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High-throughput microbial sequencing techniques, such as targeted amplicon-based

and metagenomic profiling, provide low-cost genomic survey data of microbial

communities in their natural environment, ranging from marine ecosystems to

host-associated habitats. While standard microbiome profiling data can provide sparse

relative abundances of operational taxonomic units or genes, recent advances in

experimental protocols give a more quantitative picture of microbial communities by

pairing sequencing-based techniques with orthogonal measurements of microbial cell

counts from the same sample. These tandem measurements provide absolute microbial

count data albeit with a large excess of zeros due to limited sequencing depth. In this

contribution we consider the fundamental statistical problem of estimating correlations

and partial correlations from such quantitative microbiome data. To this end, we

propose a semi-parametric rank-based approach to correlation estimation that can

naturally deal with the excess zeros in the data. Combining this estimator with sparse

graphical modeling techniques leads to the Semi-Parametric Rank-based approach for

INference in Graphical model (SPRING). SPRING enables inference of statistical microbial

association networks from quantitative microbiome data which can serve as high-level

statistical summary of the underlying microbial ecosystem and can provide testable

hypotheses for functional species-species interactions. Due to the absence of verified

microbial associations we also introduce a novel quantitative microbiome data generation

mechanism which mimics empirical marginal distributions of measured count data while

simultaneously allowing user-specified dependencies among the variables. SPRING

shows superior network recovery performance on a wide range of realistic benchmark

problems with varying network topologies and is robust to misspecifications of the

total cell count estimate. To highlight SPRING’s broad applicability we infer taxon-taxon

associations from the American Gut Project data and genus-genus associations from a
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recent quantitative gut microbiome dataset. We believe that, as quantitative microbiome

profiling data will become increasingly available, the semi-parametric estimators for

correlation and partial correlation estimation introduced here provide an important tool

for reliable statistical analysis of quantitative microbiome data.

Keywords: absolute abundance, amplicon sequencing, association network, copula, graphical model, gut

microbiome, zero inflation

1. INTRODUCTION

High-throughput sequencing techniques, including targeted
amplicon-based sequencing (TAS) and metagenomic profiling,
provide large-scale genomic survey data of microbial
communities in their natural habitats. Collaborative efforts,
such as the Human Microbiome Project (HMP) (Huttenhower
et al., 2012), the Earth Microbiome Project (EMP) (Bahram
et al., 2018), the TARA Ocean project (Sunagawa et al., 2015),
and the American Gut Project (AGP) (McDonald et al., 2018)
give an increasingly detailed picture of relative abundances of
operational taxonomic units, their phylogenetic relationships,
and gene abundances across diverse ecosystems, ranging from
marine, soil, and fresh-water to human-associated habitats albeit
at different scales and resolutions. Following the seminal work
in Woese and Fox (1977), TAS protocols extract and amplify
specific regions in marker genes, such as the 16S rRNA gene
for bacteria and archea, the 18S rRNA gene for eukaryotes, and
Internal Transcribed Spacer (ITS) regions for fungi, via universal
primers followed by next-generation sequencing. These profiling
efforts, together with elaborate bioinformatics processing and
normalization work flows (Schloss et al., 2009; Caporaso et al.,
2010; Edgar, 2013; Callahan et al., 2016; Lagkouvardos et al.,
2017) allow low-cost determination of highly sparse relative
counts of hundreds to thousands of operational taxonomic units
(OTUs) or amplicon sequence variants (ASVs) (Edgar, 2016;
Callahan et al., 2017) per sample across a large number of sample
sites or participants. Metagenomic profiling (Handelsman, 2004)
on the other hand provide unbiased samples of the majority
of genes of the sampled habitat by high-throughput shotgun
sequencing. Sophisticated reference-guided as well as reference-
free metagenomic read assembly, binning, and taxonomic
profiling pipelines (Alneberg et al., 2014; Sczyrba et al., 2017;
Sedlar et al., 2017) can, under suitable conditions on read
coverage, disentangle the complex mixture of sequencing reads
into entire genomes of the underlying microbes and estimate, as
a high-level by-product, relative microbial abundances.

