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Summary
Background Determining the origin of bone metastatic cancer (OBMC) is of great significance to clinical therapeutics.
It is challenging for pathologists to determine the OBMC with limited clinical information and bone biopsy.

Methods We designed a regional multiple-instance learning algorithm to predict the OBMC based on hematoxylin-
eosin (H&E) staining slides alone. We collected 1041 cases from eight different hospitals and labeled 26,431 regions
of interest to train the model. The performance of the model was assessed by ten-fold cross validation and external
validation. Under the guidance of top3 predictions, we conducted an IHC test on 175 cases of unknown origins to
compare the consistency of the results predicted by the model and indicated by the IHC markers. We also applied
the model to identify whether there was tumor or not in a region, as well as distinguishing squamous cell
carcinoma, adenocarcinoma, and neuroendocrine tumor.

Findings In the within-cohort, our model achieved a top1-accuracy of 91.35% and a top3-accuracy of 97.75%. In the
external cohort, our model displayed a good generalizability with a top3-accuracy of 97.44%. The top1 consistency
between the results of the model and the immunohistochemistry markers was 83.90% and the top3 consistency
was 94.33%. The model obtained an accuracy of 98.98% to identify whether there was tumor or not and an
accuracy of 93.85% to differentiate three types of cancers.

Interpretation Our model demonstrated good performance to predict the OBMC from routine histology and had great
potential for assisting pathologists with determining the OBMC accurately.
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Research in context

Evidence before this study
Many advanced cancers metastasize to bone and determining
the origin of bone metastatic cancer is of great significance to
perform precise therapy for patients. Traditionally,
pathologists need to combine the whole-body imaging,
medical history, and immunohistochemistry staining results
to determine the origin of bone metastatic carcinoma.
However, nearly 20% cases are still hard to diagnose even
after comprehensive tests. Recently, deep learning has been
widely applied in digital pathology images. It demonstrated
excellent performance in tumor recognition, classification,
grading, metastasis recognition, and prognosis analysis. Only
one publication of Lu used a weekly supervised learning
method to identify the occult primary site of tumors by
hematoxylin-eosin staining slides. However, to the best of our
knowledge, no researches about determining the origin of
bone metastatic cancer from routine histology with the
approach of deep learning have been reported up to now.
Unlike slides of primary lung cancer, breast cancer or other
common cancers where large cancer foci cluster together,
many bone metastatic cancer slides contain several scattered
cancer foci, some of which are too small to be detected.

Added value of this study
We assembled a multi-center dataset comprising 1259 cases,
labeled 27,998 regions of interest, and designed a regional

multiple-instance learning algorithm to determine the origin
of bone metastatic cancer from digital histology. Both in the
within-cohort and the external cohort, our model
demonstrated high top1 accuracy and top3 accuracy. To
further demonstrate its practicability, we tested 175 cases of
unknown origin with specific immunohistochemistry markers
which were selected based on the top3 potential origins
predicted by the model and the morphology of tissues. It also
exhibited high consistency between the results predicted by
the model and indicated by the immunohistochemistry
markers. Additionally, we found that this model could be
trained to identify whether there was tumor or not in a
region, as well as distinguishing squamous cell carcinoma,
adenocarcinoma, and neuroendocrine tumor.

Implications of all the available evidence
For the cases where sufficient tissues for necessary
immunohistochemistry tests are unavailable, our model
trained on thousands of samples have great potential for
assisting pathologists with determining the OBMC accurately.
Furthermore, the accurate top3 predictions of the model are
likely to reduce the number of immunohistochemistry
markers selected in the routine diagnosis process.

Articles

2

Introduction
Bone is a common site of cancer metastasis.1 Bone
metastasis occurs in 70% patients with advanced breast
cancer, 85% with prostate cancer and 40% with lung
cancer.2 Patients with bone metastases are often clini-
cally manifested as bone pain, pathological fracture,
spinal cord compression, and hypercalcemia.3,4 Deter-
mining the origin of bone metastatic cancer (OBMC) is
essential to perform precise therapy for patients.5,6

The OBMC is difficult for pathologists to identify
based on the limited bone biopsies and correlated clin-
ical information. In practice, pathologists combine the
whole-body imaging, medical history, and immunohis-
tochemistry (IHC) staining results to draw a conclusion
of the OBMC.7–9 Due to the incompleteness of clinical
information, pathologists have to select multiple IHC
markers to determine the OBMC (see Fig. 1a and b).
However, limited bone fine needle biopsies make it
impossible for pathologists to perform adequate IHC
tests. Even after comprehensive processes of clinical and
pathological examinations, about 20% cases are still
hard to diagnose.10 How to make an exact and fast
determination of the OBMC poses a great challenge in
medical science.

With the rapid development of deep learning theory
and technology, related methods have been widely used
in the field of medicine.11–13 The powerful learning
ability, excellent transfer performance and strong
robustness make deep learning very suitable for medical
image analysis. Particularly in recent years, deep
learning has been widely used in the analysis of digital
pathological images, including tumor recognition,14,15

classification,16 grading,17 metastasis recognition,18 and
prognosis analysis.19 These explorations illustrate great
potentials and advantages of deep learning in the
computational pathology.

