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Epilepsy is associated with abnormal spatiotemporal changes in resting-state brain

connectivity, but how these changes are characterized in interhemispheric coupling

remains unclear. This study aimed to characterize frequency-dependent alterations in

voxel-wisemirrored homotopic connectivity (VMHC)measured by resting-state functional

magnetic resonance imaging (rs-fMRI) in children with idiopathic generalized epilepsy

(IGE). Rs-fMRI data were collected in 21 children with IGE and 22 demographically

matched children with typical development. We used three resting-state frequency

bands (full, 0.01–0.08Hz; slow-4, 0.027–0.073Hz; slow-5, 0.01–0.027Hz) to compute

VMHC and locate the significant foci. Voxel-wise p < 0.001 and cluster-level p < 0.05

cluster-level family-wise error correction was applied. In between-group comparisons, we

identified that the full and higher frequency (slow-4) bands showed similar reductions in

VMHC including Rolandic operculum, putamen, superior frontal, lateral parietal, middle

cingulate, and precuneus in children with IGE. In the lower frequency band (slow-5),

we identified specific reductions in VMHC in orbitofrontal and middle temporal gyri in

children with IGE. Further analyses on main effects and interaction between group and

frequency band suggested significant frequency-dependent changes in VMHC, and no

significant interaction was found. The results were generally similar with global brain

signal regression. Additional association analysis showed that VMHC in the putamen

within the full and slow-4 bands was significantly positively correlated with chronological

age in children with IGE, and the same analysis was non-significant in the controls;

VMHC in the medial prefrontal region in the slow-4 band was significantly positively

correlated with IQ performance sub-score. Our findings suggest that IGE children show

frequency-dependent changes in interhemispheric integration that spans regions and

systems involving cortical-subcortical, language, and visuomotor processing. Decreased

functional coupling within the dorsal striatummay reflect atypical development in children

with IGE.
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INTRODUCTION

Idiopathic generalized epilepsy (IGE) is characterized
by generalized spike-wave discharges on normal
electroencephalography (EEG) and accounts for 15–20% of
all epilepsies (1), with no identifiable causes other than genetic
factors (2, 3). A majority of IGE originates in childhood
and primarily encompasses three subgroups, namely juvenile
absence epilepsy, juvenile myoclonic epilepsy, and generalized
tonic-clonic seizures in individuals under 18 years old (4, 5).

Because there are no obvious abnormalities on conventional
MRI, advanced neuroimaging, including structural and
functional magnetic resonance imaging (fMRI), is a promising
tool for the investigation of IGE (3, 6, 7). For example, results
from structural imaging have reported abnormalities in the
medial/orbitofrontal cortex, cingulate cortex, precuneus, and
thalamus in patients with IGE (6, 8–11). Resting-state fMRI (rs-
fMRI) measured with low-frequency (typically < 0.1Hz) blood
oxygenation level-dependent signals are crucial is understanding
brain function under healthy or disease states due to its ability
to reveal the spatiotemporal structure of spontaneous activity in
the human brain (12, 13).

Functional connectivity (FC), which has been widely applied
in fMRI and confirmed to be associated with abnormal discharges
on EEG, quantifies temporal correlations between brain regions
to interrogate the direct or indirect interregional interactions
(2, 6, 14). Studies have demonstrated that FC within some
resting-state networks such as self-referential, somatosensory,
visual, and auditory networks and the classic default-mode and
dorsal attention networks is disrupted in patients with IGE (6, 15,
16). Moreover, as some recent publications of the International
League Against Epilepsy (ILAE) on revised terminology of
seizures and epilepsies have reflected, IGE originates from a
local region within a single cerebral hemisphere and rapidly
spreads to bilateral networks (17). A method named voxel-
mirrored homotopic connectivity (VMHC) has been widely used
in various mental illnesses like schizophrenia and epilepsy to
acquire information on interhemispheric communication (18,
19). Also, Ji et al. used VMHC and reported that interhemispheric
FC between the bilateral cuneus and anterior cingulate cortex
increased and that between the bilateral olfactory cortex, inferior
frontal gyrus, supramarginal gyrus, and temporal pole decreased
in patients with generalized tonic-clonic seizures (20).

