the

endoderm markers Gata6, FoxA2, and Sox17 to confirm that

these outside cells were endoderm and indeed all three markers

were expressed throughout the outside layer (Figure 8D). Taken

together our data support the notion that the reversible and

immediate early PrEn state marked by low-level transcription at

the Hex locus is biased towards the formation of extra-embryonic

endoderm.

Discussion

In this paper we have used translational amplification to detect

an immediate early and reversible state in PrEn differentiation that

appears an inherent component of standard ES cell culture. The

existence of ES cell precursors to this lineage is supported by the

observed heterogeneous expression of other PrEn genes, Lefty1,

Cerl, and Gata6 in the ICM of blastocyst stage embryos, the stage

from which ES cells are derived [17,44–46]. Cells in this ES cell

state express low levels of PrEn markers such as Hex and maintain

expression of some standard ES cell markers such as Oct4 and

SSEA-1. These cells can be isolated based on the expression of an

amplified Hex Venus transgene and SSEA-1 (V+S+) and exist

under ES cell conditions in a steady-state equilibrium with at least

Figure 8. Functional differences between purified Venus positive and negative ES cells. (A) V+S+ and V2S+ ES cells contribute differently
to embryos in morula aggregation. HV cell lines constitutively expressing b-Geo from the CAG promoter (HV lacZ) were fractionated into V+S+ and
V2S+ and their ability to contribute to chimeric embryos assayed by morula aggregation. Within an hour of separation by flow cytometry, cells from
each fraction were aggregated with wild-type F1 morulae. Following transfer into pseudo-pregnant mice, resultant embryos were harvested at E6.5
and subjected to X-gal staining. Representative embryos derived from each population are shown. White bars indicate the plane of section shown in
the panel beneath specific embryos. Black arrows show the presence of LacZ positive cells in the visceral endoderm. Black arrowheads show the
presence of LacZ positive cells in the parietal endoderm. (B) Only V2S+ fraction forms normal spherical EBs. Fractionated HIV ES cells were cultured for
4 d as aggregates in the absence of LIF. (C) V+S+ cells contribute to the presumed visceral endoderm in chimeric EBs. When V+S+ cells were
recombined with V2S+ cells immediately following sorting, they formed normal EBs and the V+S+ cells move preferentially to the outside to form the
presumptive visceral endoderm. The V2S+ fraction of HVlacZ cells was combined with an equivalent number of V+S+ HV cells (top) or V+S+ HVlacZ
cells recombined with V2S+ HV (bottom). EBs were stained with X-gal and representative sets shown. The bottom panel shows sections through
representative chimeric EBs. (D) Sections of EBs grown under the same conditions as in part (C), showing that the outer layer consists of visceral
endoderm as marked by Gata6, FoxA2, and Sox17 immunostaining (shown as red). Bright field/DAPI composites of each section are shown above.
doi:10.1371/journal.pbio.1000379.g008
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one other more ICM-like cell state, V2S+. When purified V+S+ or

V2S+ cells are placed back into self-renewing conditions,

individual cells from purified fractions of either cell type

regenerate their counterparts. However, when these fractions are

placed into differentiation either in vivo or in vitro, the V+S+

population tends to colonize the PrEn lineages, while V2S+ cells

tend towards epiblast.

A number of recent studies have suggested that ES cell cultures

are heterogeneous and can be split into two developmental states,

one that resembles the ICM and the other early epiblast or PrEc.

Thus it has been suggested that ES cell cultures can be split based

on Rex1 and Oct4 [9], into Rex1, Oct4 positive ICM, and Rex1

negative Oct4 positive PrEc. Similar observations have also been

made with an ICM-specific, Stella-GFP reporter [10] that can be

used to split ES cell cultures into Stella positive ICM-like and

Stella-negative epiblast-like. In both instances, the ICM state

appears to express higher levels of Nanog and this observation is

consistent with the heterogeneous expression of Nanog reporter

ES cells [8,12]. Elevated levels of Nanog are also associated with a

reduced probability of differentiation leading to the suggestion that

ES cells exist in equilibrium between a stable self-renewing, ICM-

like state referred to as the ‘‘ground state’’ and a transient

metastable intermediate that is both able to revert to the self-

renewing state or proceed into differentiation [8,11,47]. The

transition between the ground state and this metastable pro-

differentiation intermediate is thought to be regulated by FGF/Erk

signalling [47,48]. While our data do not provide insight into the

dynamics of the entire Nanog low population, it suggests that a

sub-fraction of low Nanog cells represents PrEn precursors, in

addition to the already characterized PrEc precursor population.