As for the problem of tumor metastasis, Wang
adopted GoogLeNet,20 ResNet101,21 and VGG-net22 ar-
chitectures to detect whether breast cancer has metas-
tasized to lymph nodes and the performance was
comparable with the pathologist interpreting the
slides.23 Chuang trained a model on the dataset of whole
slide images (WSIs) in four-fold to judge whether lymph
nodes have micro metastases of rectal cancers.24 Pham
designed a two-step combined convolution neural
network to detect nodal metastasis of lung cancer with a
low false positive rate.25 Jaakko trained a residual
network to identify metastatic cutaneous squamous cell
carcinoma, as well as assessing its metastatic risk and
prognosis. Recently,26 with the help of slide-level mul-
tiple-instance learning algorithm, Lu made it possible to
identify the occult primary site of tumors.27 Trained by
digital images of Hematoxylin and eosin (H&E) stained
sections alone, their model reached an accuracy of 83%.
www.thelancet.com Vol 87 January, 2023
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Fig. 1: The work-flow of diagnosing the OBMC. (a) The typical workflow for pathologists to make differential diagnosis of the OBMC.
Pathology doctors diagnosed the OBMC based on the pathology of H&E slides, the results of dozens of IHC tests and clinical correlation. (b) The
new workflow of applying the method of RMIL to determine the OBMC. Based on the labeled ROI in a WSI, our model provided three most
likely OBMCs. Only three IHC stains need to be used to confirm the final origin. (c) The workflow of RMIL.
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However, to the best of our knowledge, no researches
on determining the OBMC with the approach of deep
learning have been reported till now. Owing to the
characteristic of bone metastatic cancers (i.e., many
bone metastatic carcinoma foci scatter in the whole
image, some of which are too small to be detected; the
morphology of tumors in bone tissues is not as clear as
that in other tissues as a result of decalcification; and
bone tissues are frequently squeezed and deformed
when taken from patients), to predict the primary site of
tumors simply with slide labels poses a great challenge
for the model.

In this study, we proposed a regional multiple-
instance learning algorithm (RMIL) to overcome this
challenge. We collected 1041 cases of bone metastatic
carcinoma with eight common primary sites (breast,
prostate, thyroid, lung, liver, kidney, stomach and in-
testine) and labeled 26,431 regions of interest (ROI) on
H&E images to train the model. Most of previous re-
searches using weekly supervised method regard a
whole slide as a bag.27–30 Here, a labeled region (LR) in
this work was defined as a bag, which greatly enlarged
the number of bags in case of insufficient slides. Instead
of feeding all patches of a bag into the model pretrained
on the dataset of natural images as mentioned by Lu
et al., we randomly selected a certain number of patches
in a bag. In the former algorithm, the number of
patches in a bag was so large that all parameters of the
feature extractor had to be frozen, which only extracted
basic features. However, in our study, we aimed to train
the feature extracting network by bone metastatic cancer
images so as to make more accurate predictions.
www.thelancet.com Vol 87 January, 2023
We also built an external dataset to confirm the
robustness of our model. Furthermore, to demonstrate
that our method could truly help pathologists determine
the OBMC, we evaluated RMIL on another 175 cases of
bone metastatic carcinoma with unknown origins. The
main contributions of this study are as follows:

(1) We established a large data set of bone metastatic
carcinoma, including 1259 cases, 2449 whole slide
images (WSIs) and 27,998 ROI labeled by experts.

(2) Aiming at predicting the OBMC, we designed
RMIL, which could be trained in an end-to-end
manner and exhibited excellent performance on
the test dataset. On the external dataset, this
method also achieved high accuracy, indicating its
good adaptability across different staining pro-
tocols and imaging scanners.

(3) The results predicted by RMIL on 175 cases of
bone metastatic carcinoma with unknown origins
demonstrated that RMIL could be used as an
auxiliary tool for differential diagnosis of the
OBMC and narrow down the selection of IHC
markers for determining the OBMC.
Methods
Data set
We collected both bone biopsies and surgical specimens
from eight healthcare centers in China and the diag-
nosis time of these cases was from 1998 to 2022.
Detailed description how the study cohort was recruited
including inclusion and exclusion diagram
3
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(Supplementary Fig. S1) could be available in supple-
mentary data. All immunohistochemical antibodies in
the research were also listed in supplementary data.

The overall dataset used in this project was
composed of 1473 cases of patients (Supplementary
Table S1). The dataset used to determine the OBMC
was comprised of 1259 cases (27,998 labeled ROI) from
eight hospitals (Table 1). We divided these data into
three subsets, dataset A, dataset B and dataset C. All
H&E slides were sectioned formalin-fixed and paraffin-
embedded tissues.

Dataset A containing 1041 cases (26,431 ROI) was
randomly split into a training set (80% ROI), a validation
set (10% ROI) and a test set (10% ROI) for model
development and evaluation. The primary sites of bone
metastatic cancer in Dataset A came from eight com-
mon organs including lung, breast, prostate, kidney,
liver, thyroid, stomach and intestine.

Dataset B composed of 43 cases (383 ROI) was used
to assess the adaptability of the model across different
hospitals as well as image acquisition devices. There
were only six primary sites of bone metastatic carcinoma
(lung, breast, kidney, liver, stomach and intestine) in
dataset B due to the limited number of cases.