Microbiome community-level analysis tasks, such as

quantifying community composition shifts across conditions
or associating high-dimensional species compositions and

their taxonomic profiles to each other and to environmental
or host-associated covariates, require statistical estimation

procedures that can handle the restrictive nature of such
sparse proportional (or compositional) microbiome datasets
(Li, 2015). Important examples include differential abundance
techniques (McMurdie and Holmes, 2014; Mandal et al., 2015),
proportionality estimation (Quinn et al., 2017), regression

models with compositional covariates (Holmes et al., 2012;
Lin et al., 2014), composition-adjusted correlation estimation
techniques (Friedman and Alm, 2012; Cao et al., 2018), and
sparse graphical models for microbial association networks
(Kurtz et al., 2015; Tipton et al., 2018).

Recent advancements in microbiome profiling protocols,
however, promise to alleviate the experimental shortcomings
of standard TAS or metagenomic experiments by enabling
a more quantitative picture of microbial communities. The
experimental protocols in Gifford et al. (2011) and Satinsky et al.
(2013), originally introduced for marine microbiome profiling,
establish quantitative count measurements of environmental
metatranscriptomic or metagenomic data by adding orthogonal
internal genomic mRNA or DNA standards (of known quantity)
to the environmental sample prior to sequencing. A similar
spike-in approach has been proposed for gut microbiome
studies in Stämmler et al. (2016). Recent quantitative approaches
combine TAS techniques with robust measurements of microbial
cell counts, in particular flow cytometry (Props et al., 2017;
Vandeputte et al., 2017). These tandem measurements provide
absolute microbial count data albeit with a large number of zero
measurements due to limited sequencing depth (see Figure 2 for
an overview). Thus far, however, statistical analysis methods for
these novel quantitative microbiome data remain largely elusive.

In this contribution, we consider the statistical problem
of correlation and partial correlation estimation for sparse
quantitative microbiome count data. To this end, we first revisit a
novel semi-parametric rank-based (SPR) approach to correlation
estimation that can naturally deal with the large number of zeros
in the data. The SPR estimator is easy to compute and can readily
replace the naïve Pearson or rank-based sample correlation
estimator which are often used as a first step in downstream
statistical analysis tasks, including principal component analysis,
principle coordinate analysis, discriminant analysis, or canonical
correlation analysis (Yoon et al., 2018). Here we use the
semi-parametric rank-based estimator as a starting point for
sparse partial correlation estimation and introduce the Semi-
Parametric Rank-based approach for INference in Graphical
model (SPRING). SPRING follows the neighborhood selection
methodology outlined in Meinshausen and Bühlmann (2006)
to infer the conditional dependency graph and uses stability-
based model selection (Liu et al., 2010; Müller et al., 2016)
to identify a sparse set of stable partial correlation estimates
from quantitative microbiome data (section 2). These partial
correlations can be interpreted as direct (i.e., conditionally
independent) statistical microbe-microbe associations and can
serve as an initial community-level description of the underlying
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microbial ecosystem (Fuhrman et al., 2015; Sunagawa et al., 2015;
Ruiz et al., 2017).

To evaluate our new methodology, we introduce a data
generation mechanism that produces synthetic amplicon
samples which exactly follow the empirical marginal cumulative
distributions of measured amplicon count data while
simultaneously obeying user-specified (partial) correlation
dependencies among the variables and closely following user-
defined total cell counts (see Figure 2 for a summary). As
ground-truth data for microbial associations remain largely
elusive in current literature, our data generation mechanism
might be of independent interest for testing other statistical
inference schemes.We highlight SPRING’s superior performance
compared to standard sparse partial correlation estimation
methods on a wide range of quantitative microbiome benchmark
problems with varying prescribed network topologies. We also
quantify, in the context of association network inference,
the potential gains of quantitative over purely relative
data even under misspecified totals. To showcase SPRING’s
broad applicability (see section 4), we first infer taxon-taxon
associations from relative abundance data collected in the
AGP using a pseudo-count-free log-ratio transform that can
handle zero counts. Our key application is a genus-level analysis
of the quantitative gut microbiome dataset put forward in
Vandeputte et al. (2017). We discuss the inferred quantitative
association network structure, compare it to published results,
and assess, for the first time, the differences between inferred
associations from measured absolute and relative abundance
data in a consistent statistical framework. While we focus here on
TAS-related applications, our methodology is broadly applicable
to other data types with excess zeros, including quantitative
metagenomics, single-cell RNA-seq, and mass spectrometry data,
and thus provides a promising route toward a coherent statistical
framework for correlation and partial correlation analysis of
multi-omics biological data.

