
Preparation of TiO2 Anatase Nanocrystals by TiCl4

Hydrolysis with Additive H2SO4

Wenbing Li1*, Tingying Zeng2

1 Department of Chemistry and Biology, Jackson State University, Jackson, Mississippi, United States of America, 2 The Center for Excitonics, Massachusetts Institute of

Technology, Cambridge, Massachusetts, United States of America

Abstract

A new methodology was developed to synthesize uniform titania anatase nanocrystals by the hydrolysis of titanium
chloride in sulfuric acid aqueous solutions at 0–90uC. The samples were characterized by Raman spectroscopy, UV-visible
spectroscopy, transmission electron microscopy (TEM), electron diffraction (ED), and an Energy dispersive X-ray
spectroscopy (EDS). The effects of the reaction temperature, mole ratio of SO4

22 to Ti4+, and the calcinations temperature
on the particle size and crystal phase were investigated. Depending on the acidity, the hydrolysis temperature, and the
calcination temperature, rhombic anatase nanocrystals sizes in the range of 10 nm to 50 nm were obtained. In the additive
of sulfuric acid, Raman spectra and electron diffraction confirmed that the nanoparticles are composed of anatase TiO2. No
other titania phases, such as rutile or brookite, were detected.
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Introduction

It is well known that TiO2 occurs in nature in three distinct

crystallographic phases: anatase, rutile, and brookite. While

anatase TiO2 are the most widely used photocatalysts for oxidative

decomposition of organic compounds, and an excellent photocat-

alyst for photodecomposition and solar-energy conversion due to

its high photoactivity.[1] It has the advantages of both cheapness

and nontoxicity, in addition to its excellent functionality and long-

term stability. The configurations of titanium oxide researched

and reported have mainly been powders or films based on

materials.[2–4] A notable problem connected with these tradi-

tional preparations is that the growth of TiO2 nanocrystallites take

a long time. Therefore it is highly desirable to find some new ways

that are capable of overcoming the above problems to prepare

crystal structure TiO2. Many attempts have been made in this

field over the past few years.[5–16] At the same time, recent

photocatalytic studies have demonstrated that the photoactivity of

anatase nanoparticles is strongly particle size dependent.[17,18]

The applications for TiO2 are also strongly dependent on the

crystalline structure and morphology.[10,16–18] Thus, it is very

important to develop synthetic methods in which the crystalline

form. It is also important that the TiO2 sizes and shapes be

controlled.[19] Anatase nanoparticles have been synthesized

primarily by solution chemistries involving titanium sulfates and

organic titanium.[20–27] These methods have shortcomings since

chemical impurities or minor accessory phases are always present

in the final products. In the case of organic hydrolytic reactions,

TiO2 nanoparticles obtained are crystallized primarily in the

anatase phase but a minor phase of brookite couldn’t be elimi-

nated by tuning the reaction conditions.[28–42] The presence

of trace amounts of brookite might have side effects on the

application of anatase nanoparticles in photocatalytic reactions

and many other chemical processes. Hydrolysis of TiCl4 has exten-

sively been reported for the synthesis of anatase nanocrystals,

however, the preparation of titania anatase nanocrystals directly in

sulfuric acid solution is seldom reported.

In this study, the preparation of titania anatase nanocrystals by

hydrolysis of TiCl4 with diluted sulfuric acid solution was studied.

With the precisely control of reaction parameters, we could get

titania anatase nanocrystals and achieve high phase purity anatase.

To the best of our knowledge, such works have not yet been re-

ported. The effects of the reaction temperature, sulfuric acid con-

centration, and the calcination temperature on the particle size

and crystal phase were investigated.

Materials and Methods

1). Materials
All chemicals were obtained commercially and used without

further purification. Titanium chloride (TiCl4, 99.90%) and Con-

centrated Sulfuric acid (98%) were obtained from Fisher. Con-

centrated NH3.H2O was purchased from Sigma-Aldrich. All

chemicals, unless specified, were of reagent grade. Deionized (DI)

water, with a resistivity greater than 18.0 MV?cm (Millipore Milli-

Q system), was used in preparing the aqueous solutions. All

glassware used in the experiments was washed with freshly pre-

pared aqua regia and rinsed thoroughly in tap water first and then

DI water before using.

2). Preparation of TiO2 anatase nanocrystals
In the procedure, TiCl4 was used as a main starting material.

The detail process is shown in Figure 1. In brief, 1ml TiCl4 was
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slowly added to different amounts of diluted sulfuric acid (10%)

solution at 0uC in an ice-water bath with vigorously stirring.

During the mixing process, white fume, presumably HCl, was

released as a consequence of the hydrolysis of TiCl4 with water.