Dataset C comprised of 175 cases (1184 ROI) was
used to evaluate the consistency between the results
predicted by RMIL and the origins suggested by IHC
tests. Eight primary sites which were the same as
described in dataset A could be found in Dataset C.
The cases of unknown OBMC on dataset C referred
to the patients without valuable imaging information
for OBMC during their visits to the doctors, the cases
without IHC tests because the patients were dis-
charged from the hospital, or the cases with IHC
tests, yet the results of which were unable to indicate
the OBMC due to the limited variety of IHC
antibodies.

Dataset D containing 1203 cases (Supplementary
Table S2) was used to train the model of predicting
whether there was metastatic cancer in bone tissue. The
category of non-bone metastases involved 52 cases and
every 20 patches randomly selected in a WSI formed a
bag, which was different from the bag produced in the
category of bone metastases. All the cases in dataset A
were totally the same as those of bone metastases in
dataset D.

Dataset E used to train the model of classifying
adenocarcinoma, squamous and neuroendocrine carci-
noma was composed of 1073 cases (Supplementary
Table S3), 911 adenocarcinoma cases of which came
from dataset A.

The incidence rates of breast cancer and prostate
cancer are greatly related with sex which may
contribute to the model making accurate predictions;
therefore, we collected sex information self-reported
by patients from operation records and pathological
reports.
www.thelancet.com Vol 87 January, 2023

www.thelancet.com/digital-health


Articles
Digitization and annotation
Slides in dataset A, dataset C, dataset D and dataset E
were scanned with an SQS-1000 scanner (Sqray com-
pany, Shenzhen, China) at × 20 magnification and
dataset B was scanned with an SQS-2000 at × 20
magnification. All private information of a patient was
eliminated when downloading the case. ALL slides were
de-identified before scanning and digitization. We used
all available data from eight health centers.

To verify the origin of bone metastases, two experts
with 20 years’ pathology experience were invited to read
slides. They combined HE slides, immunohistochem-
istry results and patients’ clinical information to make
diagnoses. If these two pathologists held different
opinions, a third expert was involved to read the slide as
well as adding more immunohistochemical markers to
confirm the origin if necessary.

Three pathologists with more than five years of
clinical experience drew one to twenty ROI in every
whole slide image. All ROI in a slide shared the same
label. The only requirement of annotation is that more
than 50% of a LR be tumor areas.

For dataset C, three pathologists combined the H&E
morphology and the top3 origins predicted by our
model and then conducted IHC tests. Another three
expert pathologists would be invited to make a unified
judgment on uncertain cases.
Image preprocessing
We cropped ROI into 256 × 256 patches (without over-
lap) at × 20 magnification. Before training, we adopted
techniques of data augmentation, including random
flipping and color jitter.
The architecture of the model
Many bone metastatic carcinoma foci scatter in the whole
image, some of which are too small to be detected. The
morphology of tumors in bone tissues is not as clear as
that in other tissues as a result of decalcification and bone
tissues are frequently squeezed and deformed when
taken from patients. With slide-level labels alone, the
model trained on a dataset that is not large enough may
fail to learn the characteristics of carcinomas. To over-
come this limitation, pathologists were involved to
annotate representative regions. This method can not
only improve the accuracy of classification but also the
efficiency of annotation. When labeling data, pathologists
only need to roughly draw ROI ranging from one to
twenty rather than categorize every patch in a region or
carry out further image screening. In this study, a fixed
number of patches were randomly picked in a LR, in
which every selected patch was regarded as an instance.

A patch with a shape of 256 × 256 was encoded into a
1024-dimentinal feature vector by a network, which we
called feature extractor. In this work, we studied the
www.thelancet.com Vol 87 January, 2023
effects of three types of feature extractors (ResNet,21

Swin Transformer,30 and ConvNeXt31) on the results.
All features in a bag were merged into a representative
vector by the operation of attention-based pooling.32 The
classification layer embedded the representative vector
concatenated with sex and finally output the region-level
predictions. We managed to train the model in an end-
to-end manner, that is, all components of the model
including feature extractors and attention-pooling net-
works could be trained simultaneously.

The workflow of RMIL is as shown in Fig. 1c. We use
hk to represent the feature vector of the k-th patch (k = 1,
2, …N). The attention score ak that indicates the
importance of the kth patch to the region-level predic-
tion is computed as

ak = exp(Wa(tanh(Vahk)⨀ σ(Uahk)))∑N
j=1 exp(Wa(tanh(Vahj)⨀ σ(Uahj))) (1)

Va and Ua ∈ RL×D are the same dimensions where
L = 768 and D = 1024. Here, D represents the dimen-
sion of the feature of each patch. There is another in-
dependent weight parameter Wa ∈ R1×768 in the
attention network. The representative vector of a LR can
be expressed as vroi ∈ R1×D.

vroi =∑N

k=1akhk (2)

Then vroi is concatenated with the patient’s sex which
is encoded by binary values to produce a new vector
v′roi ∈ R1×(D+1). After feeding v′roi into a classification
layer, the network outputs the final regional probability
Proi. In clinical practice, pathologists prefer case-level
diagnosis rather than region-level prediction. We
assumed that the contribution of each LR to the case
level classification was equal. Therefore, we averaged the
probability of each LR and then regarded the origin with
highest probability as the case level prediction. The case-
level probabilities are Pcase.

