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ABSTRACT
The epidemiology of pertussis—a vaccine-preventable respiratory infection typically caused by the
bacterium Bordetella pertussis—remains puzzling. Indeed, the disease seems nowhere close to eradica-
tion and has even re-emerged in certain countries—such as the US—that have maintained high
vaccination coverage. Because the dynamics of pertussis are shaped by past vaccination and natural
infection rates, with the relevant timescale spanning decades, the interpretation of such unexpected
trends is not straightforward. In this commentary, we propose that mathematical transmission models
play an essential role in helping to interpret the data and in closing knowledge gaps in pertussis
epidemiology. We submit that recent advances in statistical inference methods now allow us to estimate
key parameters, such as the nature and duration of vaccinal immunity, which have to date been difficult
to quantify. We illustrate these points with the results of a recent study based on data from
Massachusetts (Domenech de Cellès, Magpantay, King, and Rohani, Sci. Transl. Med. 2018;10:
eaaj1748. doi:10.1126/scitranslmed.aaj1748), in which we used such methods to elucidate the mechan-
isms underlying the ongoing resurgence of pertussis. In addition, we list a number of safety checks that
can be used to critically assess mathematical models. Finally, we discuss the remaining uncertainties
surrounding pertussis vaccines, in particular the acellular vaccines used for teenage booster
immunizations.
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The recent epidemiology of pertussis – an acute respiratory
infection characterized by a prolonged cough1 – cautions us
against complacency about seemingly familiar infectious dis-
eases. Historically, whooping cough was a prominent cause of
mortality and morbidity in young children,2 but the develop-
ment of whole-cell pertussis vaccines in the 1930s marked
a breakthrough that paved the way for routine pediatric
immunization.3 In the US, the roll-out of whole-cell vaccines
led in a few decades to a substantial, typically >10-fold,
decline in reported cases.4 Since the mid-1970s, however, the
disease has re-emerged, despite sustained high vaccine
coverage.4 The implementation of additional control mea-
sures, such as booster vaccination in adolescents,5 appears to
have had a modest impact on this growing burden.6 These
control difficulties emphasize the need to better understand
the drivers of pertussis resurgence

The many complexities of pertussis epidemiology were
noted by early investigators.2 Age-specific incidence data in
Massachusetts provide a case in point. As shown in Figure 1
(a), the time series are noisy and apparently irregular, with
several notable, but unevenly spaced, peaks. A robust feature,
however, is the marked increase in cases in adolescents and
adults, a shift typical of the recent epidemiology of pertussis in

the US and other locations.6,13 From a public health perspec-
tive, interpreting such data is not straightforward. Focusing
on a narrow time period, for example that embracing the large
2003 outbreak in adolescents (95% of whom had received 5
vaccine doses), one might conclude that vaccines are ineffec-
tive and confer only short-term protection. Looking at the
entire time period, however, we see that other epidemics
occurred in 1996 and 2000. The occurrence of multi-annual
epidemic cycles is in fact a distinct feature of pertussis epide-
miology that has persisted in the vaccine era.14 The interval
between peaks is well predicted by the time needed for the
growing susceptible pool to reach a threshold.15,16 This exam-
ple demonstrates the need to interpret recent pertussis data in
an appropriately broad historical context, with the help of
epidemiological theory to establish baselines and suggest the
relevant timescales. Essentially, the dynamics of pertussis
infections depend on the degree of susceptibility of the popu-
lation, a complex quantity shaped both by the birth rate and
by the level of immunity, which is a legacy of long-term
vaccination and previous natural infection. Heterogeneities
in rates of contact between individuals of different ages also
play a key role in these dynamics,17 since two equally suscep-
tible age groups are expected to suffer different infection risks
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if their exposures to infection in other groups differ. In sum,
interpreting pertussis data requires a thorough bookkeeping
of the kinetics of infection and susceptible recruitment over
the timescale of decades.

