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Abstract

Objective

Quantitative ventricular fibrillation (VF) waveform analysis is a potentially powerful tool to

optimize defibrillation. However, whether combining VF features with additional attributes

that related to the previous shock could enhance the prediction performance for subsequent

shocks is still uncertain.

Methods

A total of 528 defibrillation shocks from 199 patients experienced out-of-hospital cardiac arrest

were analyzed in this study. VF waveform was quantified using amplitude spectrum area

(AMSA) from defibrillator's ECG recordings prior to each shock. Combinations of AMSAwith

previous shock index (PSI) or/and change of AMSA (ΔAMSA) between successive shocks

were exercised through a training dataset including 255shocks from 99patientswith neural

networks. Performance of the combination methods were compared with AMSA based single

feature prediction by area under receiver operating characteristic curve(AUC), sensitivity,

positive predictive value (PPV), negative predictive value (NPV) and prediction accuracy (PA)

through a validation dataset that was consisted of 273 shocks from 100patients.

Results

A total of61 (61.0%) patients required subsequent shocks (N = 173) in the validation data-

set. Combining AMSA with PSI and ΔAMSA obtained highest AUC (0.904 vs. 0.819,
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p<0.001) among different combination approaches for subsequent shocks. Sensitivity

(76.5% vs. 35.3%, p<0.001), NPV (90.2% vs. 76.9%, p = 0.007) and PA (86.1% vs. 74.0%,

p = 0.005)were greatly improved compared with AMSA based single feature prediction with

a threshold of 90% specificity.

Conclusion

In this retrospective study, combining AMSA with previous shock information using neural

networks greatly improves prediction performance of defibrillation outcome for subsequent

shocks.

Introduction
Cardiac arrest is a major public health problem around the world and ventricular fibrillation
(VF) is a common presenting heart rhythm during cardiac arrest [1]. Early cardiopulmonary
resuscitation (CPR) together with early defibrillation is a key point in the chainof survival for
cardiac arrest patients with VF [2,3]. However, there is no consensus on the balance between
CPR and defibrillations, particularly for out-of-hospital cardiac arrest (OHCA) victims with a
long response time since not all patients in VF might benefit from being treated in the same
manner of the time-based protocols [4–6]. Optimizing timing of defibrillation can reduce the
unnecessary interruptions of chest compression and decrease the severity of post-resuscitation
myocardial dysfunction by reducing the numbers of failed or unnecessary shocks, which, there-
fore, has the potential to improve overall survival from cardiac arrest [7].

Quantitative electrocardiogram (ECG) waveform analysis provides a non-invasive reflection
of the state of the myocardium during resuscitation and is a potentially powerful tool to opti-
mize CPR intervention, i.e., chest compression or defibrillation[8]. During the last two decades,
numerous features have been developed from the ECG of a shockable rhythm prior to defibril-
lation and used to predict the outcome of defibrillation[9–13]. However, a sensitivity of around
33–45% with a specificity of 90% for these features indicated that single measure extracted
from VF waveform might have reached its maximum prediction power [14]. New strategies are
still required to develop more accurate methods for shock outcome prediction.

As combining multiple features may improve the predictive accuracy by offering complemen-
tary information, several studies have been attempted to combine different features to enhance
the predictive performance using the machine learning theory[15–19]. Earlier trials combing VF
features with clinical arrest factors such as patients’ age, sex and ambulance response time,
showed no significant improvement of prediction performance[15]. Combing within-patient
correlation with VF feature presented a trend towards predicting improvement[16]. Studies
about whether combing several single VF features could improve prediction capability for defi-
brillation did not reach consistent results[17–19]. Combing VF with end-tidal carbon dioxide
(PetCO2) could significantly improve the performance[20],butPetCO2 measurements are not
widely available, especially in the scenario of OHCA.