Pcase = 1
M

(∑M
1

Pm
roi) (3)

Here, M represents the total number of ROI in a case
and Pm

roi is the probability of the m-th LR.
In this work, we studied the effects of the number of

patches selected in a LR, the type of backbone and the
sex addition on the performance of the model. We also
compared the results predicted by RMIL on our dataset
with those of TOAD proposed by Lu.
Training details
To overcome the problem of distribution imbalance of
training set, we calculated the loss with the method of
weighted cross entropy.33 The weight of loss is
5
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negatively correlated with the number of ROI of each
category during training and we adjusted the weight of
lung from 0.4 to 1 due to its high frequency in practice.
Finally, the weights were set to 2, 2.5, 3, 1, 2.5, 3.5, 8 and
4 corresponding to the primary site of breast, prostate,
thyroid, lung, liver, kidney, stomach and intestine.

Our batch size was 16 and the training epochs were
50. We trained the model via the Adam optimizer with a
learning rate of 1e-4 and a decayed rate of 1e-4.
Visualization
To visualize the attention score which interpreted the
importance of each region or patch to the final predic-
tion, we drew a heatmap of the WSI, as well as the re-
gion. To generate a more fine-grained heatmap, we
cropped the WSI into 256 × 256 patches with 75%
overlap and a LR into the same size with an overlap of
90%.
Statistics analysis
We estimated the performance of models with evalua-
tion metrics of one-versus-rest recall and precision. For
the prediction of every primary site, we applied the
receiver operating characteristic curve (ROC curve) and
the area under ROC curves (AUROC) to evaluate the
model. The comprehensive evaluation metrics in this
paper includes the average accuracy and the micro
averaged AUROC. We also used the top3 accuracy
which calculates the percentage of records for which the
targets are in the top3 predictions. A high top3 accuracy
indicates that the top3 predictions of the model can be
useful to narrow down the OBMC and reduce the
number of subsequent tests. Due to uncertainties of
the ground truth labels of dataset C, we assessed the
concordance between the predictions of the model and
the results of IHC tests with top-k (k = 1,3) agreement,
as well as Cohen kappa score which measures the pre-
fect agreement and the agreement by chance between
two raters.34 In the experiment of detecting weather
there was carcinoma in the bone biopsy, sensitivity,
specificity and F1-score were adopted to evaluate the
performance of the model. To reduce the impact of
random data set division, we carried out the ten-fold
cross validation. Two-sided P tests without adjust-
ments were applied to all statistical analyses and the
significance threshold was 0.05.
Software and package
The software liberties and packages we used included
python 3.7.10, opencv-python 4.2.0, pytorch 1.8.1, mat-
plotlib 3.2.2, numpy 1.19.2, pandas 1.3.3, scipy 1.6.2,
tensorflow 2.6.0, torchvision 0.9.1, and scikit-learn
0.24.2. The software used to annotate whole slide im-
ages was ImageViewerG 1.1.7.
Role of funders
Funders were not involved in data collection, analysis,
interpretation, trial design, patient recruitment, or any
aspect pertinent to the study. They had no role in the
writing of the manuscript or the decision to submit it for
publication.
Ethics
This retrospective study was approved by IEC for Clin-
ical Research and Animal Trials of the First Affiliated
Hospital of Sun Yat-sen University (No. [2022]429). All
patients had signed informed consent before they
accepted operations biopsies and pathological
examinations.
Results
The number of selected patches
In the study, we designed a series of values for experi-
ments on dataset A to determine the optimum number
of patches selected. The results were shown in Fig. 2. In
the first stage, with the increase of patch number, the
average accuracy (ACC) and micro area under the
receiver operator characteristic curve (micro-AUROC)
gradually increased. In the second stage, when the patch
number reached five, the ACC and the micro-AUROC
achieved the maximum values of 92.48% ± 0.22% and
99.47% ± 0.08% respectively. In the third stage, ACC
and micro-AUROC were fluctuating as the number of
patches rose, but remained under the maximum values.
This phenomenon implied it was some part of the whole
patches from a LR that ultimately determined the
category.

To figure out the key patches that exert major im-
pacts on the final classification, we input all the patches
of a LR into the model and calculated the attention score
of each patch for visualization (Fig. 3). The results
revealed that the attention scores of cancer cells in the
test set were significantly higher than those of non-
cancer cells.
Backbone
The abilities of encoders to extract features from path-
ological images are different. ResNet21 is a series of
classic network in image processing. In this work, we
studied the influence of seven encoders on the perfor-
mance of the model. All encoders were pretrained on
ImageNet before end-to-end training on dataset A.

The recall, precision, ACC, and ROC curve of each
encoder were shown in Table 2. It was evident that
ConvNeXt outperformed ResNet on all metrics. For the
recall metrics of eight primary sites, ConvNeXt-tiny
scored highest on four of them (prostate:
89.53% ± 2.02%, lung: 95.93% ± 0.80%, kidney:
90.17% ± 2.54%, stomach: 87.94% ± 2.27%). ConvNeXt-
www.thelancet.com Vol 87 January, 2023
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Fig. 2: The influence of the number of patches in a bag. In order to realize end-to-end training, we randomly selected a fixed number of
patches from every bag for model training. To obtain the optimum number, a series of numbers of patches were investigated with associated
95% confidence intervals. n = 2720 ROI.