After about half an hour, a grey solution was formed with

continuous stirring. Then when the solution was heated to above

60uC, it became clear solution. And then the solution was kept at

room temperature or heated at different temperatures for one

hour. Later, concentrated NH3.H2O was added drop by drop to

the solution until the pH value reached about 7. During the

process of adding concentrated NH3.H2O, the color of solution

changed to white. At last, the white solution was cooled to room

temperature and gelled 12 hours. The hydrous TiO2 powders

were filtered out and washed with DI water until there was no

white sediment with 0.1 M AgNO3 solution, and then dried at

room temperature in a vacuum oven. In some cases, the dried

TiO2 powders were calcinated at 400uC and 600uC for two hours

separately, both producing an off-white powders.

3). Raman spectroscopy
Raman spectrometer was used for crystal phase identification.

Raman spectroscopy is a form of vibrational spectroscopy, much

like infrared (IR) spectroscopy. It exhibits high specificity and is

compatible with aqueous and solid systems. No special preparation

of the sample is needed, and the timescale of the experiment is

short. Raman spectrum analysis was conducted using a Raman

System’s R-3000 spectrometer with a solid-state diode laser ope-

rating at 532 nm. The Raman system’s incident power is 25 mW,

which has a wavelength range of ,200–4000 cm21.

4). Extinction spectra
The extinction spectra were recorded on a Shimadzu UV-2101

Spectrophotometer (Shimadzu Corporation Japan) using a 1-cm

path length quartz cuvette at room temperature and the spectra

were recorded in the range 200–800 nm.

5). TEM and ED measurements
A drop of well-sonicated solution containing the nanoparticles

was deposited onto a 400 mesh Cu grids with supporting carbon

film. (Electron Microscopy Sciences, PA). The samples were

allowed to dry at room temperature overnight. A JEOL 100CX

electron microscope operated at 100 KV was used to obtain the

TEM images and ED spectra.

6). Energy dispersive X-ray spectroscopy (EDS)
EDS is an analytical technique used for the elemental analysis

or chemical characterization of a sample. The chemical compo-

sitions of the ultrafine nanoparticles were determined by using a

JEOL 5400LV equipped with Sigma Microanalyzer Level LPX1

Energy Dispersive X-ray Spectrometer (EDS).

Results and Discussion

When TiCl4 hydrolyses in diluted sulfuric acid solution, because

of the presence of a certain amount of hydrogen ions, the reaction

rate may be slower than in pure water. The reaction process can

be described as equation 1:

TiCl4zH2OzH2SO4?TiO-SO4z4HCl ð1Þ

Then the adding of concentrated NH3.H2O made the solution

becoming white precipitate, and it could lead to the reaction (2):

TiO-SO4z2NH3:H2O?H2TiO3;z(NH4)2SO4 ð2Þ

After the filtering, washing and heating, here is the decompo-

sition of H2TiO3.

H2TiO3?TiO2zH2O ð3Þ

Table 1 shows a summary of the sample’s preparation

conditions. The anatase and rutile phases of the prepared samples

can be sensitively identified by Raman spectroscopy based on their

Figure 1. Process of TiO2 anatase nanocrystals preparation.
doi:10.1371/journal.pone.0021082.g001

Table 1. The Comparison of Samples Prepared under Various
Hydrolysis Conditions.

Sample No.
H2O/TiCl4 volume
ratio

H2SO4/TiCl4 mole
ratio

Hydrolysis T/

6C

1 15:1 4:1 85

2 10:1 4:1 85

3 10:1 2:1 85

4 10:1 2:1 75

5 10:1 1:1 65

6 10:1 1:1 25

doi:10.1371/journal.pone.0021082.t001
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Raman spectra. All Raman spectra were recorded at room

temperature. Consequently, the presence of adsorbed water

hindered the study of the hydroxyl groups from these analyses.

Figure 2 and 3 showed the comparison of the Raman spectra of

the samples at different reaction conditions. Because of the

wavelength range limitation of Raman system R-3000, there is no

Raman bands at 144 and 197 cm21. But the anatase phase shows

major Raman bands at 399, 515, 519 (superimposed with the

515 cm21 band), and 639 cm21. [37,38] So samples are in the

anatase phase because only characteristic bands (399, 515, 519,

and 638 cm21) due to anatase phase are observed. These bands

can be attributed to the four Raman-active modes of anatase

phase with the symmetries of B1g, Eg, Eg, and Eg respectively.

Obviously, Raman spectra show that the titania sample is in the

Figure 2. Comparison of the Raman spectra of the samples after calcinations at 4006C: sample 1, sample 2, sample 3, sample 4,
sample 5, sample 6.
doi:10.1371/journal.pone.0021082.g002

Figure 3. Comparison of the Raman spectrum of the samples after calcinations at 6006C: sample 1, sample 2, sample 3, sample 4,
sample 5, sample 6.
doi:10.1371/journal.pone.0021082.g003
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anatase phase without rutile or brookite. The presence of sulfuric

acid is quite effective in promoting the formation of the anatase

phase. It can be seen that with the higher sulfuric acid

concentration in the system, the higher crystallinity it is. At the

same time, with the increase of calcinations temperature, the

crystallinity increased. The higher water ratio also increased the

crystallinity.