The purpose of the present study was to investigate whether combing VF waveform feature
amplitude spectrum area (AMSA)with previous shock information using neural networks
could improve the performance of defibrillation prediction in OHCA patients. AMSA was
used as the quantitative VF measure because it has been demonstrated to be one of the most
accurate predictors for defibrillation outcome in both animal and retrospective clinical studies
[13,14].
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Material and Methods

Data collection
Data were collected from emergency departments of Southwest Hospital and Xinqiao Hospital
in Chongqing between Jan 2012 and Feb 2014. Ethical approvals were obtained from the ethics
committee of the First Affiliated Hospital (Southwest Hospital) of Third Military Medical Uni-
versity and the ethical Committee of Second Affiliated Hospital (Xinqiao Hospital) of Third
Military Medical University. The informed consent was waived by the committees because this
was a retrospective and observational study and the data were automatically collected by the
defibrillators at the time the pads were placed on the chest. ECG were recorded for victims
experienced OHCA and CPR by defibrillator through two adhesive adult defibrillation/pacing
pads. The electronic data did not contain any patient’s identifiable information. A total of 528
shocks from 199 non-traumatic adult patients with VF as the recorded initial rhythm and with
determinable pre-shock and post-shock rhythms were enrolled. Among the 199 patients, 131
were treated with Philips defibrillators (Philips MRx, Philips Medical Systems, Seattle, WA,
USA) and 68 patients were treated with ZOLL defibrillators (M-Series, ZOLL Medical Corpo-
ration, Chelmsford, MA, USA).

The post-shock rhythms were categorized as VF (a disorganized rhythm, with a median
amplitude of>100 uV), asystole (<100 uV) or organized rhythm by two medical doctors. Defi-
brillation outcome was regarded as successful or return of a potentially perfusing rhythm if an
organized rhythm was present within 60 seconds after the shock, and had a rate of 40 beats/
min or greater.21Shocks were divided into first and subsequent ones[21].

Data analysis
The analysis was performed offline through user-designed software based on Matlab (The
MathWorks, Inc., Natick, MA, USA). Data were randomized to a training set that including
255shocks from 99 patients and a validation set that including273shocks from 100 patients. An
episode of 2.05 seconds ending at 0.5 second prior to each defibrillation attempt was selected
for analysis. In pre-processing, ECGs were filtered by a band-pass filter (2–48Hz) to remove
baseline drifting and high frequency interference. The filtered ECG signals were converted
from time to frequency domain by fast Fourier transformation. AMSA was calculated as the
sum of the products of individual frequencies and their amplitudes, i.e. AMSA = ∑Ai × Fi where
Ai represented the amplitude at ith frequency Fi.

For each patient, previous shock index (PSI)and change of AMSA(ΔAMSA) were obtained
for each shock during the course of resuscitation. PSI was defined as binary variable based on
outcome of previous shock:

PSIk ¼
1; if k > 1 and previous shock was successful

�1; if k > 1 and previous shock was unsuccessful

0; if k ¼ 1

ð1Þ

8><
>:

ΔAMSA was defined as the difference of AMSA values between consecutive shocks:

DAMSAk ¼
AMSAk � AMSAk�1; if k > 1

0; if k ¼ 1
ð2Þ

(

Three different combination approaches: AMSA and PSI (C1), AMSA and ΔAMSA (C2),
AMSA together with PSI andΔAMSA (C3) were tested and compared with AMSA based single
feature perdition. A back propagation(BP) neural network with a feed forward structure was
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employed for the combination[18]. The schematic layout of the neural network structure and
its training process was shown in Fig 1. The BP neural network adopted the Bayesian regulari-
zation training function, two hidden layers with three sigmoid and two linear transfer functions
respectively. These parameters were optimized to avoid underfitting or overfitting by evaluat-
ing the predicting performance of the neural network. The training set was used to optimize
the weights of the network and the validation set was used to assess predictive power. To exam-
ine whether the proposed strategy was independent of machine learning method, the logistic
regression model was also used to evaluate the predictability as each extra predictor variable
was added to AMSA.

Receive operator characteristic (ROC) curve was constructed and a threshold when specific-
ity equaled to 90% for training data was used to result in a binary decision. The prediction
power was assessed by area under ROC curve (AUC), sensitivity, positive predictive value
(PPV), negative predictive value (NPV) and prediction accuracy (PA).

