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A B S T R A C T   

Ellagitannins (esters composed of glucose and ellagic acid) are hydrolyzed to generate ellagic acid in gut fol-
lowed by conversion of ellagic acid to urolithins such as urolithin A by intestinal bacteria. Since urolithins are 
absorbed by gut easier than ellagitannins and ellagic acid, and show various physiological activities (e.g. anti- 
cancer, anti-cardiovascular disease, anti-diabetes mellitus, anti-obesity and anti-Alzheimer disease activities), 
they are expected as excellent health-promoting phytochemicals. Here, using human monoblast U937 cells, we 
investigated the effect of ellagic acid and urolithin A on the superoxide anion (O2

− )-generating system of 
phagocytes, which is consisted of five specific protein factors (membrane proteins: p22-phox and gp91-phox, 
cytosolic proteins: p40-phox, p47-phox and p67-phox). Twenty micromolar of urolithin A enhanced the all- 
trans retinoic acid (ATRA)-induced O2

− -generating activity (to ~175%) while 20 μM ellagic acid inhibited the 
ATRA-induced O2

− -generating activity (to ~70%). Semiquantitative RT-PCR showed that transcription level of 
gp91-phox was certainly decreased (to ~70%) in ATRA plus ellagic acid-treated cells, while that of gp91-phox 
was significantly increased (to ~160%) in ATRA plus urolithin A-treated cells. Chromatin immunoprecipitation 
assay suggested that urolithin A enhanced acetylations of Lys-9 residues of histone H3 within chromatin sur-
rounding the promoter region of gp91-phox gene, but ellagic acid suppressed the acetylations. Immunoblotting 
also revealed that ATRA plus urolithin A-treatment up-regulated protein levels of p22-phox (to ~160%) and 
gp91-phox (to ~170%) although ATRA plus ellagic acid-treatment down-regulated protein levels of p22-phox (to 
~70%) and gp91-phox (to ~60%). These results suggested that conversion of ellagic acid to urolithin A in gut 
may bring about reverse effects on the gp91-phox gene expression, resulting in opposite alterations in O2

− - 
generating activity of intestinal macrophages.   

1. Introduction 

Ellagic acid (2,3,7,8-tetrahydroxy [1]-benzopyrano [5,4,3-cde] [1] 
benzopyran-5, 10-dione) exists in various vegetables and fruits (e.g. 
raspberry, strawberry, walnuts, pomegranate etc.) as ellagitannins that 
are esters composed of glucose and ellagic acid [1]. After hydrolysis 
reactions of ellagitannins, ellagic acid is generated. Furthermore, uro-
lithins (dibenzo [b,d]pyran-6-one derivatives) such as urolithin A with 
anti-oxidant and anti-inflammatory effects are synthesized by the mi-
crobial conversion of ellagic acid and residual ellagitannins in human 

gut [1-9]. Urolithins are absorbed by gut easier than ellagitannins and 
ellagic acid, and exert various physiological activities: anti-cancer, 
anti-cardiovascular disease, anti-diabetes mellitus, anti-obesity, anti--
Alzheimer disease and so on [2-8]. Even at physiological concentration, 
urolithins can show effects on various chronic degenerative diseases [2]. 
Therefore, urolithins and their related compounds are expected as 
health-promoting phytochemicals. However, molecular mechanisms of 
physiological functions of urolithins remain unclear. 

Here, we investigated the effect of ellagic acid and urolithin A on the 
superoxide anion (O2

− )-generating system of phagocytes (e.g. neutrophil 
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and macrophage) for killing the invading bacteria [10]. This system is 
consisted of five specific protein factors (membrane proteins p22-phox 
and gp91-phox, cytosolic proteins p40-phox, p47-phox and p67-phox), 
and small G-protein Rac [11]. Cytochrome b558, a heme-binding mem-
brane protein, is a heterodimer protein formed by p22-phox and 
gp91-phox proteins, and mediates the final steps of electron transfer to 
molecular oxygen resulting in the O2

− generation. In a response to in-
fectious stimuli, phagocytes release O2

− outside of the cells or inside of 
phagosomes where various stronger reactive oxygen species are formed 
from O2