Articles
tiny also performed best on four of the eight precision
metrics (thyroid: 94.51% ± 1.89%, kidney:
91.50% ± 0.31%, stomach: 91.33% ± 1.83%, intestine:
89.71% ± 2.43%). Moreover, ConvNeXt-tiny achieved
the highest ACC of 92.52% ± 0.24% and micro-AUROC
of 99.51% ± 0.06% among the networks. The compre-
hensive research results suggested that ConvNeXt-tiny
was the optimum encoder of our model.
The influence of sex on the performance of the
model
The influence of sex on the performance of the model
was shown in Fig. 4. Without inputting the information
of sex, the AUROC of bone metastatic breast cancer was
97.71% ± 0.55%. While it raised to 98.80% ± 0.21% with
P value of 0.023 (t test) after adding sex as input. Sex
also had a positive influence on the prediction of bone
metastatic prostate carcinoma. With or without sex, the
AUROCs were 99.27% ± 0.27% and 98.37% ± 0.31%
respectively (P = 0.014 with t test). Furthermore, the
overall performance of the model with sex as input was
superior to that of the model without sex as input. With
or without sex, the ACCs were 92.51% ± 0.29% and
90.60% ± 1.08% respectively (P = 0.029 with t test).
The overall performance of the model
The optimal number of selected patches was set to five
and ConvNeXt-tiny was the most appropriate backbone
of our model. Besides, we integrated the sex informa-
tion into the region-level feature before the final
classification layer. With ten-fold cross validation ex-
periments on dataset A, our model achieved an ACC of
93.31% ± 0.48% and a micro-AUROC of
99.57% ± 0.03% at ROI level. More details of each
www.thelancet.com Vol 87 January, 2023
individual primary site were shown in Fig. 5a–c. The
top-k predictions were useful to narrow down potential
OBMC in clinical and reduce the number of ancillary
tests necessary for identifying the primary sites.
Consequently, our approach provided pathology doctors
with the top3 possible OBMCs and the Top3-ACC of our
model was 99.05% ± 0.13%. At the case level, the model
achieved an ACC of 91.35% ± 2.94% and a top3-ACC of
97.75% ± 1.64%.

Generalization on the external cohort
To assess the generalizability of our method across
various healthcare centers with different staining pro-
tocols and image scanners, we built dataset B from an
external medical center (Table 1). At the ROI level, our
model produced an ACC of 73.96% ± 1.23% and a top3-
ACC of 95.21% ± 0.43%. At the case level, the ACC was
81.38% ± 1.30% and the top3-ACC was 97.44% ± 0.55%.
Compared with the significant drop from
91.35% ± 2.94% to 81.38% ± 1.30% (P < 0.01 with t test)
in ACC, the top3-ACC did not decrease notably (test:
97.75% ± 1.64%, external test: 97.44% ± 0.55%, P = 0.76
with t test). Our model displayed good adaptability to
varied staining protocols and image scanners in terms
top3-ACC. More detailed performance of RMIL on the
external test was displayed in Supplementary Fig. S2.

We then calculated the metrics of TOAD.27 In the
within-cohort, the ACC of patient level was
72.25% ± 5.06% and the top3 accuracy was
92.60% ± 2.89%. In the external cohort, the ACC of
patient level was 71.83% ± 4.41% and the top3 ACC was
93.40% ± 1.22%. The comparison of the results of RMIL
versus TOAD implied the regions labeled by patholo-
gists and the features trained by bone metastatic cancers
could improve the accuracy of predictions. More details
could be available in Supplementary Figs. S3 and S4.
7
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Fig. 3: Attention heatmaps. (a) Attention heatmaps of the WSIs. (b) Attention heatmaps of the ROI. These ROI can be found in the black
marks of their corresponding left WSIs. (c) Metastatic carcinomas from the regions with high attention scores. (a)–(c) the OBMCs from top to
bottom are lung, prostate, liver, intestine, kidney, stomach, thyroid and breast.
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Recall (%)

Res-34 Res-50 Res-101 Conv-B Conv-S Conv-T Swin-T

Breast 83.43 ± 3.08 79.79 ± 4.84 82.18 ± 2.17 88.89 ± 2.96 84.96 ± 5.57 88.60 ± 2.14 91.38 ± 2.99

Prostate 83.78 ± 3.86 82.60 ± 3.28 78.47 ± 2.40 85.99 ± 3.10 84.66 ± 2.02 89.53 ± 2.02 87.17 ± 1.78

Thyroid 92.48 ± 1.14 92.16 ± 2.75 90.69 ± 0.45 93.79 ± 1.38 93.14 ± 3.92 93.79 ± 2.32 92.32 ± 0.26

Lung 90.46 ± 1.28 88.82 ± 2.91 89.26 ± 2.00 95.14 ± 0.57 95.55 ± 0.99 95.93 ± 0.80 92.91 ± 2.01

liver 82.63 ± 3.27 85.19 ± 2.41 83.14 ± 1.28 83.01 ± 2.75 89.27 ± 0.94 89.14 ± 2.66 86.97 ± 0.35

Kidney 88.83 ± 1.07 84.50 ± 5.60 83.50 ± 5.21 89.5 ± 3.33 89.00 ± 2.81 90.17 ± 2.54 87.33 ± 3.53

Stomach 81.56 ± 6.01 82.27 ± 1.13 75.18 ± 3.00 80.85 ± 5.90 85.11 ± 8.57 87.94 ± 2.27 85.82 ± 4.09