Statistical analysis
Continuous variables were expressed as mean±standard deviation. Differences in AMSA
between successful and unsuccessful shocks were compared by independent-samples t-test. For
subsequent shocks, Hausman's test was used to determine the correct specification of the
model, fixed versus random effects[22]; single variable logistic regression was used to calculate
odds ratio (OR) and 95% confidential interval (CI) between prediction features (AMSA, PSI
andΔAMSA, respectively)and outcome with the appropriate model; nonparametric correlation
coefficient(Kendall's tau) was used to evaluate the association between these variables. AUCs
were compared using Z-test. Chi-square test was employed to distinguish differences among
sensitivity, NPV, PPV and PA of the different predicting methods. A final p value< 0.05 was
considered statistically significant.

Results
Among 199 patients who received an initial shock, 128 (64.3%) required subsequent shocks
(N = 329). The defibrillation success rate was 37.7% and AMSA was significantly higher prior
to successful first shocks (15.9±9.0 vs. 9.3±5.8 mVHz, p<0.001). For subsequent shocks, 94
were successful (28.6%)while 235 were failed (71.4%). AMSA (16.8±8.7 vs. 8.3±5.6 mVHz,
p<0.001), PSI (0.26±0.97 vs. -0.81±0.58, p<0.001) and ΔAMSA (1.2±6.1 vs. -0.3±3.7 mVHz,
p = 0.029) were all significantly higher for successful subsequent shocks compared with unsuc-
cessful ones. Hausman's test revealed a random effect model was better than its fixed counter-
part(p<0.0001). Single variable logistic regression with a random effect model indicated that
AMSA (OR = 1.030, 95% CI: 1.024–1.036, p<0.001), PSI (OR = 1.340, 95% CI: 1.278–1.404,
p<0.001)and ΔAMSA (OR = 1.015, 95% CI: 1.004–1.026, p = 0.007) were independent predic-
tor of defibrillation success for subsequent shocks. The correlation coefficients were 0.377
(p<0.001) between AMSA and PSI, 0.214 (p<0.001) between AMSA and ΔAMSA, -0.003
between ΔAMSA and PSI (p = 0.940).

A total of 67 (67.7%) patients in training set and 61 (61.0%) patients in validation set
received subsequent shocks. Fig 2 shows the ROC curves of shock outcome prediction with the
three different combination approaches and AMSA in the validation set. For first shocks, AUC
was unchanged (0.770) when different combination approaches were applied. For subsequent
shocks, AUC was significantly increased when combinations C1 (0.883 vs. 0.819, p = 0.005)
and C3 (0.904 vs. 0.819, p<0.001) were employed, but no statistical difference was observed
between C2 and AMSA (0.825 vs. 0.819, p = 0.818).
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The prediction performances of different combination approaches and AMSA for subse-
quent shocks in validation set by the BP neural network method were listed in Table 1. Com-
pared with AMSA based single feature prediction, C1 and C3 remarkably improved the
sensitivity (C1: 68.6% vs. 35.5%, p<0.001; C3: 76.5% vs. 35.3%, p<0.001), NPV (C1: 87.4% vs.

Fig 1. The schematic layout of the BP neural network structure and its training process.

doi:10.1371/journal.pone.0149115.g001

Fig 2. Receive operator characteristic curves for defibrillation outcome prediction of first (A) (N = 100) and subsequent (B) (N = 173) shocks in
validation dataset.

doi:10.1371/journal.pone.0149115.g002
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76.9%, p = 0.026; C3: 90.2% vs. 76.9%, p = 0.007) and PA (C1: 84.4% vs. 74.0%, p = 0.017; C3:
86.1% vs. 74.0%, p = 0.005)with a threshold of 90% specificity. However, no statistical differ-
ences were observed in prediction power whenC2 was employed.

The prediction performances of different combination approaches and AMSA for subse-
quent shocks in validation set by the logistic regression method with a random effect model
were listed in Table 2. Similar with the application of BP network, AUC, sensitivity, NPV and
PA were also significantly (p<0.05) improved when the logistic regression model was used.

Discussion
In this retrospective study, we demonstrated that combining quantitative VF waveform feature
AMSA with previous shock outcome and change of AMSA between consecutive shocks using
neural networks significantly improved the performance of defibrillation prediction for subse-
quent shocks.