2. SEMI-PARAMETRIC RANK-BASED
CORRELATION AND PARTIAL
CORRELATION ESTIMATION

2.1. Rank-Based Estimation of Correlation
Matrix for Zero-Inflated Data
A great number of multivariate statistical methods, such as
principal component analysis, discriminant analysis, canonical
and partial correlation analysis, to name a few, require the
estimate of a covariance or correlation matrix of variables as
one of the inputs. The overwhelming number of methods are
based on the Pearson sample covariancematrix, which works well
at capturing dependencies between variables that are normally
distributed. One of the key challenges in analyzing TAS-based
microbial abundance data is that it is far from normal: TAS-
based measurements are inherently proportional, extremely right
skewed, overdispersed, and comprise a large number of zero
values. Furthermore, the zeros are not always indicative of the
absence of the species, but rather a result of limited sequencing
depth or primer bias. For these reasons, the sample covariance

matrix is not appropriate for capturing dependencies present
in microbiome data. Several methods use techniques from
compositional data analysis (Aitchison, 1983), including log-
ratio transforms, to adjust the data prior to any estimation,
and enforce different structural constraints on the correlation or
inverse correlation matrix (Friedman and Alm, 2012; Kurtz et al.,
2015; Cao et al., 2018). The problem of excess zeros is typically
dealt with by adding a small pseudo-count or, more recently,
estimating pseudo-counts from multiple samples (Cao et al.,
2017). For quantitative microbiome data, however, correlation
and inverse correlation estimators are not yet available. In this
work we propose to take a different approach relying on the
recently proposed truncated Gaussian copula framework (Yoon
et al., 2018).

First, we review the Gaussian copula model, which is
sometimes referred to as non-paranormal (NPN) model (Liu
et al., 2009).

Definition 1. A random vector x = (x1, . . . , xp)
⊤ satisfies the

Gaussian copula model if there exists a set of monotonically
increasing transformations f = (fj)

p
j=1 satisfying f (x) =

{f1(x1), . . . , fp(xp)}⊤ ∼ N(0,6) with σjj = 1. We denote x ∼
NPN(0,6, f ).

The Gaussian copula model is commonly used in undirected
graphical models (Liu et al., 2012; Fan et al., 2017) because
it models the dependency between variables through the
correlation matrix 6, and thus enjoys the mathematical
simplicity of Gaussian multivariate distribution while relaxing
the normality assumption. While the original model is only
appropriate for modeling continuous variables, it has also
been generalized to binary variables by adding an extra
dichotomization step (Fan et al., 2017). The estimation of
graphical models only requires the knowledge of the correlation
matrix 6, and it has been shown (Fan et al., 2017) that consistent
estimates of 6 could be easily obtained from sample Kendall’s τ

without the need to estimate unknown transformations fj.
The Gaussian copula model is, however, not appropriate

for quantitative microbiome data as (i) it does not take into
account zero inflation, and (ii) it models continuous rather than
count variables. To address (i), we take advantage of the model
proposed in Yoon et al. (2018).

Definition 2 (Truncated Gaussian copula model of Yoon et al.
(2018)). A random vector x = (x1, . . . , xp)

⊤ satisfies the truncated
Gaussian copula model if there exists a p-dimensional random
vector u = (u1, . . . , up)

⊤ ∼ NPN(0,6, f ) such that

xj = I(uj > cj)uj (j = 1, . . . , p),

where I(·) is the indicator function and c = (c1, . . . , cp) is a vector
of positive constants.

In other words, the model truncates a Gaussian copula
variable so it is either zero or positive continuous. This model
does not take into account that quantitative microbiome data
have zeros or positive counts, but we found the continuous
approximation to positive counts to work well in our simulation
results (section 3).
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To construct graphical models for the truncated Gaussian
copula model, the estimation of the latent correlation matrix 6

is required. Yoon et al. (2018) develop a rank-based estimator for
6 by deriving the explicit form of the so-called bridge function F
that connects the sample Kendall’s τ estimates to the elements of
6. Given observed data (xj1, xk1), . . . , (xjn, xkn) for variables j and
k, the sample Kendall’s τ estimate is defined as

τ̂jk =
2

n(n− 1)

∑

1≤i<i′≤n

sign(xji − xji′ )sign(xki − xki′ ).