Mathematical transmission models provide a formal and
robust framework for this bookkeeping exercise and for con-
textualizing epidemiological data.15,18 Their key strength is in
translating between processes that occur at different scales,
from the disease’s natural history at the scale of the individual
infection to population-scale epidemic dynamics.
Mathematical models represent the epidemiological system
under study by a simplified mathematical object, typically
a set of equations that govern the dynamics of so-called
state variables. These variables typically include numbers of
individuals with similar infection or immune status. Other
important ingredients of such models are parameters, i.e.,
fixed quantities that control the pace at which individuals

transition between different states. Because different para-
meter values can lead to markedly different model behaviors
and predictions, appropriate model parametrization is essen-
tial. Model parameters can be fixed according to external
evidence, but sometimes their values are not known, or are
known only imprecisely. Because of the lack of definite corre-
lates of protection, for example, key parameters like the dura-
tion of infection- or vaccine-derived immunity are
challenging to estimate for pertussis. In such cases, models
can be confronted to time series of epidemiological records,
allowing the latter to voice an opinion as to the most likely
parameter values. In recent years, a range of robust statistical
inference methods have been developed for this purpose.10

Such methods allow one not only to estimate unknown para-
meters, but also to weigh the evidence for different biologi-
cally-motivated hypotheses, as expressed in the form of
competing models.19

a) b)

c) d) e)

Figure 1. Confronting transmission models with incidence data to elucidate the epidemiology of pertussis.
(a) Age-specific monthly case reports of pertussis in Massachusetts during 1990–2005 (data from Ref. 7). (b) Schematic of three mathematical transmission models
with three different assumptions on the nature of vaccine-derived immunity (all-or-nothing, waning, or leaky7-9). (c) Convergence plot of vaccine parameters (as
defined in panel B) to their maximum likelihood estimates. (d) Model-based hindcasts of the fraction of individuals susceptible to pertussis infection, according to
time (x-axis) and to age (y-axis). (e) Model-based forecasts of pertussis annual incidence in infants [0,1) yr and adults � 20 yr. The figure illustrates how, via statistical
inference methods,10-12 pertussis incidence data (panel A) can be confronted with transmission models to test different scientific hypotheses about the nature of
vaccine immunity (panel B). Each fitted model leads to different parameter estimates and receives a different degree of support from the data (panel C). The best-
fitting model (here the model with waning vaccine immunity) can then be used to infer quantities that are not directly observable (like the degree of susceptibility in
the population, panel D) and to forecast the burden of disease (panel E). Panel D illustrates the end-of-honeymoon effect.7 In the prevaccine era, cases are
concentrated in young children who, upon recovery, develop long- lived immunity against reinfection, resulting in strong herd immunity in older individuals. The
inception of mass vaccination leads to an overall reduction in transmission in those vaccinated and in the population at large. Hence, children who were not
vaccinated (or in whom vaccinal protection did not initially take) are increasingly likely to reach adulthood having avoided natural infection. Concomitantly, older
cohorts, with their long-lived immunity derived from natural infection during the prevaccine era, gradually die out. The result is the gradual buildup of susceptibles,
which leads to a gradual resurgence.
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In recent work,7 we applied these techniques to dissect the
epidemiology of pertussis in Massachusetts, where, as in other
US states, a resurgence of pertussis has been observed since the
mid-1970s (Figure 1(a) and Refs. 4, 20). To close current knowl-
edge gaps in pertussis epidemiology,21,22 we formulated age-
stratified transmission models that expressed a range of hypoth-
eses about the nature and the degree of vaccinal immunity8 and
about the transmissibility and the observability of post-vaccine
infections.23,24 A novel feature of our models was the inclusion
of age-specific reporting rates to correct for observation biases
caused by the use of highly sensitive serology to detect cases in
adolescents and adults.25 Using the aforementioned statistical
methods, we confronted these models with age-specific inci-
dence data to elucidate the drivers of pertussis resurgence. We
found unambiguous evidence that pertussis vaccines confer
imperfect, but quite slowly waning, immunity, a result that also
held for DTaP vaccines, in opposition to widespread belief.26,27

How, then, to interpret the resurgence of pertussis, despite high
vaccine coverage? We demonstrated that it resulted from a so-
called “end-of-honeymoon” effect,28 that is, a predictable con-
sequence of incomplete historical coverage with an imperfect but
highly effective vaccine (see legend of Figure 1). This result was
based on the model-based reconstruction of the age-specific
susceptibility profile over time (Figure 1(d)). This further illus-
trates the usefulness of transmission models to infer quantities,
such as susceptibility to pertussis infection, that cannot be
directly observed.