However, these studies focused on FC within a typical
low-frequency range (0.01–0.08Hz), which did not consider
temporal differences in intrinsic activity. Recent studies have
shown that the intrinsic activity within different frequency
bands differs and that frequency-dependent changes occur in
a variety of brain disorders (21). Therefore, in this study, we
tested whether FC changes between bilateral hemispheric regions
are frequency-dependent.

MATERIALS AND METHODS

Participants
Twenty-one children with IGE (13 males/8 females, 11.48± 3.46
years), according to ILAE criteria (22) were consecutively
enrolled from the Affiliated Hospital of Zunyi Medical

University, Zunyi, China (from December 2013 to January
2018), and 22 age-, sex-, and education-matched healthy controls
(9 males/13 females, 12.09± 2.93 years) were also recruited. The
inclusion criteria were as follows: (a) manifestation of IGE; (b)
presence of diffuse poly-spike-wave complex on patient’s scalp
EEG; (c) no evidence of a cause of secondary IGE, such as tumor,
trauma, or intracranial infection; (d) no focal abnormality with
conventional MRI; (e) right-handedness; (f) 7–18 years old. The
exclusion criteria were as follows: (a) had a contraindication
for MRI; (b) had a history of neurological disorders other than
epilepsy; (c) fell asleep during rs-fMRI scanning; (d) head motion
exceeded ±1mm or ± 1◦. There were no significant difference
in age (p = 0.53, p > 0.05, two-sample independent t-test),
sex (p = 0.23, p > 0.05, Chi-square test) between the IGE and
control groups. The significance of p value is set at a level of
0.05. This study was approved by the medical ethics committee
of the Affiliated Hospital of Zunyi Medical University, and
written informed consent was obtained from each participant
before evaluation.

Data Acquisition
Rs-fMRI data were acquired with a GE 3.0-T (HDxt, GE
Healthcare) scanner with a standard head coil in the Department
of Radiology, AffiliatedHospital of ZunyiMedical University. For
each subject, functional images were acquired by using a single-
shot, gradient-recalled echo-planar imaging sequence (repetition
time = 2,000ms, echo time = 30ms, and flip angle = 90◦),
containing 30 transverse sections (field of view = 240 × 240
mm2, slice thickness = 5mm with no gap, and voxel size = 3.75
× 3.75 × 4 mm3), resulting in a total imaging time of 413 s.
The subjects were instructed to rest with eyes closed but awake
and not think of anything in particular. Three-dimensional T1-
weighted imaging (3D-T1WI) images were acquired by using a
3D-T1WI brain volume imaging (BRAVO) sequence (repetition
time = 1,900ms, echo time = 2.1ms, inversion time = 900ms,
flip angle = 9◦, slice thickness = 1.00mm, and matrix = 256
× 256), yielding 160 axial slices with an in-plane resolution of
1.0mm× 1.0 mm.

Data Processing
The preprocessing was performed using the Data Processing
Assistant for Resting-State fMRI (DPARSF) (23) and statistical
parametric mapping (SPM8, http://wwwfil.ion.ucl.ac.uk/spm).
The first 10 volumes were removed to avoid instability of
the machine, and the remaining volumes were corrected for
temporal differences and head motion (Friston 24-parameter
model). Then, the corrected volumes were coregistered to
individual T1 images. The T1 images were segmented into white
matter, gray matter, and cerebrospinal fluid and normalized
to Montreal Neurologic Institute space using 24-parameter
transformation and non-linear deformations. The functional
images were then warped with the same parameters and
resampled at a resolution of 3 × 3 × 3 mm3. After spatial
normalization, the volumes were detrended. We then regressed
the nuisance covariates containing head motion estimates,
averaged time series in white matter and cerebrospinal fluid, with
and without global signals. Based on an earlier study (13), we
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calculated three low-frequency bands: full band (0.01–0.08Hz),
slow-5 (0.01–0.027Hz), and slow-4 (0.027–0.073Hz) to examine
the frequency-specific brain activity changes in the children
with IGE.