The bridge function F is defined so that E(̂τjk) = F(σjk), where
σjk is the corresponding latent correlation between variables j and
k. The explicit form of F for the truncated Gaussian copula model
is given below.

Theorem 1 (Yoon et al. (2018)). Let random variables xj,
xk follow truncated Gaussian copula with corresponding latent
correlation σjk. Then E(̂τjk) = F(σjk), where

F(σjk) = F(σjk; δj, δk) = −284(−δj,−δk, 0, 0;64a)

+ 284(−δj,−δk, 0, 0;64b),

δj = fj(cj), δk = fk(ck), 84(. . . ;64) is the cumulative
distribution function (cdf) of the four dimensional standard
normal distribution with correlation matrix 64,

64a =




1 0 1/
√
2 −σjk/

√
2

0 1 −σjk/
√
2 1/

√
2

1/
√
2 −σjk/

√
2 1 −σjk

−σjk/
√
2 1/

√
2 −σjk 1




and

64b =




1 σjk 1/
√
2 σjk/

√
2

σjk 1 σjk/
√
2 1/

√
2

1/
√
2 σjk/

√
2 1 σjk

σjk/
√
2 1/

√
2 σjk 1


 .

Moreover, F(σjk) is strictly increasing, so the inverse function

F−1(σjk) exists.

Remark 1. To give more intuition for the form of the bridge
function, we provide a brief summary of the underlying
derivations here. The central part is the calculation of
E

{
sign(xji − xji′ )sign(xki − xki′ )

}
. Due to the effect of truncation,

this calculation requires separation of events leading to
zero or continuous realization of xj before the equivalence
sign{xji − xji′} = sign{f1(xji) − f1(xji′ )} can be applied. This
separation leads to the intersection of four events concerning
normal variables (two events for continuous realization of xj and
xk, and two events corresponding to each of the sign terms), thus
explaining the appearance of the four-dimensional normal cdf in
the form of the bridge function.

Theorem 1 provides a closed-form expression of the bridge
function F up to the values of thresholds δj, which we replace with
moment-based estimators δ̂j. Let n0j be the observed number of

exact zeros across n realizations of variable xj. By Definitions 1
and 2,

E(n0j/n) = P(xj = 0) = P(uj ≤ cj) = P(f (uj) ≤ δj) = 8(δj).

We use δ̂j = 8−1(n0j/n) instead of δj and can thus calculate
σ̂jk = F−1 (̂τjk). In practice, the inverse of the bridge function

F−1 (̂τjk) is determined numerically by finding the minimizer of

the quadratic function {F(σjk)− τ̂jk}2, which is unique due to the
strict monotonicity of the function F(σjk).

The resulting σ̂jk are used to construct an element-wise

estimator 6̂. Since element-wise estimation does not guarantee
positive semidefiniteness of 6̂, we follow the suggestion of Fan
et al. (2017) and replace 6̂ with its projection onto the cone of
positive semidefinite matrices. We use the nearPD function in
Matrix R package to perform this projection. For numerical
stability, we also include an additional shrinkage step of the
form 6̃ = (1 − ρ)6̂ + ρI with ρ = 0.01, which guarantees
strict positive definiteness of the final estimate. In simulations,
we found that the method performs well across a wide range
of small ρ values (see Supplementary Material for a sensitivity
analysis of the parameter ρ). The described estimation procedure
for 6 is implemented within the R package mixedCCA (Yoon
and Gaynanova, 2018), and we refer the reader to Yoon et al.
(2018) for more detailed derivations.

We refer to the proposed estimator 6̃ of the correlation
matrix 6 of truncated Gaussian copula variables as the Semi-
Parametric Rank-based (SPR) correlation estimator. The SPR
estimator forms the basis for the undirected graphical model
framework outlined below.