Moreover, in PrEn precursors, the Nanog low population can itself

be split based on the expression of Oct4 or SSEA-1 into a state

expressing reasonably high level of PrEn genes (V+S2), and a less

differentiated cell type exhibiting a PrEn bias, but with similar

regenerative capacities to the Nanog high population (V+S+). We

believe that a similar early precursor may exist to the PrEc lineage

(Figure 9), and while we have no direct evidence for this, we did

observe Oct4 positive cells that neither expressed Nanog nor the

Venus transgene and there also appears a slight enrichment of

early neural markers in the V2S+ population (Figure 4). However,

we were not able to discern this state based on SSEA-1 expression,

as a number of both ICM and PrEc markers are expressed at

equivalent levels in the V2S+ and V2S2 fractions. Thus while

SSEA-1 may be an effective marker for undifferentiated cells when

used in combination with a PrEn marker, its utility may be limited

to this lineage.

In addition to expressing slightly increased PrEn gene expression,

V+S+ cells also contain almost all the phospho-ERK activity in our ES

cell cultures (Figure 6). As this population does not express elevated

levels of transcripts specific to other lineages, it suggests that FGF

signalling does not promote the formation of a general metastable

pro-differentiation state but rather supports the formation of the V+S+

reversible PrEn intermediate. How then do we explain the

requirement for FGF/Erk signalling in ES cell differentiation towards

other lineages [48,49]? One possibility is that V+S+ cells produce

additional factors required for these lineages.

The notion that a Nanog positive, ICM-like population of high

probability self-renewing cells is a developmental ground state is

supported by the expansion of this state in the presence of a

blockade on the major signalling pathways known to promote ES

cell differentiation, the MAP kinase/ERK cascade and GSK3b
[42,50]. Thus when extrinsic inputs are reduced, ES cells revert

homogenously to this Nanog positive ground state. Interestingly,

while these 2i conditions reduced the extent of the Venus positive

population in steady-state culture, it remains a significant

component of ES cell culture and exclusive of high Nanog

expression. We also observed that single cells from either the V+S+

or V2S+ fractions were both equally effective at generating clonal

cultures with the normal range of Venus expression and in no

cases did V+S+ cells give rise to differentiated colonies. As a result

we conclude that both fractions are equivalent with respect to their

capacity for ES cell self-renewal and V+S+ cells do not constitute a

metastable early state in differentiation but rather an integral

uncommitted component of ES cell culture. In the model shown in

Figure 9, we suggest that a similar uncommitted and self-renewing

state may exist in the direction of ectodermal differentiation and

we imagine the ground state could consist of at least three distinct

populations in equilibrium. These cell states would all appear as

morphologically undifferentiated and express equivalent levels of

Oct4.

Based on the equivalent regenerative capacity of V+S+ and

V2S+ cells, the small number of significant gene expression

Table 2. Assessment of lineage contribution of V+S+ and
V2S+ cells from the HV LacZ line at 6.5 dpc.

Venus+, SSEA+ Venus-, SSEA1+

n 120 69

No contribution 46% 25%

Low-medium 47% 0%

Medium-high 7% 75%

VE/PE contribution 10% 0%

Table shows the numbers of resultant embryos from aggregation with wild-
type morulae following fractionation based on Venus and SSEA1 expression by
flow cytometry. Percentages of embryos with LacZ positive cells detected in the
Visceral or Parietal (VE/PE) endoderm are shown.
doi:10.1371/journal.pbio.1000379.t002