− step by step. These reactive oxygen species are used to kill the 
invading bacteria. U937, a human monoblastic leukemia cell line, has 
been used as an excellent model to study mechanisms of leukocyte dif-
ferentiation [12-14]. Although U937 cells lack the O2

− -generating ac-
tivity, they are differentiated to macrophage-like cells and produce O2

−

by various differentiation-inducing agents such as interferon-γ and 
all-trans retinoic acid (ATRA) [12-14]. Of course, gene expressions of the 
five specific protein factors of the O2

− -generating system are remarkably 
up-regulated by ATRA during differentiation [15-18]. Moreover, various 
phytochemicals can affect gene expressions of the five specific protein 
factors of the O2

− -generating system, resulting in alteration of its activity. 
For example, in recent year, we reported that curcumin [15], resveratrol 
[16], chalcone [17], hydroxychalcones [17] and sulforaphane [18] 
regulated the ATRA-induced O2

− -generating activity via controlling gene 
expressions of these five specific protein factors in U937 cells. Our data 
in this study suggested that conversion of ellagic acid to urolithin A in 
gut may bring about reverse effects on the gp91-phox gene expression 
followed by opposite alterations in the O2

− -generating activity of intes-
tinal macrophages. 

2. Materials and methods 

2.1. Materials 

Ellagic acid, PMSF (FUJIFILM Wako, Osaka, Japan), urolithin A 
(Cayman Chemical, Ann Arbor, MI, USA), phorbol 12-myristate 13-ac-
etate (PMA), ATRA, luminol (Sigma, St Louis, MO, USA), plasmocin 
(InvivoGene, CA, USA) and Diogenes (National Diagnostics, Atlanta, GA, 
USA) were purchased. Monoclonal anti-gp91-phox antibody, mono-
clonal anti-p47-phox antibody (BD Biosciences, San Jose, CA, USA), 
monoclonal anti-p67-phox antibody (Santa Cruz Biotechnology, Santa 
Cruz, CA, USA), anti-p40-phox antibody (GeneTex, Irvine, CA, USA), 

monoclonal anti-β-actin antibody, monoclonal anti-Na+/K+-ATPase 
antibody (Abcam, Cambridge, UK), and horseradish peroxidase- 
conjugated anti-mouse or anti-rabbit immunoglobulin (Promega, Mad-
ison, WI, USA) were obtained. Monoclonal anti-human p22-phox anti-
body (449) was kindly provided by Dr. Roos and Dr. Verhoeven 
(Sanquin Research, and Landsteiner Laboratory, Academic Medical 
Centre, University of Amsterdam, The Netherlands). 

2.2. ATRA-induced monocytic differentiation of U937 cells 

Human monoblastic leukemia cell line, U937 cells (RCB0435) were 
provided by the RIKEN BRC through the National Bio-Resource Project 
of the MEXT, Japan [16]. Cells were grown in RPMI-1640 culture me-
dium containing 10% fetal bovine serum and 5 μg/mL plasmocin 
[16-18]. Cells (2.0 × 106) in 5 ml of the culture medium were incubated 
with 1 μM ATRA in the absence or presence (10 μM or 20 μM) of ellagic 
acid or urolithin A at 37 ◦C for 48 h. 

2.3. Measurement of O2
− generation 

Measurement of O2
− generation was carried out by Lumat3 LB9508 

luminometer (Berthold Technologies, Bad Wildbad, Germany) using 
Diogenes-luminol chemiluminescence probes as described previously 
[16-18]. 

2.4. Semiquantitative RT-PCR 

Cells (2.0 × 106) in 5 ml of the culture medium were incubated with 
1 μM ATRA in the absence or presence of 20 μM ellagic acid or 20 μM 
urolithin A at 37 ◦C for 48 h. Semiquantitative RT-PCR was performed 
using specific sense and antisense primers of five human genes essential 
for the O2

− -generation system (p22-phox, gp91-phox, p40-phox, p47- 
phox and p67-phox) as described previously [14-18]. Human GAPDH 
gene was used as internal controls. Semiquantitative RT-PCR data were 
obtained using a luminescent image analyzer STAGE-5100 (AMZ System 
Science, Osaka, Japan), analyzed by Quant-AMZ software (TotalLab., 
Newcastle upon Tyne, UK) as described [16-18]. 