For head motion estimates, no subjects were excluded with a
criterion of>2-mmmaximumdisplacement or>2◦ rotation.We

TABLE 1 | Demographic and clinical results.

Items IGE (n = 21) Controls (n = 22) t p

Sex (M/F) 13/8* 9/13* −1.38 0.23‡

Age (y) 11.48 ± 3.46 12.09 ± 2.93 −0.63 0.53†

Education (y) 4.76 ± 3.22 6.55 ± 3.21 −1.815 0.08†

Handedness (R/L) 21/0* 22/0*

Duration (y) 3.07 ± 2.51

IQ overall 81.00 ± 19.00

IQ language 83.00 ± 21.00

IQ performance 82.00 ± 18.00

*Data are the number of subjects.
†
Two-sample t-test was used.

‡
χ
2 test was used.

also calculated micro head motion with frame-wise displacement
(FD). Three FD parameters, namely mean FD Power (IGE 0.245
± 0.148, HC 0.214± 0.212, t=−0.556, p= 0.581) (24), mean FD
Jenkinson (IGE 0.122± 0.075, HC 0.116± 0.127, t=−0.188, p=
0.852) (25), and mean FD VanDijk (IGE 0.064± 0.045, HC 0.051
± 0.043, t = −0.992, p = 0.327) (26), were calculated, and there
was no significant difference between the IGE and HC groups.

VMHC
The calculation of VMHC has been detailed in Zuo et al. (27)
Briefly, the “clean” functional volumes of the abovementioned
low-frequency filtering were first registered to a high-resolution
left-right symmetrical anatomical template. Then, a high-
dimensional voxel-level interhemispheric FC map, also termed
the VMHC map, was calculated. The individual VMHC map
was Z-transformed and spatially smoothed (4-mm full-width at
half-maximum) to improve normality and the signal-to-noise
ratio (20).

Statistical Analysis
Independent two-sample t-tests were used to analyze between-
group differences on VMHC across the three frequency bands
(full, slow-4, and slow-5). To determine main effects of frequency

FIGURE 1 | Between-group comparisons on VMHC. The three color labels represent statistically significant between-group differences, i.e., significantly decreased

VMHC between the IGE and HC groups under the three frequency bands (red, typical band: 0.01–0.08Hz; green, slow-4: 0.027–0.73Hz; blue, slow-5:

0.01–0.027Hz). The composed map reflects the topographical distribution of frequency-specific changes. These results were voxel-wise p < 0.001, cluster level p <

0.05, family-wise error (FWE) cluster-level corrected.
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band and group and their interaction, we also performed a
2 (groups: IGE and HC) × 2 (frequency bands: slow-4 and
slow-5) two-way analysis of variance (ANOVA). The mean FD
Power was regressed out as confounding covariates. The results
were voxel-wise p < 0.001, cluster level p < 0.05, family-wise
error (FWE) cluster-level corrected. Moreover, we performed
association analyses between the VMHC values in all clusters
showing significant differences and behavioral variables in the
IGE children.

RESULTS

Demographics
Table 1 shows the demographics for all subjects. There were no
significant difference in age (p = 0.53, p > 0.05, two-sample
independent t-test), sex (p = 0.23) and education (p = 0.08)
(p > 0.05, Chi-square test) between the IGE and control groups
(Table 1).

Between-Group Comparison of VMHC
Between-group comparisons of VMHC are shown in Figure 1,
Tables 2–4. In the conventional low-frequency band (0.01–
0.08Hz), we found significantly decreased VMHC in Rolandic
operculum, supramarginal gyrus, putamen, middle orbitofrontal,
superior parietal, and middle cingulate regions in children with
IGE (Figure 1, Table 2).