Figure 4 showed the UV-vis diffuse reflectance spectra of the

titania samples calcinated at 400 and 600uC. This absorbance

increase shifts to slightly higher wavelengths as the temperature of

the powder thermal treatment increases. This phenomenon is

more clearly evident by the evolution of the position of the

maximum in the derivative of the UV spectra, which corresponds

to the inflection point on the spectrum. For the anatase phase, the

absorption band edge can be estimated to be around 530 nm,

respectively. It clearly shows that titania has strong electronic

absorption in the UV region.

When the samples prepared with sulfuric acid solution were

calcinated at 400uC for 2 hours, with the increased sulfuric acid

Figure 4. Extinction spectra of sample 1 calcinated at 400 and
6006C.
doi:10.1371/journal.pone.0021082.g004

Figure 5. TEM image of the samples calcinated at 4006C for 2 hours: sample 1, sample 2, sample 3, sample 4.
doi:10.1371/journal.pone.0021082.g005
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content, the intensity of Raman patterns as well as ED patterns

increased. In Figure 5, TEM image of sample 1, sample 2, sample

3 and sample 4 calcinated at 400uC for 2 hours are reported. It

showed that the morphology of the samples is close to sphere. The

primary particle size of sample 1 is finer than the rest. It can be

noted that the primary particle’s size in sample 1 is between 6 and

9 nm and the secondary ones are less than 5 nm. After calcinated

at 400 and 600uC, most of the particles in the samples exhibit

diameters in the range of 10 to 50 nm. With the increasing of

hydrolysis temperature, the average size of the nanocrystals

decreased. With an increase in water content, the average size of

the nanocrystals decreased. The higher sulfuric acid content also

decreased the particle size.

Figure 6 gave the electron diffraction (ED) pattern of some

samples, the latter shows that the brightness and intensity of the

polymorphic ring is weak, so the powder crystallized partially and

was somewhat amorphous. For the samples that calcinated at

600uC 2 hours, the ED patterns were brighter and the intensity of

the polymorphic ring is strong. As it shown, the samples were

crystallized completely. Figure 7 shows the diffraction rings of

antase nanocrystals in details. The diffraction rings are indexed in

table 2 which showed the corresponding selected area electron

diffraction (SAED). It confirmed the presence of crystal structure

TiO2 according to JCPDS, card No: 21–1272.

Table 3 shows the typical chemical composition of sample 1

after calcination at 400uC 2 hours, obtained from the EDS. As we

can see from table 3, in sample 1, except Ti and O, other elements

Figure 6. ED images of the samples, (1) sample 1 calcinated at
4006C, (2) sample 2 calcinated at 4006C, (3) sample 1
calcinated at 6006C, (4) sample 2 calcinated at 6006C.
doi:10.1371/journal.pone.0021082.g006

Figure 7. The diffraction rings of antase nanocrystals in details.
doi:10.1371/journal.pone.0021082.g007

Table 2. The Diffraction Rings Indexed according to JCPDS,
card No: 21–1272.

Number d h k l

1 3.520 0 1 0 1

2 2.431 0 1 0 3

2.378 0 0 0 4

2.332 0 1 1 2

3 1.892 0 2 0 0

4 1.699 9 1 0 5

5 1.666 5 2 1 1

6 1.493 0 2 1 3

1.480 8 2 0 4

7 1.364 1 1 1 6

8 1.337 8 2 2 0

9 1.279 5 1 0 7

1.264 9 2 1 5

doi:10.1371/journal.pone.0021082.t002

Table 3. EDS of Sample 1 after Calcination at 400uC for 2
Hours.

Elt. Line
Intensity
(c/s)

Error
2-sig

Atomic
% Conc Units

O Ka 60.83 2.014 64.081 37.356 wt.%

Ti Ka 556.14 6.089 35.919 62.644 wt.%

100.000 100.000 wt.% Total

doi:10.1371/journal.pone.0021082.t003
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such as S, Cl and C are not detectable. So powders are pure TiO2.

Other samples have the similar results.

Conclusions
In conclusion, we report that titania nanocrystals in anatase

phase have been synthesized from hydrolysis of TiCl4 with sulfuric

acid solution. The presence of a certain amount of H2SO4

promotes occurrence of anatase phase and inhibits the anatase-

rutile transformation even at 600uC. After the powders calcinated

at 600uC for 2 hours, some samples became completely anatase.

Both the calcinations temperature and hydrolysis temperature

have important effects on the primary particle size. The com-

positions of samples are pure anatase, without other elements.

A new methodology is reported for preparing uniformly sized

nanocrystals of the pure anatase phase that have a well-controlled

particle size at controlled temperatures and compositions. The

new process should have great potential in preparation of large

amount of pure antase nanocrystals.
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