2.5. Chromatin immunoprecipitation (ChIP) assay 

Cells (2.0 × 106) in 5 ml of the culture medium were incubated with 

Fig. 1. Influences of ellagic acid and urolithin A on 
the ATRA-induced O2

− -generating activity in U937 
cells. (A) Conversion scheme of ellagic acid to uroli-
thin A by intestinal bacteria. (B) Influences of ATRA 
plus ellagic acid or urolithin A on induction of the O2

− - 
generating activity. O2

− generation was determined 
after culture of the cells at 37 ◦C for 48 h in the 
absence (None) or presence of each agent (ATRA, 
ATRA plus ellagic acid or ATRA plus urolithin A) as in 
“Materials and methods.” Cells (1 × 106 cells/ml) 
were stimulated with 200 ng/ml PMA at 37 ◦C. PMA- 
induced chemiluminescences were measured at 10 
min after stimulation. Data represent the averages of 
three separate experiments and error bars indicate 
standard deviation. **, P < 0.01 compared with the 
data of ATRA-treated cells; n. s., not significant.   
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1 μM ATRA in the absence or presence of 20 μM ellagic acid or 20 μM 
urolithin A at 37 ◦C for 48 h. ChIP assay was carried out using a ChIP 
assay kit (Merck, Darmstadt, Germany) according to the instruction 
manual as described previously [16,17]. To confirm the presence of 
human gp91-phox promoter sequences containing critical cis-element 
(and also Hox/Pbx consensus-like cis-element) and inverted PU.1 bind-
ing site [14,19-21], the immunoprecipitated DNA samples were 
analyzed by PCR technique. PCRs were performed at 96 ◦C for 20 s, 
55 ◦C for 30 s and 72 ◦C for 30 s, for 36–40 cycles, using forward primer 
(5′-TCAGTTGACCAATGATTATTAGCCAATT-3′) and reverse primer 
(5′-CTATGCTTCTTCTTCCAATGACCAAAT-3′). PCRs were stopped 
before reaching the plateau. PCR products were analyzed using a 
luminescent image analyzer STAGE-5100 with Quant-AMZ software as 
described [16,17]. 

2.6. Immunoblotting 

Immunoblotting was performed as described previously [14-18]. In 
brief, cells (2.0 × 106) in 5 ml of the culture medium were incubated 
with 1 μM ATRA in the absence or presence of 20 μM ellagic acid or 20 
μM urolithin A at 37 ◦C for 48 h. Cells (5 × 106) were sonicated in 100 μl 
of 50 mM Tris-HCl buffer, pH 7.5, containing 0.25 M sucrose, 2 mM 
EDTA and 1 mM PMSF. Disrupted cells were divided into cytosolic 
fractions and membrane fractions by centrifugation. These protein 
samples were subjected to SDS-PAGE followed by immunoblotting. Data 
analyses were carried out using a luminescent image analyzer 
STAGE-5100. Human β-actin (for cytosolic fractions) and 
Na+/K+-ATPase (for membrane fractions) were used as controls [17, 
18]. 

2.7. Statistical analysis 

Quantitative data are presented as averages of three separate ex-
periments. Error bars indicate standard deviation. Statistical differences 
were calculated with Student’s t-test. 