Figure 9. A model for the dynamic equilibrium that exists in ES
cell culture. The schematic diagram depicts the potential cell subtypes
that make up ES cell culture. The red line represents the boundary
established by the culture conditions. We depict an early PrEn precursor
cell defined by the V+S+ phenotype in light yellow, expressing low levels
of PrEn determinants such as Hex and Gata6. This cell type is shown in
equilibrium with an ICM-like cell. A hypothetical PrEc cell implied by the
findings of others is indicated in blue.
doi:10.1371/journal.pbio.1000379.g009
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changes, and the identical morphology, we assume that these two

cell states have not drifted significantly apart. Rather these states

may represent distinct reversible transcriptional signatures affect-

ing key lineage regulators. Comparison of the differences in gene

expression between the V+S+ and V2S+ fractions supports this

idea. Every PrEn marker present in our data set increased in the

differentiated V+S2 cells and importantly showed small but

consistent increases when the V+S+ fraction was compared to

V2S+ cells. As a result we believe that ES cells in culture consist of

a mixture of early self-renewing precursors that can alternatively

express low-level transcription of different lineage-specific pro-

moters related to the states surrounding the early blastocyst

(Figure 9). Whether the ICM-like state is central to this

equilibrium remains to be seen.

The model in Figure 9 represents a stable dynamic system in

which the transcriptional state of individual cells shifts, but only

within the boundaries defined in red. This suggests that the

behaviour of transcriptional networks downstream of Nanog, FGF

signalling, and other key ES cell regulators produce an attractor or

attractor states occupied by these cell types. The existence of

multiple sub-states within a single ES cell basin of attraction or

multiple interrelated attractors representing distinct lineages could

account for pluripotency. Similar dynamic models have been

extensively discussed as a means to explain stem or progenitor cell

potency (reviewed in [51,52]). In these models, the capacity of a

progenitor cell to differentiate into multiple lineages is determined

by a form of ‘‘multi-lineage priming’’ [53], in which cells fluctuate

through the early states of multiple lineage programs but remain

within a stable basin of attraction. When the culture is removed

from the constraints of self-renewal, lineage primed states drive

commitment to a direction of differentiation based on the location

of a cell in a specific state or attractor. In ES cells, early V+S+ PrEn

would become extra-embryonic endoderm and early PrEc would

become epiblast. However, when maintained in ES cell culture,

cells transit between these states. One possible mechanism for the

movement of cells from one state to another would be the

combination of stochastic changes in low-level gene expression or

noise, combined with positive feedback loops. Indeed this sort of

model has been used to explain the existence of a stable attractor

and associated lineage primed states in EML cells, a haematopoi-

etic progenitor cell line [54], and as the basis for heterogeneity in

Nanog expression in ES cells [11]. However, both these cases

consider the ability of stochastic variation to drive the formation of

a single stable attractor. While the small changes in lineage

transcription observed in our data set would be consistent with a

stochastic model, the ES cell model described in Figure 9 would

require both cross-repression and additional positive feedback

loops to drive these random changes in gene expression down

multiple distinct routes. An alternative mechanism that might

explain the ability of cells to transit between multiple states is

oscillating gene expression. It was recently suggested that Hes1

expression can cycle in ES cell culture [13], although the link

between this oscillation, low-level gene expression, and develop-

mental bias is not clear. Regardless of whether the gene expression

changes are deterministic or random, feedback between cell types

may help to stabilize this heterogeneous culture system. The

existence of a paracrine inter-dependent equilibrium would

suggest that the culture conditions have selected for the stable

coexistence of mutually dependent and metastable cell types that

only transiently exist in vivo.

Our observation that the V+S+ fraction preferentially contrib-

utes to the VE when mixed with more ICM-like cells indicates that

low-level lineage-specific changes in gene expression have

functional consequences. That we have observed a direct

contribution of ES cells to both visceral and parietal endoderm

also has implications for canonical definitions of pluripotency.