Intestine 78.27 ± 8.67 76.05 ± 2.09 69.63 ± 4.49 86.17 ± 3.44 86.67 ± 2.47 84.44 ± 2.98 88.40 ± 2.40

Precision (%)

Res-34 Res-50 Res-101 Conv-B Conv-S Conv-T Swin-T

Breast 78.76 ± 1.33 81.62 ± 1.96 79.94 ± 1.45 87.92 ± 1.10 89.41 ± 3.70 87.23 ± 3.30 82.64 ± 6.61

Prostate 82.57 ± 8.83 80.82 ± 2.58 88.27 ± 3.98 89.18 ± 3.12 93.99 ± 1.62 88.48 ± 4.10 92.49 ± 0.30

Thyroid 88.72 ± 1.67 83.04 ± 3.87 82.83 ± 3.31 90.50 ± 5.03 92.93 ± 4.00 94.51 ± 1.89 92.42 ± 3.32

Lung 94.67 ± 1.23 93.83 ± 2.67 92.11 ± 1.07 94.09 ± 1.65 93.83 ± 1.18 95.32 ± 1.14 95.36 ± 1.17

liver 86.58 ± 4.08 80.87 ± 4.22 76.15 ± 5.60 91.22 ± 2.40 85.29 ± 3.62 87.95 ± 1.21 89.42 ± 2.54

Kidney 81.42 ± 1.75 80.72 ± 6.63 79.38 ± 10.14 89.33 ± 1.20 90.95 ± 2.82 91.50 ± 0.31 91.10 ± 4.20

Stomach 65.33 ± 8.83 68.43 ± 3.72 61.92 ± 14.19 83.38 ± 14.77 90.49 ± 3.50 91.33 ± 1.83 81.08 ± 8.21

Intestine 77.61 ± 8.21 70.46 ± 4.32 81.16 ± 9.98 84.15 ± 2.09 83.02 ± 9.10 89.71 ± 2.43 78.21 ± 3.09

Res-34 Res-50 Res-101 Conv-B Conv-S Conv-T Swin-T

ACC (%) 87.53 ± 1.31 85.99 ± 0.43 85.34 ± 0.71 91.21 ± 0.71 91.41 ± 0.96 92.52 ± 0.24 90.87 ± 0.81

AUROC (%) 98.73 ± 0.13 98.64 ± 0.07 98.42 ± 0.15 99.39 ± 0.06 99.38 ± 0.03 99.51 ± 0.06 99.35 ± 0.10

Note: Res-34: ResNet-34. Res-50: ResNet-50. Res-101: ResNet-101. Conv-B: ConvNeXt-base, Conv-S: ConvNeXt-small. Conv-T: ConvNeXt-tiny. Swin-T: Swin Transformer-tiny. We reported the metrics of recall,
precision, ACC and AUROC of each primary site with 95% confidence intervals on the test set (n = 2720 ROI). The number in bold in each row represents the high test score among seven feature extracting models.

Table 2: The performance of the model across different backbones.

Articles
Evaluation on unknown OBMC cases
To verify our method of helping pathologists determine
potential OBMCs and narrow down necessary tests, we
evaluated RMIL on another 175 cases of unknown
OBMCs. Combining H&E morphology and the top3
Fig. 4: The influence of sex on the performance of the model. The top
primary site with or without the sex as an input of the model. The lower r
an input to the model. n = 2720 ROI.

www.thelancet.com Vol 87 January, 2023
origins predicted by our model, pathologists made new
slides from the same blocks to perform extra IHC tests.
Results of 142 cases in Fig. 5g illustrated that the pre-
dictions of the model highly agreed with the origins
suggested by IHC markers (K = 73.14% ± 2.56%), and
figure demonstrates the AUROCs (95% confidence intervals) of every
ow shows the ROC curves of each primary site with or without sex as
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Fig. 5: The performance of the model. (a) The ROI-level confusion matrix of predictions of the model. Given to the imbalance in class
distribution, the value of each row in the confusion matrix was divided by the total number of this category. (b) The ROI-level precision of each
primary site. (c), The ROI-level recall of each primary site. (a)–(c) n = 2720 ROI. (d) The ROI-level top-k accuracies for the predictions of the
OBMCs on the test set (n = 2720 ROI) and the external set (n = 383 ROI). (e) The case-level top-k accuracies for the predictions of the OBMCs on
the test set (n = 136 cases) and the external set (n = 43 cases). (f) Micro averaged one-versus-rest ROC curves for the classification of the OBMC,
evaluated on the test set (n = 2720 ROI) and the external test set (n = 383 ROI). The micro averaged AUROC was 99.57% (95% CI: 99.54%,
99.60%) on the test and 95.19% (95% CI: 94.81%, 95.57%) on the external test. (g) We calculated the consistency between the predictions of
the model and the results indicated by IHC tests on 145 unknown cases (IHC). For the left 33 cases which could not be indicated by IHC, we
assessed the agreement between the predictions of the model and the judgements made by pathologists according to the morphologies of H&E
slides (DOC). The metrics of agreement include Cohen Kappa score (K), top1 agreement (agr1), and top3 agreement (agr3). (h) The fractions of
samples (y axis) that were correctly classified at or above a certain confidence threshold. Due to the limited cases, seven primary sites were
included in this analysis (n = 142 cases). (b)–(e), (g) Error bars indicate 95% confidence intervals.
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the agreement achieved 83.90% ± 1.57% and
94.33% ± 0.62% respectively when taking into account
top1 and top3 predictions. For the left 33 cases whose
origins could not be indicated by the IHC markers,
pathologists made determinations based on the
morphology and their experience. The consistency be-
tween the predictions of the model and the pathologists’
judgments was 76.97% ± 2.83% for top1
94.85% ± 2.18% for top3, and 52.37% ± 4.25% for K
value.