3. Results and discussion 

3.1. Urolithin A significantly enhances the ATRA-induced O2
− -generating 

activity while ellagic acid inhibits the ATRA-induced O2
− -generating 

activity 

As well known phenomenon, ellagic acid is converted to urolithin A 
by intestinal bacteria and schematic is represented in Fig. 1A. To 
investigate the physiological functions of ellagic acid and urolithin A in 
monocytic differentiation, first, we examined the influences of both of 

them, on the ATRA-induced O2
− -generating activity in U937 cells 

(Fig. 1B). As with our previous reports [15-18], ATRA-treated U937 cells 
showed remarkable O2

− -generating activity by PMA treatment while 
untreated U937 cells only generated a negligible level of O2

− by PMA 
treatment. Although 10 μM of ellagic acid showed no effect on the 
ATRA-induced O2

− -generating activity, 20 μM of ellagic acid signifi-
cantly down-regulated the activity (to ~70%). In contrast, very inter-
estingly, urolithin A could enhance the O2

− -generating activity in a 
dose-dependent manner (10 μM: to ~150%, 20 μM: to ~175%). On the 
other hand, both ellagic acid and urolithin A showed little effect on the 
O2
− -generating activity in the absence of ATRA (Supplementary Fig. 1). 

These results revealed that ellagic acid and urolithin A would play 
opposite roles in the regulation of the ATRA-induced O2

− -generating 
activity in U937 cells. 

3.2. Opposite effects of ellagic acid and urolithin A on transcription levels 
of the gp91-phox genes essential for the O2

− -generating system during 
ATRA-induced monocytic differentiation 

As shown in Fig. 1B, urolithin A significantly up-regulated the ATRA- 
induced O2

− -generating activity while ellagic acid definitely down- 
regulated the activity in U937 cells. These findings suggested that ella-
gic acid and urolithin A may affect transcription of five genes of the 
essential components (p22-phox, gp91-phox, p40-phox, p47-phox and 
p67-phox) for the O2

− -generation in the presence of ATRA. To confirm 
the effects of ellagic acid and urolithin A on transcription of these five 
genes in the presence of ATRA, we carried out semiquantitative RT-PCR 
and compared transcription levels of these five genes in ATRA plus 
ellagic acid or urolithin A-treated cells with those in ATRA-treated cells 
(Fig. 2). Total RNAs were prepared from ATRA-treated, ATRA plus 
ellagic acid-treated and ATRA plus urolithin A-treated U937 cells. 
Quantitative data of semiquantitative RT-PCR were indicated as per-
centages of control values obtained from ATRA-treated U937 cells. In 
ATRA plus ellagic acid-treated U937 cells, just transcription level of 
gp91-phox was certainly decreased (to ~70%) (Fig. 2A). In contrast, as 
expected, only transcription level of gp91-phox was significantly 
increased (to ~160%) in ATRA plus urolithin A-treated U937 cells 
(Fig. 2B). These results suggested that such reverse effects of ellagic acid 
and urolithin A on transcription of gp91-phox gene in the presence of 
ATRA resulted in their opposite influences on the ATRA-induced O2

− - 
generating activity (see Fig. 1B). 

Fig. 2. Influences of co-treatment with ATRA and 
ellagic acid or urolithin A on transcription of the O2

− - 
generating system-related genes. Total RNAs were 
extracted from ATRA-treated, ATRA plus ellagic acid- 
treated (A), and ATRA plus urolithin A-treated (B) 
U937 cells, and mRNA levels of p22-phox, gp91-phox, 
p40-phox, p47-phox and p67-phox were determined 
by semiquantitative RT-PCR as in “Materials and 
methods.” Data calibrated with the internal controls 
are indicated as percentages of control values (100%) 
obtained from ATRA-treated U937 cells and represent 
the averages of three separate experiments. Error bars 
indicate standard deviation. **, P < 0.01 compared 
with the data of ATRA-treated cells.   
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3.3. Urolithin A enhanced acetylations of Lys-9 residues of histone H3 
within chromatin surrounding the promoter region of gp91-phox gene, but 
ellagic acid suppressed these acetylations 