Although potentially powerful tools for unraveling per-
tussis epidemiology, mathematical models should be criti-
cally reviewed at each of the three steps of model
development: model implementation, model estimation,
and model validation. Regarding model implementation,
the choice of a deterministic or stochastic model has
important consequences for parameter estimation and
model interpretation. Although deterministic models are
commonly used because they are easy to implement and to
fit to data,29 mounting evidence indicates that fully sto-
chastic models explain the dynamics of pertussis much
better and in potentially very different ways.7,9,30

Regarding model estimation, appropriate statistical infer-
ence methods are needed and now easily applicable via
well-tested software packages.10 In this respect, one should
keep in mind the “curse of dimensionality”, whereby the
volume of parameter space grows exponentially with the
number of parameters to be estimated. This implies that
even a large pre-specified random sample of parameter
sets may be inadequate for proper exploration of the
parameter space, a problem aggravated when – as is
invariably the case in practice – parameters are
correlated.31,32 During the model estimation step, it is
also typical to carry out sensitivity analyses to assess the
robustness of parameter estimates to realistic aspects of
model misspecification. Regarding model validation,
agreement between model and data requires careful assess-
ment. Standard checks include the visual inspection of
typical model simulations and the quantification of model-
data agreement based on goodness-of-fit metrics (e.g., R2

and its generalizations) or on more specific signatures
(quantified using summary statistics) that capture

important features of the data. When the data are suffi-
ciently numerous, model predictions tested on data not
used for parameter estimation (out-of-fit predictions) are
indispensable as independent checks on the model’s pre-
dictive power and for diagnosis of over-fitting. Although
not foolproof,33 a careful examination of the elements of
the above list can help establish confidence in scientific
conclusions based on mathematical models.

Although our study provided a coherent and possibly unifying
explanation for pertussis resurgence in the US, many questions
remain. In particular, a more precise estimation of the duration
of immunity conferred by DTaP is needed – though, as explained
above, our results rule out very rapid waning. A similar estimate
for Tdap will also prove valuable in quantifying the impact of the
booster dose in teenagers, which was possibly masked by cohort
effects due to the aging of the first DTaP-vaccinated birth
cohorts.6 We propose that applying the methods discussed here
to more recent data should allow to pinpoint these quantities and
help design future control strategies.

Disclosure of potential conflicts of interest

MDdC has received post-doctoral funding (through his host unit at the
Institut Pasteur) from Pfizer, on a project related to the epidemiology of
meningococcus and independent from this work. No potential conflict of
interest was reported by the other authors. .

Funding

This work was supported by the National Institute of General Medical
Sciences [U54-GM111274]; National Institutes of Health [1R01AI101155].

ORCID

M. Domenech de Cellès http://orcid.org/0000-0002-9302-4858
A. A. King http://orcid.org/0000-0001-6159-3207
P. Rohani http://orcid.org/0000-0002-7221-3801

References

1. Edwards KM, Decker MD. Pertussis vaccines. In: Plotkin SA,
Orenstein WA, Offit PA, editors. Vaccines, chap. 23. 6th ed.
Philadelphia (PA): Elsevier Saunders; 2013. p. 447–492.

2. Gordon JE, Hood RI. Whooping cough and its epidemiological
anomalies. Am J Med Sci. 1951;222:333–361.

3. Shapiro-Shapin CG. Pearl Kendrick, Grace Eldering, and the per-
tussis vaccine. Emerg Infect Dis. 2010;16:1273–1278. doi:10.3201/
eid1608.100288.

4. Rohani P, Drake JM. The decline and resurgence of pertussis in the
US. Epidemics. 2011;3:183–188. doi:10.1016/j.epidem.2011.
10.001.

5. Broder KR, Cortese MM, Iskander JK, Kretsinger K, Slade BA,
Brown KH, Mijalski CM, Tiwari T, Weston EJ, et al. Preventing
tetanus, diphtheria, and pertussis among adolescents: use of teta-
nus toxoid, reduced diphtheria toxoid and acellular pertussis
vaccines recommendations of the Advisory Committee on
Immunization Practices (ACIP). MMWR Recomm Rep.
2006;55:1–34.

6. Skoff TH, Martin SW. Impact of tetanus toxoid, reduced
diphtheria toxoid, and acellular pertussis vaccinations on reported
pertussis cases among those 11 to 18 years of age in an era of
waning pertussis immunity: A follow-up analysis. JAMA Pediatr.
2016;170:453–458. doi:10.1001/jamapediatrics.2015.3886.

HUMAN VACCINES & IMMUNOTHERAPEUTICS 685

http://dx.doi.org/10.3201/eid1608.100288
http://dx.doi.org/10.3201/eid1608.100288
http://dx.doi.org/10.1016/j.epidem.2011.10.001
http://dx.doi.org/10.1016/j.epidem.2011.10.001
http://dx.doi.org/10.1001/jamapediatrics.2015.3886


7. Domenech de Cellès M, Magpantay FMG, King AA, Rohani P.
The impact of past vaccination coverage and immunity on per-
tussis resurgence. Sci Transl Med. 2018;10. doi:10.1126/sci-
translmed.aao4496.