2.2. Sparse Graphical Models and SPRING
We next introduce the Semi-Parametric Rank-based approach
for INference in Graphical model (SPRING). SPRING relies
on the estimation of an undirected graphical model from data.
Undirected graphical models are typically used to represent the
conditional independence relationship between the variables of
random vector x ∈ R

p, so that

no edge between xj and xk ⇐⇒ xj ⊥ xk|x−j,−k ,

where x−j,−k means all components in x except component j and
k. If the vector x follows a normal distribution, then conditional
independence between xj and xk is equivalent to zero partial
correlation between variables j and k. Therefore, sparse estimates
of partial correlations lead to sparse conditional independence
graphs. There is a rich literature on sparse estimation of partial
correlations, with perhaps the most popular methods being the
neighborhood selection of Meinshausen and Bühlmann (2006)
(denoted byMB from here on) and the graphical lasso (Friedman
et al., 2008). While the SPR estimator of the correlation matrix
proposed in section 2.1 can be used in both approaches, we
found the MB method to perform better than graphical lasso in
numerical simulations and therefore focus on the MB method in
the remainder of the paper.

The MB method takes advantage of the connection between
partial correlations and regression coefficients and performs
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sparse estimation of partial correlations by regressing each of
the p variables on the rest, thus finding each nodes’ immediate
neighbors by solving a lasso problem (Tibshirani, 1996). Given
column-centered and scaled data matrixX ∈ R

n×p with columns
xj, the MB method solves for each variable j

β j = argmin
β∈Rp ,βj=0

{
n−1‖xj − Xβ‖22 + λ‖β‖1

}
.

Rewriting the objective function leads to

β j = argmin
β∈Rp ,βj=0

{
β⊤n−1X⊤Xβ − 2n−1β⊤X⊤xj + λ‖β‖1

}

= argmin
β∈Rp ,βj=0

{
β⊤Sβ − 2β⊤sj + λ‖β‖1

}
,

where, given the centering and scaling of X, S = n−1X⊤X
is the sample correlation matrix with columns sj. Since the
standard sample correlation matrix is not suited for capturing
dependencies in sparse quantitative microbiome data, SPRING
replaces the sample correlation S in the MB method with the
SPR estimator 6̃ from section 2.1. The MB method comprises
the regularization parameter λ which balances the trade-off
between sparsity of the neighborhood and goodness of fit,
and thus requires data-driven tuning. We here consider a
stability-based model selection method, the Stability Approach
to Regularization Selection (StARS) (Liu et al., 2010), which
has been previously proven to be suitable for graphical model
selection on microbiome data (Kurtz et al., 2015; Müller et al.,
2016). The StARS method selects the optimal tuning parameter
by repeatedly taking subsamples of the original data, estimating
the graphical model for each subsample at each λ value along
a prescribed regularization path, and then calculating empirical
edge selection probabilities from the subsamples. The StARS edge
stability criterion uses these probabilities to assess the sum of
edge variabilities for each graph along the regularization path.
The optimal λ is selected based on the supplied threshold tS, with
standard values being tS = 0.05 and tS = 0.1 (Liu et al., 2010;
Kurtz et al., 2015). The threshold value represents a bound on
the allowed overall edge variability over the entire graph. Lower
thresholds lead to sparser, more robust graphs. Using the selected
λ value, the final graphical model is refitted on the full dataset.

In summary, SPRING comprises three major components:
(i) a semi-parametric rank-based correlation estimator for
zero-inflated count data, (ii) the MB method to infer sparse
conditional dependencies from the estimated correlation, and
(iii) a stability-based approach (StARS) for sparse and robust
neighborhood selection.

2.3. Extensions to Compositional Data
An important prerequisite for SPRING to be applicable to zero-
inflated data is that individual count values across samples
are comparable. For TAS-based microbial abundance data this
condition is not satisfied because the total read count of a sample
is not related to the total number of bacteria in the sample
(Vandeputte et al., 2017), thus making the counts inherently
proportional quantities. While this drawback is alleviated with
the novel experimental techniques for quantitative microbiome

data, as discussed earlier, a large number of available datasets,
including the HMP and the AGP data, are only available
as proportional (or compositional) data. To make SPRING
amenable to statistical association inference from relative
abundance data, we rely on a novel data transformation.