As mentioned above, our findings suggested that ellagic acid sup-
presses transcription of gp91-phox and urolithin A enhances it. To 
determine whether or not ellagic acid and urolithin A participate in 
acetylations of histone H3 within chromatin surrounding the promoter 
region of gp91-phox gene, we carried out ChIP assay using anti- 
acetylated Lys-9 and Lys-14 residues of histone H3 (H3K9 and H3K14) 
antibodies (Fig. 3). These two Lys residues of histone H3 are the typical 
acetylation sites that are involved in transcriptional activation [22-24]. 
As shown in our previous reports, ATRA remarkably accelerated acet-
ylation levels of H3K9 residues within chromatin surrounding the pro-
moter region of gp91-phox gene, but not H3K14 residues [16,17]. On 
the other hand, acetylation levels of H3K14 residues were enhanced by 
resveratrol and butein in the presence of ATRA [16,17]. In this study, we 
compared ATRA plus ellagic acid- or urolithin A-treated U937 cells with 
ATRA-treated U937 cells. Typical electrophoresis patterns are shown in 
Fig. 3A. As expected, ellagic acid caused remarkable down-regulation of 
acetylation levels of H3K9 residues within chromatin surrounding the 
promoter region of gp91-phox gene (to ~60% of control value obtained 
from ATRA-treated U937 cells) while urolithin A brought about signif-
icant up-regulation of them (to ~150% of control value obtained from 
ATRA-treated U937 cells) (Fig. 3B). In contrast, both ellagic acid and 
urolithin A did not affect acetylation levels of H3K14 residues within 
chromatin surrounding the promoter region of gp91-phox gene 

(Fig. 3B). These data revealed that ellagic acid down-regulates the 
ATRA-induced O2

− -generating activity via suppressing acetylations of 
H3K9 residues within chromatin around the promoter regions of 
gp91-phox gene while urolithin An up-regulates the ATRA-induced 
O2
− -generating activity through enhancing them. In other words, ella-

gic acid and urolithin A may regulate the ATRA-induced O2
− -generating 

activity in opposite epigenetic manners. Further studies are required for 
exploring what kinds of histone acetylation-related enzymes participate 
in acetylations of H3K9 residues within chromatin around the promoter 
regions of gp91-phox gene, and how these two phytochemicals are 
involved in the histone acetylations. 

3.4. Opposite effects of ellagic acid and urolithin A on protein levels of 
cytochrome b558 composed of p22-phox and gp91-phox proteins during 
ATRA-induced monocytic differentiation 

To investigate the effects of ellagic acid and urolithin A on amounts 
of five proteins (p22-phox, gp91-phox, p40-phox, p47-phox and p67- 
phox proteins) essential for the O2

− -generation in phagocytes, immuno-
blotting was performed for these proteins using antibody specific for 
each protein. Quantitative data obtained from ATRA plus ellagic acid- or 
urolithin A-treated U937 cells were indicated as percentages of control 
values obtained from ATRA-treated U937 cells (Fig. 4). Both ellagic acid 
and urolithin A showed insignificant effect on protein level of three 
cytosolic factors (p40-phox, p47-phox and p67-phox proteins) as with 
amounts of their mRNA (see Fig. 2). On the other hand, ATRA plus 
ellagic acid-treatment down-regulated protein levels of p22-phox (to 

Fig. 3. Influences of co-treatment with ATRA and 
ellagic acid or urolithin A on acetylation levels of 
H3K9 and H3K14 residues within chromatin sur-
rounding the promoter regions of gp91-phox gene. (A) 
Typical patterns of PCR. ChIP assay was performed as 
in “Materials and Methods”. PCR products were sub-
jected to 2% agarose gel electrophoresis and analyzed 
using a luminescent image analyzer as described [16, 
17]. (B) Quantitative analysis. Cross-linked chroma-
tins of ATRA-treated, ATRA plus ellagic acid-treated 
and ATRA plus urolithin A-treated U937 cells were 
co-precipitated by antibodies specific for acetylated 
H3K9 and H3K14 residues. PCRs were performed as in 
“Materials and methods.” Data are indicated as per-
centages of control values (100%) obtained from 
ATRA-treated U937 cells and represent the averages 
of three separate experiments. Error bars indicate 
standard deviation. *, P < 0.05; **, P < 0.01 
compared with the data of ATRA-treated cells.   