Pluripotency is defined based on the ability of ES cells to

contribute to the embryonic but not extra embryonic lineages and

our observations suggest this definition may need to be somewhat

modified. Alternatively it might be more appropriate to consider

ES cells as closer to totipotent, but that the pluripotent ICM

fraction of ES cell cultures has a competitive advantage when

tested in chimera generation. In support of this idea, Beddington

and Robertson originally observed ES cell contribution to all the

extra-embryonic lineages, but in particular to parietal endoderm

[23]. However, these observations have been seen as the exception

rather than the norm because of the low-level contribution

observed. As the principle significant gene expression changes

observed in the V+S+ fraction are related to adhesion and

migration (Table S2), this might explain the decreased capacity of

these cells to incorporate into a host ICM and instead colonize the

extra-embryonic endoderm. The lower level of endodermal

contribution we observe in chimeras suggests that even in the

PrEn, V+S+ ES cells may be at a proliferative disadvantage.

The observation that some ES cells retain the capacity to

contribute to the extra-embryonic lineages begins to resolve a

number of conflicting observations. Why should ES cells be able

to generate PrEn in vitro but not in vivo? Moreover, as it has

recently been shown that VE can contribute to the embryonic gut

[55], the distinction between visceral and definitive endoderm

begins to blur and the inability of ES cells to contribute to the VE

becomes more puzzling. Chazaud et al. observed that heteroge-

neous expression of Nanog and Gata6 in early blastocysts was

dependent on Grb2-MAPK signalling and suggested that the

reason that ES cells are unable to colonize the PrEn meant they

had lost the capacity to respond to this signal [56]. Our

observations reconcile these apparent discrepancies. ES cells

exhibit the same heterogeneity as the early blastocyst and respond

to the same signalling pathways. They have the capacity to

contribute to both epiblast and PrEn lineages in vivo and in vitro,

but when mixed populations of ES cells are combined with

embryonic ICM in a situation where a limited number of cells

can be accommodated, a competition ensues that is regulated by

a combination of differential adhesion and proliferation. That we

observe cell sorting in EB culture also provides direct evidence,

albeit in vitro, for the differential adhesion model proposed for

the resolution of early PrEn and PrEc in the mammalian

blastocyst in this same paper [56]. That this occurs once cells

enter differentiation, is consistent with a requirement for

sustained FGF signalling for commitment and segregation of

the PrEn lineage in cultured blastocysts [57].

The capacity of V+S+ cells to colonize the exterior of EBs and

extra-embryonic endoderm in chimeras is similar to the properties of

extra-embryonic endoderm (Xen) cells derived from the mammalian

blastocyst [43]. Xen cells are more parietal than visceral in character,

whereas our cells expressed more anterior visceral or early PrEn

markers. However, we have not attempted to culture the more

endodermal V+S2 cells and it will be interesting to see if these cells

can be expanded in vitro. Whether they can retain their visceral or

primitive qualities in absence of a more epiblast-like population

remains to be seen. Interestingly when parietal endoderm is grafted

next to epiblast, it becomes visceral and when VE is removed from

epiblast it becomes parietal [58].

We recently performed a genome wide screen looking for Hex

targets in ES cells and found a number of genes with ICM

expression patterns [59], consistent with the notion that as Hex

levels build up it would repress ICM identity and promote

commitment to the PrEn lineage. As these targets appeared
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conserved in evolution, it would seem likely that they are not

specific to ES cells and that the same low-level expression states

might exist for a limited window of time in vivo. Recent time

lapse studies of pre-implantation development suggest that cells

that are initially Pdgfa PrEn can revert to ICM [35], indicating

that at least some reversible sampling of these low-level

transcription states might occur in vivo. Although Pdgfra
appears downstream of the fluorescent signal observed here,

the dynamic nature of cell fate specification appears similar. In

ES cells these events would have been amplified, as potential

developmental intermediates have been trapped and are

maintained in a stable dynamic equilibrium. In this way

embryo-derived stem cell lines and ES cell differentiation may

be providing access to potential ‘‘transition states,’’ required for

lineage specification in vivo.

Methods

ES Cell Culture and Differentiation
ES cells were cultured on 0.1% gelatin-coated flasks or plates

(IWAKI) in Glasgow modified Eagle’s medium (Gibco) containing

non-essential amino-acids, glutamine and sodium pyruvate,

0.1 mM mercaptoethanol, and 10% Fetal Calf Serum (FCS)

together with LIF [30,60–63].