Features of the VF waveform, such as frequency and amplitude related AMSA, correlated
with coronary perfusion pressure and has been described as a method to predict when a VF is
likely to be shocked into a pulse generating rhythm, thereby reducing pauses in chest compres-
sions and potential myocardial damage by limiting redundant shocks[8,14,21,23]. However,
factors that influencing VF characteristics might affect the probability of defibrillation success
and therefore the performance of predictability of these features. In animal studies, Indik et al.
[24,25]observed that VF waveform characteristics were altered substantially in animals with
myocardial infarction and heart failure compared to structurally normal controls. Olasveengen

Table 1. Performance of amplitude spectrum area (AMSA) and three different combination strategies for the prediction of subsequent shocks in
validation data (51 successful and 122 failed shocks) by the BP neural network.

AUC Sensitivity(%) Specificity(%) NPV(%) PPV(%) PA(%)

AMSA 0.819 35.3 90.2 76.9 60.0 74.0

C1 0.883** 68.6## 91.0 87.4# 76.1 84.4#

C2 0.825 49.0 90.2 80.9 67.6 78.0

C3 0.904** 76.5## 90.2 90.2## 76.5 86.1##

C1: AMSA+PSI;C2: AMSA+ΔAMSA; C3: AMSA+PSI+ΔAMSA;PSI: previous shock index; AUC: area under receiver operating characteristic curve; NPV:

negative predictive value; PPV: positive predictive value; PA: prediction accuracy.

**p<0.01 compared with AMSA using Z-test;
#, ##p<0.05 and p<0.01 compared with AMSA using Chi-squared test.

doi:10.1371/journal.pone.0149115.t001

Table 2. Performance of amplitude spectrum area (AMSA) and three different combination strategies for the prediction of subsequent shocks in
validation data (51 successful and 122 failed shocks) using the logistic regression method with a random effect model.

AUC Sensitivity(%) Specificity(%) NPV(%) PPV(%) PA(%)

AMSA 0.821 74.1 90.2 90.2 77.1 60.0

C1 0.891** 70.6## 91.1 87.4# 88.2 85.1#

C2 0.825 49.0 90.2 80.9 81.0 78.2

C3 0.892** 72.5## 91.1 90.2# 88.9 85.6##

C1: AMSA+PSI;C2: AMSA+ΔAMSA; C3: AMSA+PSI+ΔAMSA;PSI: previous shock index; AUC: area under receiver operating characteristic curve; NPV:

negative predictive value; PPV: positive predictive value; PA: prediction accuracy.

**p<0.01 compared with AMSA using Z-test;
#, ##p<0.05 and p<0.01 compared with AMSA using Chi-squared test.

doi:10.1371/journal.pone.0149115.t002

Combining Previous Shock Information Improves Prediction Performance

PLOS ONE | DOI:10.1371/journal.pone.0149115 February 10, 2016 6 / 10



et al.[26] confirmed that acute myocardial infarction (AMI) patients have depressed AMSA
compared to patients without AMI in 101 OHCA victims. Strohmenger et al.[27] found that
vasopressin increased median frequency of VF more than epinephrine and improved the
chances of successful defibrillation in a porcine model of cardiac arrest. Sherman et al.[28]
reported that adrenergic blockade prior to VF induction affected quantitative measures of VF
waveform and might limit the ability of such measures to predict downtime or defibrillation
outcome in animal study. Shanmugasundaram et al.[29] investigated the effects of VF type on
the performance of AMSA and slope for the prediction of defibrillation success in 44 OHCA
patients with VF as initial rhythm and reported that AMSA and slope predicted defibrillation
in shock-resistant VF but not in recurrent VF.

In order to identify approaches to improve the accuracy of shock outcome prediction, Gun-
dersen et al.[15]analyzed shock outcome prediction data with a mixed effects logistic regression
model but did not find significant improvement by including the peri-arrest factors age, sex,
presenting rhythm, presence of bystander CPR and ambulance response time with VF features
in the model. Gundersen et al.[16] then developed an algorithm to re-estimate the patient-
dependent relationship between predictive feature value and probability of ROSC by incorpo-
rating the information from prior shocks using the same model. Although the results indicated
that it was possible to improve current shock prediction methods by using an updating algo-
rithm capable of learning from previous shocks, the improvements were relatively modest and
therefore whether using within-patient information could improve the accuracy of shock pre-
diction was still need to be investigated.