We then decomposed this typical frequency band into
two sub-bands, slow-4 (0.027–0.073Hz) and slow-5 (0.01–
0.0273Hz). As expected, we identified significant between-group
differences in inferior parietal, supramarginal, putamen, superior
frontal, and precuneus regions that were similar to those in

TABLE 2 | Between-group comparison on VMHC in the full band.

Brain regions MNI coordinates Voxels T-values

X Y Z

No global regression

Rolandic operculum ±57 −18 15 990 −4.365

Supramarginal gyrus ±60 −33 42 990 −4.342

Supramarginal gyrus ±69 −36 24 990 −4.322

Putamen ±27 −12 6 179 −4.005

Middle frontal gyrus, orbital part ±6 63 −9 70 −3.761

Superior parietal ±12 −72 51 55 −3.728

Middle cingulate cortex ±3 18 30 42 −3.671

With global regression

Supramarginal gyrus ±60 −33 42 1,387 −5.479

Superior parietal ±42 −54 57 1,387 −5.216

Supramarginal gyrus ±63 −27 21 1,387 −4.801

Anterior cingulate cortex ±9 33 −9 71 −3.815

Middle frontal gyrus, orbital part ±6 60 −12 50 −3.679

Middle cingulate cortex ±3 18 30 42 −3.589

Regions showing decreased interhemispheric connectivity in children with IGE vs.

controls. MNI, Montreal Neurologic Institute.

the conventional band, with significantly decreased VMHC
(Figure 1, Table 3).

We next examined the slow-5 band and found that the
children with IGE showed significantly decreased VMHC in
middle orbital, lateral temporal, lateral parietal, and postcentral
regions (Figure 1, Table 4). These results were generally
consistent with the results with global brain signal regression
(Figure 1, Tables 2–4) and reported at voxel-wise p < 0.001 and
cluster-level p < 0.05, FWE cluster corrected.

TABLE 3 | Between-group comparison on VMHC in the slow-4 band.

Brain regions MNI coordinates Voxels T-values

X Y Z

No global regression

Inferior parietal gyrus ±45 −48 54 1,109 −5.123

Supramarginal gyrus ±69 −33 24 1,109 −4.728

Supramarginal gyrus ±57 −36 42 1,109 −4.584

Putamen ±27 −15 6 172 −4.305

Superior frontal gyrus ±9 60 −9 88 −4.204

Precuneus ±12 −69 51 63 −3.872

Middle cingulate ±3 15 30 50 −3.756

With global regression

Inferior parietal gyrus ±42 −54 57 1,709 −6.116

Supramarginal gyrus ±57 −33 42 1,709 −5.493

Supramarginal gyrus ±69 −33 24 1,709 −5.277

Superior frontal gyrus ±6 60 −9 72 −4.541

Anterior cingulate ±9 33 −9 59 −4.101

Middle frontal gyrus ±36 21 48 64 −3.999

Middle cingulate ±3 15 30 48 −3.711

Supplementary motor area ±3 −3 48 48 −3.144

Superior frontal gyrus ±18 36 54 45 −3.456

Regions showing decreased interhemispheric connectivity in children with IGE vs.

controls. MNI, Montreal Neurologic Institute.

TABLE 4 | Between-group comparison on VMHC in the slow-5 band.