ES cells were differentiated toward ADE in aggregation culture

according to [30]. Differentiation towards PrEn in the presence of

sodium vanadate is as described in [40]. LIF withdrawal in

monolayer culture was done according to [25].

Generation of Vectors and Cell Lines
The 59 and 39 arms used for homologous recombination were

described by Martinez Barbera et al. [33] with AscI and PacI sites

inserted downstream of the Hex ATG (a gift from Shankar

Shrinivas). A Hex cDNA with a recognition sequence for bacterial

BirA ligase was linked via an artificial IRES consisting of a tandem

array of repeated Gtx sequences to the gene encoding Venus

followed by a cytomegalovirus driven hygromycin-thymidine

kinase dual selection cassette flanked by loxP sites. This entire

cassette was fused in frame with the ATG of Hex in the targeting

vector. Following electroporation into R26 BirA cells, a cell line

that expresses bacterial BirA ligase from the ROSA26 locus,

hygromycin resistant clones (200 mg/ml) were expanded for

Southern analysis to identify correct targeting events. The

selection cassette was then excised from two clones, HV 5 and

HV 16, from which Gancyclovir resistant clones were selected for

further analysis. HV cells overexpressing Nanog were generated

by electroporation with a vector containing the Nanog cDNA

under the control of a CAG promoter and upstream of IRES Puro

cassette followed by selection in puromycin (2 mg/ml) for 2 wk.

HV cells constitutively expressing the LacZ gene were generated by

electroporation with a vector containing a CAG driven b-Geo

cDNA followed by selection in G418 (150 mg/ml) for 2 wk.

Immunocytochemistry and Flow Cytometry
Cells grown in 12 well plates were washed 26 in PBS before

fixation in 4% paraformaldehyde. Cells were then permeabilised

in PBST (16 PBS, 0.1% Triton X (Sigma)). Blocking was

performed by adding 1% Bovine serum albumin (Sigma) in PBST

solution to the fixed cells for 30 min at room temperature (rt).

Primary antibodies were added at a dilution of 1:1000, and

incubation continued overnight (o/n) at 4uC. Following 3610 min

washes in PBST, Alexa568 conjugated secondary antibodies

diluted (1:1000) in blocking solution were added to the cells and

incubation took place at rt for 1 h. Also included at this step was

DAPI solution (1:1000). Finally, cells were washed 3 times, then

stored in PBS. Primary antibodies used were mouse anti-Oct3/4

(Santa Cruz) and rabbit anti-Nanog peptide specific antibodies (a

gift from Ian Chambers) [8]. Secondary conjugated antibodies

(Alexa568) against mouse and rabbit were obtained from

Invitrogen.

ES cells or EBs were collected into Cell Dissociation Buffer

(Gibco) and incubated at 37uC for 10 min. Single cells suspension

was achieved by gentle repeated pipetting. Following washes in

PBS, cells were resuspended in 500 ml FACs buffer (16PBS, 10%

FCS) and 7AAD solution (BD Pharmingen, 5 ml/16106 cells) to

exclude dead cells. Analysis of fluorescence took place in a

FACSCalibur flow cytometer (BD Biosciences). Dotplots were

generated using CellQuest software (BD Biosciences).

In the case of additional labelling of specific cell surface

proteins, primary antibodies were added at a dilution of 1:1000 to

cells resuspended in FACs buffer. Incubation took place for

10 min on ice. Following three washes in FACs buffer, cells were

resuspended in fresh FACs buffer containing appropriate conju-

gated antibody at a dilution of 1:1000 and incubated as before.

After three washes in FACs buffer, cells were finally resuspended

in 500 ml FACs buffer and analysed as above.

For collection of populations, cells were prepared as above and

subjected to flow cytometry using the MoFlo MLS high speed

sorting apparatus (DakoCytomation). Cells were collected in FACs

buffer and stored on ice for further analysis.