We further analyzed the confidence of top1 pre-
dictions on dataset C. As shown in Fig. 5h, 32.37% of the
cases had a confidence level greater than 95%, 31.65%
had a confidence level between 75% and 90%, 17.27%
had a confidence level between 50% and 75%, and 5.76%
had a confidence level lower than 50%. The accuracy of
top1 predictions with a confidence level lower than 50%
was only 22.06% ± 1.50%, while the accuracies of the
results with three other confidence levels were all 100%
(supplementary Fig. S5). The confidence of top3
Fig. 6: Top3 Predictions. (a) The fractions of samples (y axis) that were
threshold. Due to the limited cases (n = 142 cases), seven primary sites w
occurred in tops3 predictions. The test set contained 136 cases and th
confidence intervals. (c) The frequency of the combinations of three origin
frequency of the combinations of three origins occurred in top3 predi
combinations of three origins occurred in top3 predictions when the gro
(c)–(e) The x-axis means the combination of three primary sites which w

www.thelancet.com Vol 87 January, 2023
predictions on dataset C was displayed in Fig. 6a. 31.58%
of the cases had a confidence level greater than 95%,
32.17% had a confidence level between 75% and 90%,
15.8% had a confidence level between 50% and 75%, and
16.62% had a confidence level lower than 50% which
significantly increased the agreement by over 10 points
(from 83.90% of top1 to 94.33% of top3).
Top3 predictions
We then calculated the frequency of each primary site
occurred in top3 predictions. The results in Fig. 6b
showed that among eight sites, lung occurred most
frequently (24.39% ± 2.32% on the test set and
28.44% ± 0.78% on the unknown-test set), breast
occurred the second (18.33% ± 2.96% on the test set and
20.38% ± 5.09% on the unknown-test set) followed by
liver (13.64% ± 3.94% on the test set and
13.29% ± 2.11% on the unknown-test set), which were
accordant with the proportions of cases with
correctly predicted in top3 results at or above a certain confidence
ere included in this analysis. (b) The frequency of each primary site
e unknown-test set contained 142 cases. Error bars indicate 95%
s occurred in top3 predictions on the test set (n = 136 cases). (d) The
ctions on the unknown set (n = 142 cases). (e) The frequency of
und truths were lung, breast, and liver respectively (n = 278 cases).
as available in supplementary Table S4.
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Fig. 7: The performance of the model to predict whether there are metastatic carcinomas in bone tissue. (a) The ROI-level confusion
matrix of predictions of the model. The value of each row in the confusion matrix was divided by the total number of this category. (b) The ROI-
level sensitivity, specificity, accuracy and f1-score of the model. The positive category refers to the ROI with metastatic carcinomas. Error bars
indicate 95% confidence intervals. (c) The ROC curve with an AUROC of 99.90% (95% CI: 99.89%, 99.91%). (a)–(c), n = 2734 ROI.

Articles

12
corresponding origins. To figure out which three com-
binations were constantly predicted by our model, we
measured the frequency of 56 combinations from eight
primary sites. The combination of breast, lung and in-
testine was the most common in top3 predictions on the
test set (13.87%), as well as on the unknown-test set
(17.30%). When predicting the cases with a ground
truth of lung, our model also provided breast, lung and
intestine (19.68%) as the most common combination.
More details could be available in Fig. 6, Supplementary
Tabale S4, and Supplementary Fig. S6.
Predicting whether there is metastatic cancer in
bone tissue
Pathologists will evaluate whether there is a metastatic
tumor in bone tissue according to the histomorphology
before identifying the OBMC. With the same frame-
work as RMIL, we obtained a sensitivity of
Fig. 8: The performance of the model to classify adenocarcinoma, squ
matrix of predictions of the model. The value of each row in the confusion
level precision of each category. (c) The ROI-level recall of each category.
cell carcinoma, and “neu” represents neuroendocrine tumor. (b)–(c) Erro
AUROC of 98.83% (95% CI: 98.59%, 99.07%). (a)–(d) n = 1090 ROI.
98.85% ± 0.19%,a specificity of 99.10% ± 0.09%, an
ACC of 98.98% ± 0.09%, and an f1-score of
98.97% ± 0.05%. The performance proved that it could
act as an RMIL-aided tool to locate tumor areas,
reducing the workload of labeling ROI. Individual
category assessments were available in Fig. 7.
Identification of cancer type
RMIL was able to distinguish adenocarcinoma, squa-
mous cell carcinoma, and neuroendocrine tumor. It
produced an accuracy of 93.85% ± 0.73% and a micro-
AUROC of 98.83% ± 0.24% (Fig. 8), manifesting its
broad prospects in the differentiation of cancer type.
Discussion
Identifying the OBMC is critical for the selection of
optimal method of treatments for patients, such as
amous, and neuroendocrine carcinoma. (a) The ROI-level confusion
matrix was divided by the total number of this category. (b) The ROI-
(a)–(c) “ade” represents adenocarcinoma, “squ” represents squamous
r bars indicate 95% confidence intervals. (d) The ROC curve with an
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target therapeutics, chemotherapy, radiotherapy and
immunotherapy.35–38 We designed a deep learning-based
algorithm to determine the OBMC by routine H&E
histology along with sex information. Practically, when
detailed clinical data of patients with bone metastases
are not available, dozens of IHC tests are required to
make diagnoses. For cases with tiny bone biopsies,
sufficient bone tissues for necessary IHC tests are un-
available. Our model trained on thousands of samples
can make reasonable predictions of the OBMC and
greatly simplify the laborious and time-consuming
work-ups to find primary sites of tumors. We labeled
26,431 ROI on H&E slides as input and implemented
end-to-end model training. The top1 prediction of the
OBMC of high accuracy is of great reference value in
primary hospitals where advanced imaging equipment
and complete IHC reagents are not available. The top3
predictions can also narrow down the origins of some
complex cases which are challenging for pathologists to
identify directly from morphology.