Brain regions MNI coordinates Voxels T-values

X Y Z

No global regression

Middle orbital gyrus ±12 36 −3 103 −3.153

Superior temporal gyrus ±63 −27 18 285 −4.068

Middle temporal gyrus ±60 −9 −3 285 −3.665

Supramarginal gyrus ±60 −33 42 285 −2.835

Superior parietal lobule ±33 −63 63 92 −3.694

Inferior parietal lobule ±45 −42 51 92 −3.240

Postcentral gyrus ±42 −24 39 61 −3.608

With global regression

Postcentral gyrus ±60 −24 24 178 −4.297

Supramarginal gyrus ±60 −33 42 178 −3.207

Superior temporal gyrus ±57 −15 3 178 −2.929

Superior parietal lobule ±39 −54 66 114 −3.969

Rectus gyrus ±9 36 −24 115 −3.923

Regions showing decreased interhemispheric connectivity in children with IGE vs.

controls. MNI, Montreal Neurologic Institute.
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FIGURE 2 | Main effects for group. Only significantly reduced VMHC was found (cold colorbar, IGE < HC). The results were voxel-wise p < 0.001, cluster level p <

0.05, family-wise error (FWE) cluster-level corrected. L, left; R, right.

Main Effects and Interaction Between
Group and Frequency Band
The main effects for group showed that the IGE group had
significant decreases on VMHC in supramarginal, superior
parietal, postcentral, anterior cingulate, rectus, thalamus,
putamen, Rolandic operculum, and medial superior frontal
regions (Figure 2, Table 5). The main effects for frequency
band showed that the slow-4 band had significant decreases on
VMHC in lingual, calcarine, and middle orbitofrontal regions.
These results were generally consistent with the results with
global brain signal regression (Figure 3, Table 6) and reported
at voxel-wise p < 0.001 and cluster-level p < 0.05, FWE cluster
corrected. No significant interaction was found between the
frequency band and the group.

Brain-Behavior Association
Significantly positive associations were found between VMHC
within the putamen under two frequency bands (full and slow-
4) and chronological age and between VMHC within the medial
prefrontal cortex and IQ performance subscore (Figure 4). No
other significant associations were found.

DISCUSSION

We investigated interhemispheric FC across different frequency
bands with rs-fMRI in children with IGE. Similar reductions

on VMHC in children with IGE were found in the Rolandic
operculum, putamen, superior frontal, lateral tempo-parietal,
middle cingulate, and precuneus, in both the full and slow-4
frequency ranges. Meanwhile, specific reductions in orbitofrontal
and middle temporal gyri in children with IGE were found in a
lower frequency band (slow-5). Further analyses on main effects
and interaction between group and frequency band suggested
significant frequency-dependent changes in VMHC, and no
significant interaction was found. The results were generally
similar with global brain signal regression. Additional association
analysis showed that VMHC in the putamen within the full
and slow-4 bands was significantly positively correlated with
chronological age in children with IGE, and the same analysis was
non-significant in the controls; VMHC in the medial prefrontal
region in the slow-4 band was significantly positively correlated
with IQ performance sub-score. Our findings suggest that IGE
children show frequency-dependent changes in interhemispheric
integration that spans regions and systems involving cortical-
subcortical, language, and visuomotor processing. Decreased
functional coupling within the dorsal striatum may reflect
atypical development in children with IGE.

Our results from both the between-group comparisons and
main effects are generally consistent with previous reports
(20, 28–34), especially an earlier report that exclusively
investigated VMHC changes in the typical frequency band
(20). In that study, the authors found both increased and
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TABLE 5 | Main effects for group (IGE > HC) on VMHC.