8. Magpantay F, Riolo M, Domenech de Cellès M, King A, Rohani P.
Epidemiological consequences of imperfect vaccines for immunizing
infections. SIAM J Appl Math. 2014;74(6):1810–1830. doi:10.1137/
140956695.

9. Magpantay FMG, Domenech de Cellès M, Rohani P, King AA.
Pertussis immunity and epidemiology: mode and duration of
vaccine-induced immunity. Parasitology. 2016;143(7):835–849.

10. King AA, Nguyen D, Ionides EL. Statistical inference for partially
observed Markov processes via the R package pomp. J Stat Softw.
2016;69:1–43. doi:10.18637/jss.v069.i12.

11. Ionides EL, Bretó C, King AA. Inference for nonlinear dynamical
systems. Proc Natl Acad Sci USA. 2006;103:18438–18443.
doi:10.1073/pnas.0603181103.

12. Ionides EL, Nguyen D, Atchadé Y, Stoev S, King AA. Inference for
dynamic and latent variable models via iterated, perturbed Bayes
maps. Proc Natl Acad Sci USA. 2015;112:719–724. doi:10.1073/
pnas.1410597112.

13. Bento AI, Riolo MA, Choi YH, King AA, Rohani P. Core
pertussis transmission groups in England and Wales: A tale
of two eras. Vaccine. 2018;36:1160–1166. doi:10.1016/j.
vaccine.2018.01.046.

14. Rohani P, Earn DJ, Grenfell BT. Opposite patterns of synchrony
in sympatric disease metapopulations. Science. 1999;286:
968–971.

15. Keeling MJ, Rohani P. Modeling infectious diseases in humans
and animals. Princeton (NJ): Princeton University Press; 2008.
http://www.loc.gov/catdir/toc/fy0805/2006939548.html.

16. Broutin H, Viboud C, Grenfell BT, Miller MA, Rohani P. Impact of
vaccination and birth rate on the epidemiology of pertussis:
a comparative study in 64 countries. Proc Biol Sci. 2010;277:
3239–3245. doi:10.1098/rspb.2010.0994.

17. Rohani P, Zhong X, King AA. Contact network structure explains
the changing epidemiology of pertussis. Science. 2010;330:982–985.
doi:10.1126/science.1194134.

18. Anderson RM, May RM. Infectious diseases of humans: dynamics
and control. Oxford: Oxford University Press; 1991. http://www.
loc.gov/catdir/enhancements/fy0636/90014312-d.html.

19. Lavine JS, Rohani P. Resolving pertussis immunity and vaccine
effectiveness using incidence time series. Expert Rev Vaccines.
2012;11:1319–1329. doi:10.1586/erv.12.109.

20. Lavine JS, King AA, Bjørnstad ON. Natural immune boosting in
pertussis dynamics and the potential for long-term vaccine failure.
Proc Natl Acad Sci USA. 2011;108:7259–7264. doi:10.1073/
pnas.1014394108.

21. Jackson DW, Rohani P. Perplexities of pertussis: recent global
epidemiological trends and their potential causes. Epidemiol
Infect. 2014;142:672–684. doi:10.1017/S0950268814000211.

22. Domenech de Cellès M, Magpantay FMG, King AA, Rohani P.
The pertussis enigma: reconciling epidemiology, immunology
and evolution. Proc Biol Sci. 2016;283. doi:10.1098/rspb.2016.
0343.

23. Warfel JM, Zimmerman LI, Merkel TJ. Acellular pertussis vac-
cines protect against disease but fail to prevent infection and
transmission in a nonhuman primate model. Proc Natl Acad Sci
USA. 2014;111:787–792. doi:10.1073/pnas.1314688110.

24. Domenech de Cellès M, Riolo MA, Magpantay FMG, Rohani P,
King AA. Epidemiological evidence for herd immunity induced
by acellular pertussis vaccines. Proc Natl Acad Sci USA. 2014;111:
E716–E717. doi:10.1073/pnas.1323795111.