Neural networks, which have been used to predict defibrillation success using ECG signal or
multiple VF features[18,30],have not been evaluated for combining VF feature with patient
related previous shock information. In the current study, quantitative VF waveform feature
AMSA was combined with PSI, ΔAMSA, PSI and ΔAMSA using neural networks for the pre-
diction of defibrillation outcome. PSI was used because previous clinical studies demonstrated
that there was within-patient correlation between the predictive feature value and probability
of defibrillation success and repeated shocks in one patient were considered as dependent
events[16,29]. Consistent with these studies, our results showed that PSI wasan independent
predictor of defibrillation success for subsequent shocks. Independent testing in the validation
set revealed that AUC, sensitivity, NPV and PA were improved by 7.8%, 94.3%, 13.7% and
14.1% when AMSA was combined with PSI for the prediction of subsequent shocks. Since dif-
ference in AMSA value between consecutive shocks was associated with depth of chest com-
pression and favorable neurologic survival[21,31],we evaluated the performance of combining
AMSA and ΔAMSA using neural networks. Although AUC, sensitivity, NPV and PA values
were increased compared with AMSA based single feature prediction, the improvement was
insignificant. When AMSA was combined together with PSI and ΔAMSA, the performance
was further improved for subsequent shocks. The improvement was 10.4%, 116.7%, 17.3% and
16.4% for AUC, sensitivity, NPV and PA respectively. The improvements obtained by combin-
ing AMSA with previous shock information using neural networks could be explained by the
complementary information provided by the selected parameters. AMSA, which describes the
amplitude-weighted mean frequency of VF waveform, reflects with heart's metabolic state
[8,10,21,23]. PSI, which denotes the outcome of the previous defibrillation, is associated with
the within-patient information such as type of VF.[16,25][26,29],ΔAMSA, which indicates
how VF waveform changes over the course of resuscitation, is correlated with quality of CPR
[21]. The lower correlation coefficients between each variables confirmed that PSI and ΔAMSA
provided additional information in addition to AMSA. As neural networks offered a powerful
framework to adjust the weight of input variants and to merge several single features to a com-
bined one[18,30],the prediction performance of defibrillation outcome for subsequent shocks
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was therefore significantly improved by combining AMSA with PSI and ΔAMSA using neural
networks. The comparable results obtained by applying the logistic regression model indicated
that the proposed strategy was independent of machine learning method.

To implement the current strategy in a clinical setting, previous shock information, includ-
ing outcome of previous shock and change of VF features need to be updated real-time over
the course of resuscitation. The digital signal processing capability owned by current genera-
tion of automated external defibrillators (AEDs), such as real-time ECG acquisition, rhythm
analysis and CPR quality evaluation, enables previous shock information to be saved and the
predictive classifier to be updated automatically[32]. Another concern for the implementation
of the algorithm is that artifacts produced by chest compression may preclude reliable rhythm
analysis and accurate VF waveform analysis during CPR, and therefore degrade the prediction
accuracy[33]. However, recent advances in ECG signal processing techniques have made it
possible to perform accurate rhythm classification and waveform analysis without interrupting
CPR[34–37]. Considering that more than half OHCA patients require repeated defibrillations
during resuscitation effort[38,39], the proposed method therefore provides a potential to fur-
ther enhance resuscitative strategies and improve patient outcome.

This study has a number of limitations. First, in this retrospective study, we did not have
phenotypic data of the patient, so the individual difference between successful and unsuccessful
resuscitation patients was unknown. Second, the current strategy is only demonstrated to
improve the predictability of defibrillation success for subsequent shocks, we anticipate that
combining VF feature with other physiological signals, such as PetCO2 and oxygen saturation
can improve the performance for first shocks. Third, the proposed method was only shown to
be helpful in predicting successful defibrillation as defined in the current study, but whether it
is associated long term survival has not been investigated. Forth, this is a retrospective analysis
of a small cohort of OHCA patient with an initial rhythm of VF, and further work will be
required to validate the clinical usefulness of the current method.

Conclusion
In this retrospective study, combining AMSA with previous shock information using neural
networks greatly improves prediction performance of defibrillation outcome for subsequent
shocks. The proposed method, therefore, may provide a real-time strategy for individual resus-
citation especially in subsequent attempts to achieve optimal defibrillation.
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(XLSX)
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