Chimera Generation
Chimera mouse generation was performed by morula aggrega-

tion with or injection of ES cells into host blastocysts. Injected or

aggregated blastocysts were then transferred into pseudopregnant

recipient mothers. Embryos were dissected at the stages indicated

in the figures and imaged by fluorescent and conventional

microscopy.

X-gal Staining and Histology
X-gal staining of embryos and EBs was performed as follows.

Embryos and EBs were washed in PBS solution (80 mM sodium

phosphate, 15 mM potassium phosphate, 27 mM KCl, and

1.37 M NaCl), then fixed with X-gal fix solution (16 PBS,

2 mM MgCl2, 5 mM EGTA, 1% paraformaldehyde, 0.2%

Glutaradehyde, 0.02% NP-40) at 4uC for 20 min. Following

3620 min washes in PBS they were then stained with X-gal

staining solution (5 mM potassium ferricyanide, 5 mM potassium

ferrocyanide, 2 mM MgCI, 0.01% sodium deoxycholate, 0.02%

Nonidet P-40 (NP-40) in PBS) o/n in the dark at rt. Following

365 min washes in PBS, stained embryos or EBs were then fixed

in 4% paraformaldehyde.

X-gal stained, paraformaldehyde fixed embryos were embedded

in paraffin wax and sectioned transversely in a microtome at 7

micron intervals. X-gal stained or unstained EB or embryos were

also cryosectioned. Samples were sunk in 30% sucrose in PBS,

frozen in Tissue Teck, and sections were cut on a Cryostat (Leica).

Sections were collected on poly lysine microscope slides (VWR

International), air-dried for 30 min to 1 h, and stored at 220uC
until used. Immunocytochemistry was performed essentially as

described above for cells.

Microarray Analysis
RNA was extracted from different cell populations using TrizolTM

(Invitrogen) and precipitated with isopropanol. Biological and

technical replicates for each population were hybridised to NIA

Mouse 44K Microarray v2.3 (whole genome 60 mer oligonucleotide

probe; manufactured by Agilent Technologies, #014951) [36].
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Fluorescently labelled microarray targets were prepared from

2.5J mg aliquots of total RNA samples using a Low RNA Input

Fluorescent Linear Amplification Kit (Agilent). A reference target

(Cy5-CTP-labeled) was produced from Stratagene Universal Mouse

Reference RNA (UMR), and all other targets were labelled with Cy3-

CTP. Targets were purified using an RNeasy Mini Kit (Qiagen)

according to the manufacturer’s protocol and quantified on a

NanoDrop scanning spectrophotometer (NanoDrop Technologies).

All hybridizations were carried out by combining a Cy3-CTP-labeled

experimental target and a Cy5-CTP-labeled UMR target. Micro-

arrays were hybridized and washed according to Agilent protocol

(G4140-90030; Agilent 60 mer oligonucleotide microarray process-

ing protocol—SSC Wash, v1.0). Slides were scanned on an Agilent

DNA Microarray Scanner, using standard settings, including

automatic PMT adjustment.

Pairwise comparisons were performed using standard statistical

conditions (FDR ,0.05, .1.5-fold expression levels) to unveil

genes up-regulated or down-regulated between the populations.

Log intensity plots for each gene were created to find pattern

matches between those of similar tissue origin.

Supporting Information

Figure S1 Karyotypic analysis of HV clones. Following

removal of the selection cassette from the HV cell line,

chromosome spreads were prepared from semi-confluent cultures

of three GancR HV clones for karyotype analysis. Forty

chromosomes were observed for each clone.

Found at: doi:10.1371/journal.pbio.1000379.s001 (2.12 MB TIF)

Figure S2 Venus expression is up-regulated in ES cell
differentiation toward anterior definitive endoderm
(ADE). (A) Schematic of ES cell differentiation toward ADE.

HV clones were differentiated in aggregation culture in the

presence of activin under conditions designed to promote anterior

endoderm differentiation and Hex expression. (B) Venus transgene

is expressed in ES cell-derived ADE. Under the conditions

diagrammed in (A), the Hex Redstar (HexRS) reporter gives a

robust readout of anterior endoderm-specific Hex expression.