25. Marchant CD, Loughlin AM, Lett SM, Todd CW, Wetterlow LH,
Bicchieri R, Higham S, Etkind P, Silva E, Siber GR. Pertussis in
Massachusetts, 1981-1991: incidence, serologic diagnosis, and vaccine
effectiveness. J Infect Dis. 1994;169:1297–1305. doi:10.1093/infdis/
169.6.1297.

26. McGirr A, Fisman DN. Duration of pertussis immunity after dtap
immunization: a meta-analysis. Pediatrics. 2015;135:331–343.

27. Klein NP, Bartlett J, Rowhani-Rahbar A, Fireman B, Baxter R.
Waning protection after fifth dose of acellular pertussis vaccine in
children. N Engl J Med. 2012;367:1012–1019. doi:10.1056/NEJMoa
1200850.

28. McLean AR, Anderson RM. Measles in developing countries. Part
II. The predicted impact of mass vaccination. Epidemiol Infect.
1988;100:419–442. doi:10.1017/S0950268800067170.

29. Gambhir M, Clark TA, Cauchemez S, Tartof SY, Swerdlow DL,
Ferguson NM, Salathé M. A change in vaccine efficacy and dura-
tion of protection explains recent rises in pertussis incidence in
the United States. PLoS Comput Biol. 2015;11:e1004138.
doi:10.1371/journal.pcbi.1004138.

30. Rohani P, Keeling MJ, Grenfell BT. The interplay between deter-
minism and stochasticity in childhood diseases. Am Nat.
2002;159:469–481. doi:10.1086/339467.

31. Choi YH, Campbell H, Amirthalingam G, van Hoek AJ, Miller E.
Investigating the pertussis resurgence in England and Wales, and
options for future control. BMC Med. 2016;14:121. doi:10.1186/
s12916-016-0665-8.

32. Campbell PT, McCaw JM, McIntyre P, McVernon J. Defining
long-term drivers of pertussis resurgence, and optimal vaccine
control strategies. Vaccine. 2015;33:5794–5800. doi:10.1016/j.
vaccine.2015.09.025.

33. Basu S, Andrews J. Complexity in mathematical models of public
health policies: a guide for consumers of models. PLoS Med.
2013;10:e1001540. doi:10.1371/journal.pmed.1001540.

686 M. DOMENECH DE CELLÈS ET AL.

http://dx.doi.org/10.1126/scitranslmed.aao4496
http://dx.doi.org/10.1126/scitranslmed.aao4496
http://dx.doi.org/10.1137/140956695
http://dx.doi.org/10.1137/140956695
http://dx.doi.org/10.18637/jss.v069.i12
http://dx.doi.org/10.1073/pnas.0603181103
http://dx.doi.org/10.1073/pnas.1410597112
http://dx.doi.org/10.1073/pnas.1410597112
http://dx.doi.org/10.1016/j.vaccine.2018.01.046
http://dx.doi.org/10.1016/j.vaccine.2018.01.046
http://www.loc.gov/catdir/toc/fy0805/2006939548.html
http://dx.doi.org/10.1098/rspb.2010.0994
http://dx.doi.org/10.1126/science.1194134
http://www.loc.gov/catdir/enhancements/fy0636/90014312-d.html
http://www.loc.gov/catdir/enhancements/fy0636/90014312-d.html
http://dx.doi.org/10.1586/erv.12.109
http://dx.doi.org/10.1073/pnas.1014394108
http://dx.doi.org/10.1073/pnas.1014394108
http://dx.doi.org/10.1017/S0950268814000211
http://dx.doi.org/10.1098/rspb.2016.0343
http://dx.doi.org/10.1098/rspb.2016.0343
http://dx.doi.org/10.1073/pnas.1314688110
http://dx.doi.org/10.1073/pnas.1323795111
http://dx.doi.org/10.1093/infdis/169.6.1297
http://dx.doi.org/10.1093/infdis/169.6.1297
http://dx.doi.org/10.1056/NEJMoa1200850
http://dx.doi.org/10.1056/NEJMoa1200850
http://dx.doi.org/10.1017/S0950268800067170
http://dx.doi.org/10.1371/journal.pcbi.1004138
http://dx.doi.org/10.1086/339467
http://dx.doi.org/10.1186/s12916-016-0665-8
http://dx.doi.org/10.1186/s12916-016-0665-8
http://dx.doi.org/10.1016/j.vaccine.2015.09.025
http://dx.doi.org/10.1016/j.vaccine.2015.09.025
http://dx.doi.org/10.1371/journal.pmed.1001540

	Abstract
	Disclosure of potential conflicts of interest
	Funding
	References