Instead of feeding all patches of a bag into the model
pretrained on the dataset of natural images as
mentioned by Lu et al., we randomly selected a certain
number of patches in a bag. In the previous work of
embedding MIL algorithms,27,39–42 the number of
patches in a bag was so large that all parameters of the
feature extractor had to be frozen, which only extracted
basic features. However, in our study, we aimed to train
the feature extracting network by bone metastatic cancer
images so as to make more accurate predictions. Large
number of patches in a bag (e.g., greater than 256) will
make the speed of training very slow.41,43 The changing
number of images in a batch also slow down the speed
of training. A fixed number of patches in a bag can solve
this problem. In addition, we are able to set batch size to
16 or even greater, which makes the training converge
more smoothly.

In our study, the excellent performance of ConvNeXt
might be related to the enlargement of the receptive
filed, the expansion of channels, and the increasement
of the depth. When comparing the characteristics of
metastatic cancer from different origins, it is necessary
to consider both histological features of tumor (e.g., nest
structure, glandular structure, sieve texture, strip texture
and necrosis) and microscopic characteristics of cell
(e.g., mitosis, nuclear size and shape). With a larger
receptive field, we are able to obtain comprehensive
tissue level features. Also, wider channels ensure Con-
vNeXt to grasp more abundant features and deeper
blocks help it project pathological image features to
higher dimensions to solve complex classification
problems.

Breast and prostate cancers have obvious sex ten-
dencies. In 182 cases of breast cancer bone metastases,
181 patients were female; and in 82 cases of prostate
cancer bone metastases, all of them were male. With sex
as input, almost the performance metrics of all origins
www.thelancet.com Vol 87 January, 2023
were more or less improved except stomach (Fig. 4). The
number of stomach cancer cases might have an impact
on this phenomenon. Sex is benefit for the origin
determination of poorly differentiated cases. The mor-
phologies of poorly-differentiated lung cancer and breast
cancer were hard to be distinguished, which turned out
be easier for the model with the sex of male as input.

Considering the great challenge to predict the OBMC
from morphology with the top1 result, top3 results also
exhibited valuable and practical significance. For
example, the origin of a case on dataset C was predicted
as intestine with a confidence level of 54%, lung of 36%
and liver of 4.5% (Supplementary Fig. S7). Pathologists
made corresponding IHC tests depending on the top3
origins predicted by the model and morphology. This
case was diagnosed as metastatic enteric-type adeno-
carcinoma of the lung with supportive IHC staining
reaction: positive for CK20, CDX2, CK7 and TTF-1.
Enteric-type adenocarcinoma has striking histo-
morphology and immunophenotypic similarities with
colorectal adenocarcinomas, but has its own specific
features on the level of molecular pathologic mecha-
nisms, which rarely occur in the areas of upper respi-
ratory tract and lung.44,45 After carefully examining the
training set, we also found an enteric-type adenocarci-
noma of lung case. It implied that top3 predictions
could provide more comprehensive origin indications
and remind doctors of information they might have
neglected.

The limitation of our method is that pathologists are
required to label ROI before RMIL makes predictions.
However, in the studies of Lu and other re-
searchers,27,42,43 ROI are not required. Although our
model displayed good generalizability on the external
dataset, we need to collect more data from other widely
distributed medical centers to examine the model.
Another limitation of our study is that in our datasets,
we did not include the cases beyond eight origins
because the number of such cases were really small. In
the dataset of unknown origins, these cases might
occur, however our model would still predict the origin
as one of the eight types. Of course, with more and more
data collected, “other cancer types” will be included in
our dataset or even be separately subdivided into uterine
cancer, ovarian cancer, etc.

The developed model will be applied broadly in the
secondary hospitals, tertiary hospitals and rural hospi-
tals with the promotion of digital scanners. This method
is easily embedded in mature labeling software matched
with scanners. After digitizing slides, clinicians and
pathologists can use the analysis function to predict the
top3 possible OBMCs. Combining the predictions of
our model and medical information, doctors are able to
make accurate diagnoses with less resources and time.

In conclusion, our research serves as an accurate
assistive tool for pathologists to predict OBMC with only
routine H&E slides and the sex of the patient.
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