Brain regions MNI coordinates Voxels T-values

X Y Z

No global regression

SupraMarginal gyrus ±63 −27 18 1,872 −5.899

Superior parietal gyrus ±42 −54 57 1,872 −5.462

Postcentral gyrus ±42 −15 42 1,872 −5.102

Anterior cingulate ±9 36 −6 558 −4.728

Gyrus rectus ±9 39 −27 558 −4.348

Anterior cingulate ±3 15 24 134 −4.823

Thalamus ±18 −18 −3 309 −4.614

Putamen ±24 9 −9 309 −3.537

Rolandic operculum ±33 3 15 309 −3.659

Superior frontal gyrus, medial ±12 27 63 125 −3.946

With global regression

Superior parietal gyrus ±42 −54 60 1,967 −6.274

Supramarginal gyrus ±63 −27 18 1,967 −6.020

Supramarginal gyrus ±60 −33 42 1,967 −5.649

Anterior cingulate ±9 33 −9 536 −5.081

Superior frontal gyrus, medial ±9 54 6 536 −3.393

Middle cingulate ±3 21 30 112 −4.388

Superior frontal gyrus, medial ±12 27 63 176 −4.366

Superior parietal gyrus ±12 −72 51 83 −4.119

Inferior frontal gyrus, triangular part ±51 27 15 48 −3.892

Insula ±33 0 15 133 −3.354

Middle frontal gyrus ±36 21 48 61 −3.677

Regions showing decreased interhemispheric connectivity in children with IGE vs.

controls. MNI, Montreal Neurologic Institute.

decreased interhemispheric FC in widespread regions, including
increased VMHC in cuneus and anterior cingulate cortices, and
decreased VMHC in olfactory, inferior frontal, supramarginal,
and temporal regions (20). Although our study did not identify
a significant increase in VMHC, the anatomical configuration
of the brain regions involved is generally consistent with
that study.

IGE has been conceptualized to originate at one point
within a unilateral hemisphere and propagate bilaterally (17).
FC between bilateral hemispheres might be linked to the
interhemispheric communication that can reflect the integrity of
brain function (20, 35). We first identified significant reductions
in VMHC including Rolandic operculum, putamen, superior
frontal, lateral tempo-parietal, middle cingulate, and precuneus
in children with IGE in the conventional frequency band (full
band). These reductions, especially in the dorsal striatum, were
generally replicated in the higher frequencies of the slow-
4 band, suggesting that the between-group differences of the
conventional band (full) are largely contributed by the slow-4
band. Across the three frequency bands, the statistical differences
between groups converge to the lateral temporoparietal areas.
Meanwhile, unique reductions in orbitofrontal and middle

temporal gyri in children with IGE were found in a lower
frequency band (slow-5).

The putamen and superior frontal gyrus have been suggested
to be involved in motor-related behavior (36), linguistic
processing (37), and auditory processing (38), and some
researchers have suggested that the superior temporal gyrus may
be involved in theory of mind ability (39). At the same time,
patients with IGE have been demonstrated to have cognitive
impairments and behavioral deficits, and related functions, such
as memory, attention, and linguistic function, were weakened
(6, 20, 21, 34, 37, 40). Together with the significant associations
between VMHC in the putamen and age as found in this study,
therefore, it is reasonable to believe that decreased FC in the
abovementioned regions might be correlated to the functional
deficits in patients with IGE.

The default network, which mainly comprises the posterior
cingulate cortex/precuneus and the medial prefrontal, is
proposed to be the biological basis of self-information, emotion,
and social skills (41, 42). Decreased FC within the default
network has been associated with consciousness impairments
and behavioral deficits in individuals with IGE (6, 15, 37, 40).
Our results showing decreased VMHC within the orbitofrontal,
medial prefrontal, and posterior cingulate cortices may have
led to impairments in reward processing and decision making
of the patients, resulting in a decline in their ability to
learn new things (43, 44). One explanation is that decreased
VMHC of themedial prefrontal/orbitofrontal regions involved in
emotionmanagement and decisionmakingmay lead to executive
dysfunctions in those with IGE. In line with our results, both
increased and decreased FC were also observed within the default
network (15, 16, 34). Moreover, we observed decreased VMHC
in the putamen, orbitofrontal, visual, lateral temporoparietal,
and somatomotor regions, which might be associated with
reductions in motor management (6), especially the experience
of visual aura (45) and myoclonic jerks (40) in patients
with IGE.