Parental R26BirA cells were included as a control. Each line was

cultured in the presence (+) or absence of activin. At day 7, when

endodermal gene expression is optimal, cultures were harvested

and analyzed by flow cytometry. (C) Venus expression occurs with

the same kinetics as induction of ADE markers. RNA from

differentiating ES cell cultures was analyzed for expression of the

endodermal markers Hex and Cerberus. Quantitative PCR using

the UPL system was carried out to measure the expression levels.

Hex and Cerberus levels were normalised to TBP levels for each

sample. Normalised levels are related to the undifferentiated R26

BirA sample for each PCR.

Found at: doi:10.1371/journal.pbio.1000379.s002 (1.12 MB TIF)

Figure S3 Common microarray signatures among early
lineage markers. Plots are shown comparing mean log intensity

values for individual genes among the four populations. Error bars

represent standard deviation between expression levels in

independent clones of HV ES cells.

Found at: doi:10.1371/journal.pbio.1000379.s003 (3.61 MB TIF)

Figure S4 Significant gene expression changes in HV ES
cell culture. Pair-wise comparisons (FDR ,0.05, .1.5-fold

expression levels) were performed between the following popula-

tions of cells to reveal non-redundant, significant changes in gene

expression. (A) V+S+ versus V2S+, 139 genes up and 123 genes

down. (B) V2S2 versus V2S+, 30 genes up and 1 gene down. (C)

V+S2 versus V2S+, 1,636 genes up and 539 genes down. (D) V+S2

versus V2S2, 1,520 genes up and 617 genes down. (E) V+S2

versus V+S+, 92 genes up and 25 genes down.

Found at: doi:10.1371/journal.pbio.1000379.s004 (9.83 MB TIF)

Figure S5 Chimera and contribution potential analysis
of Venus positive and negative subpopulations. A

schematic illustration of the experiment is depicted in the top

panel. HV cells cultured under self-renewing conditions were

subjected to flow cytometry to separate Venus positive and

negative ES cell subpopulations and injected into Rosa26 LacZ

expressing blastocysts within 1 h of purification. As the host

embryo was Rosa26 LacZ, strong LacZ-expressing, blue embryos

represent low or no contribution chimeras, whereas faint blue or

white embryos represent high levels of ES cell contribution.

Representative embryos derived from each fraction are shown

together with transverse sections. These are typical of the embryos

scored to produce the data in Table S4.

Found at: doi:10.1371/journal.pbio.1000379.s005 (6.27 MB

DOC)

Table S1 Hierarchical clustering of 2,169 differentially
expressed genes among the four fractions, V2S+, V+S+,
V2S2, V+S2. Differential expression corresponds to FDR ,0.05

in ANOVA. Expression intensity is log-transformed (log10), and

then centred by subtracting the average, which is shown in a

separate column.

Found at: doi:10.1371/journal.pbio.1000379.s006 (0.67 MB XLS)

Table S2 Gene Ontology (GO) terms over-represented
among genes overexpressed in the V+S2 fraction com-
pared to V2S2. The set of genes was identified using criteria:

FDR #0.05, change $1.5-fold. Only significant GO categories

are shown (FDR #0.05, N members $5).

Found at: doi:10.1371/journal.pbio.1000379.s007 (0.13 MB XLS)

Table S3 Gene ontology (GO) terms over-represented
among genes overexpressed in the V+S+ fraction com-
pared to V2S+. The set of genes was identified using criteria:

FDR #0.05, change $1.5-fold. Only significant GO categories

are shown (FDR ,0.05, N members $5).

Found at: doi:10.1371/journal.pbio.1000379.s008 (0.02 MB XLS)

Table S4 Assessment of chimera contribution by cells
from the V+S+ and V2S+ fractions at 9.5 dpc. The table

shows the numbers of resultant embryos scored as low-, medium-,

and high-contribution chimeras following the injection of

fractionated HV cells into Rosa26 LacZ blastocysts. Cells were

fractionated based on Venus and SSEA1 expression by flow

cytometry. Examples of typical chimeras are shown in Figure S5.

Found at: doi:10.1371/journal.pbio.1000379.s009 (0.24 MB

DOC)
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