Fig. 4. Influences of co-treatment with ATRA and 
ellagic acid or urolithin A on protein levels of the O2

− - 
generating system-related factors. (A) Typical immu-
noblot profiles. Cytosolic (for p40-phox, p47-phox and 
p67-phox) and membrane (for p22-phox and gp91- 
phox) fractions were prepared from ATRA-treated 
(lane 1), ATRA plus ellagic acid-treated (lane 2) and 
ATRA plus urolithin A-treated (lane 3) U937 cells, and 
protein levels were determined by immunoblotting as 
in “Materials and methods.” Human β-actin (for 
cytosolic fractions) and Na+/K+-ATPase (for mem-
brane fractions) were used as controls. Quantitative 
data of ATRA plus ellagic acid-treated (B) and ATRA 
plus urolithin A-treated (C) U937 cells are indicated 
as percentages of control values (100%) obtained 
from ATRA-treated U937 cells, and represent the av-
erages of three separate experiments. Error bars 
indicate standard deviation. **, P < 0.01 compared 
with the data of ATRA-treated cells.   
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~70%) and gp91-phox (to ~60%) (Fig. 4A). In contrast, as expected, 
ATRA plus urolithin A-treatment up-regulated protein levels of p22- 
phox (to ~160%) and gp91-phox (to ~170%) (Fig. 4B). Expression of 
gp91-phox protein limits the O2

− -generating activity in U937 cells [13]. 
It is thought that the amount of p22-phox protein also was increased 
according to enhancement of gp91-phox protein since cytochrome b558 
is a heterodimer protein composed of gp91-phox and p22-phox proteins. 
These findings suggested that protein levels of cytochrome b558 would 
reflect the changes of amount of gp91-phox mRNA caused by ellagic acid 
or urolithin A in the presence of ATRA, resulting in their opposite in-
fluences on the ATRA-induced O2

− -generating activity (see Fig. 1B). 

3.5. Concluding remarks 

Both ellagic acid and urolithin A influenced protein level of only 
cytochrome b558 composed of p22-phox and gp91-phox among the four 
essential proteins (cytochrome b558, p40-phox, p47-phox and p67-phox) 
for the O2

− -generating system. Although resveratrol enhanced the ATRA- 
induced O2

− -generating activity via increase of cytochrome b558 protein 
in U937 cells, it also caused the accumulation of p47-phox protein [16]. 
The accumulation mechanisms of p47-phox protein caused by resvera-
trol are unresolved yet. In addition, both ellagic acid and urolithin A 
showed little cytotoxicity up to 20 μM (Supplementary Fig. 2). There-
fore, ellagic acid and urolithin A may be used as modifiers having slight 
side effects for cytochrome b558 functions. Interferon-γ, one of trans 
activators for gp91-phox gene [14,21], improves the splicing efficiency 
of the gp91-phox gene primary transcripts in a particular group of 
X-linked chronic granulomatous disease patients [25,26]. For example, 
combination of interferon-γ and urolithin A may rescue a certain kind of 
X-linked chronic granulomatous disease patients with a mutation in 
gp91-phox gene from infectious diseases. 

Moreover, in this study, we demonstrated using U937 cells that 
urolithin A epigenetically enhances the ATRA-induced O2

− -generating 
activity via activating gp91-phox transcription while ellagic acid 
epigenetically suppresses the ATRA-induced O2

− -generating activity via 
inhibiting gp91-phox transcription. As is well known, U937 cells have 
been used as an in vitro model for studying differentiation mechanisms 
and functions of macrophages [12]. Macrophages also exist in intestine 
and play important roles to maintain the intestinal homeostasis 
including intestinal immunity [27,28]. In addition, interestingly, uroli-
thin A is generated from ellagic acid by intestinal bacteria [1-9]. As is 
well known, a large number of bacteria live in human gut. It is believed 
that they act as key factors of health and disease through participating in 
various metabolic pathways in human gut [29]. Taken together, these 
findings showed the possibility that conversion of ellagic acid to uroli-
thin A by intestinal bacteria may affect the intestinal homeostasis via 
controlling intestinal macrophage functions. Unfortunately, we have no 
data how much concentration of urolithin A affects human intestinal 
macrophages in human gut under physiological conditions. Although 
localization of urolithin A is especially difficult to be elucidated in 
human gut, these constraints will be resolved in the future. 
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