Based on previous studies (7, 11, 20), we investigated
interhemispheric FC in different frequency bands and observed
that the interhemispheric communication changes measured
in rs-fMRI in individuals with IGE were frequency-dependent.
Significant interhemispheric changes were localized in the
bilateral OFC and lingual gyrus in the slow-5 band, while
the changes in the slow-4 band were different, including the
bilateral putamen and bilateral superior temporal gyrus. These
findings were in line with previous studies (13) that showed
that the amplitude of low-frequency fluctuations in the slow-
4 band is sensitive to subcortical activity (more robust in basal
ganglia), whereas the intensity of amplitude of low-frequency
fluctuations in the slow-5 band was more dominant within the
cortical regions, such as the medial prefrontal (13, 46). Therefore,
different interhemispheric FC change distributions between the
full frequency band and the slow-5 band may indicate the
higher sensitivity of the slow-5 band for detecting abnormal low-
frequency fluctuation changes in individuals with IGE. Thus,
our findings add to the growing body of evidence that such
frequency-specific effects linked with low-frequency fluctuations
may be crucial to the origination and development of brain
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FIGURE 3 | Main effects for frequency band. Only significantly reduced VMHC was found (cold colorbar, slow-4 < slow-5). The results were voxel-wise p < 0.001,

cluster level p < 0.05, family-wise error (FWE) cluster-level corrected. L, left; R, right.

TABLE 6 | Main effects for frequency band (slow-4 > slow-5) on VMHC.

Brain regions MNI coordinates Voxels T-values

X Y Z

No global regression

Lingual gyrus ±3 −69 −3 208 −3.610

Calcarine fissure and surrounding cortex ±21 −66 15 208 −3.568

Middle frontal gyrus, orbital part ±18 39 −9 49 −3.045

With global regression

Lingual gyrus ±9 −66 3 311 −4.162

Calcarine fissure and surrounding cortex ±15 −87 6 311 −3.249

Middle frontal gyrus, orbital part ±15 39 −6 68 −3.320

Regions showing decreased interhemispheric connectivity in children with IGE vs.

controls. MNI, Montreal Neurologic Institute.

functions and enable a better understanding of the coordinated
brain activity in patients with brain disorders (46).

We also analyzed the potentially different statistical results
in the case of global brain signal regression. Surprisingly,
the global brain signal regression and non-global brain signal
regression showed very similar results, which seems to be
different from what we originally thought: that epilepsy is
accompanied by abnormal brain signals. Some controversy

exists regarding the regression of global signals, with authors
reporting that global regression may introduce false-negative
correlations and eliminate positive correlations (35, 37, 47).
One study conducted in rats after dopamine loss found the
presence of negative correlations between nodes in the brain
(48). In addition, Fox et al. (49) suggested that negative
correlations existed as a biological basis before the global
regression and may play a crucial role in differentiating
neuronal processes of opposite or competing activities, while
the widely distributed global signals of gray matter might
obscure potential neuroanatomical relationships. Therefore, the
regression step contributes to removing the confounding factors
and clearly presents the characteristics of the anticorrelation
network (50).

There are several limitations to our study. First, though the
IGE children showed good coordination and head movement
control during the acquisition of rs-fMRI, we did not conduct
simultaneous EEG monitoring at the same time, and we
cannot rule out abnormal interictal discharges during this
period, but we estimate that this possibility is relatively
small. Second, the IGE children included in this study were
more or less antiepileptic drug-treated depending on the
course of the disease. Therefore, it is difficult to elaborate
on the influence of drugs on connectivity results. Third,
the sample size of our study was relatively small, and
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FIGURE 4 | Association analysis. Significantly positive associations were found between VMHC within the putamen under two frequency bands (full and slow-4) and

chronological age and between VMHC within the medial prefrontal cortex and IQ performance subscore. (A) Putamen. (B) Medial prefrontal cortex.

different IGE subsyndromes may have different abnormalities
in brain structure and FC. Therefore, future studies should
expand the sample size and investigate different subtypes of
epileptic patients.

CONCLUSION

Our findings suggest that IGE children show frequency-
dependent changes in interhemispheric integration that spans
regions and systems involving cortical-subcortical, language, and
visuomotor processing. Decreased functional coupling within
the dorsal striatum may reflect atypical development in children
with IGE.
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