One of the key challenges in working with compositional
data is the presence of unit-sum constraint. For correlation
estimation, a common approach (see e.g., Aitchison, 1983; Kurtz
et al., 2015; Cao et al., 2018) is to first apply the centered log-
ratio transform (clr) to the compositional vector of each sample
xi ∈ S

p

zi = clr(xi) = [log{xi1/g(xi)}, log{xi2/g(xi)}, . . . , log{xip/g(xi)}],
(1)

where g(xi) = (
∏p

j=1 xij)
1/p is the geometric mean of xi. A

correlation matrix is then estimated based on the transformed zi,
i = 1, . . . , n, rather than directly on xi (Aitchison, 1983). Since
TAS-based microbiome profiling data have a large number of
zeros, the addition of a large number of pseudo-counts is required
to modify the vector of compositions to only have non-zero
proportions. Adding such pseudo-counts changes the measured
non-zero proportions and masks the zeros in the data, leading to
zeros and non-zeros being treated equally in subsequent analysis.
In addition, the choice of the actual value of the pseudo-count
can influence downstream analysis results, and mere addition of
extra zero components to the compositional vector would also
change the transformation.

To avoid these drawbacks and to play on the strengths of
SPRING in handling excess zeros, we propose a modified clr
transform (mclr) that does not require the use of pseudo-counts.
The key steps of the mclr transform are described below and
visualized in Figure 1.

Contrary to recent efforts in data-driven inference of pseudo-
counts (see e.g., Cao et al., 2017; de la Cruz and Kreft, 2018
and references therein), we compute the geometric mean of
each sample from positive proportions only, normalize and log-
transform all non-zero proportions by using that geometric
mean, and apply an identical shift operation to all non-zero
components in the dataset. Specifically, let xi ∈ S

p be the vector
of compositions for sample i, and for simplicity of illustration,
assume that the first q elements of xi are zero, and the other
elements are non-zero. Then we propose to apply

zi = mclrε(xi) = [0, . . . , 0, log{xi(q+1)/g̃(xi)} + ε, . . . ,

log{xip/g̃(xi)} + ε], (2)

where g̃(xi) = (
∏p

j=q+1 xij)
1/(p−q) is the geometric mean of the

non-zero elements of xi. When ε = 0, mclr0 corresponds to
clr transform applied to non-zero proportions only (Figure 1,
middle panel). When ε > 0, mclrε applies a positive shift to
all non-zero compositions. To make all non-zero values strictly
positive, we use the data-driven shift ε = |zmin| + c, where
zmin = minij log{xij/g̃(xi)} and c a positive constant with the
default value c = 1. Alternative choices are discussed in the
Supplementary Material. The ultimate rationale for the shift is to
preserve the original ordering of the entries of the compositional
vector xi (with zeros being the smallest) in the transformed vector
zi. The constraint ε > |zmin| ensures that zi(q+1), . . . , zip are
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FIGURE 1 | Summary of the mclrε transform for a relative abundance sample xi . See main text for a description of the different steps.

strictly positive for all i. The modified clr transform is invariant
to the addition of extra zero components, preserves the original
zero measurements, and is overall rank-preserving.

If a practitioner intends to infer microbial associations from
relative abundance data using SPRING, we suggest to first use
the mclrε transform on relative abundance data and then apply
SPRING to the transformed data. While SPRING is completely
invariant to the choice of ε in mclrε for any value of ε

within the constraint due to the rank-based estimation of
correlation, it does not take into the account the compositional
nature of the data. Alternative ways of measuring associations
between compositional components include Aitchison’s variation
(Aitchison, 2003), linear compositional associations (Egozcue
et al., 2018), and proportionality (Quinn et al., 2017), which
take the compositional constraints directly into account. Here,
we will focus on correlation-based approaches and present
an application of SPRING to the compositional AGP data in
section 4.1.

3. SIMULATION STUDIES

3.1. Generation of Synthetic Quantitative
Microbial Abundance Data
We first describe generating mechanisms for synthetic microbial
abundance data with prescribed correlation or inverse correlation
matrices that emulates as close as possible quantitative microbial
abundance data. We closely follow ideas presented in Kurtz
et al. (2015) for synthetic data generation with several important
differences. The work flow of our data generation mechanism is
summarized in Figure 2.

We propose two constructions for correlation matrices. The
first construction takes directly into account the covariance of
measured quantitative microbial abundance data. Given a set of n
quantitative abundance samples on p taxaX ∈ R

n×p, we compute
the SPR estimator 6̃ proposed in section 2.1 from the data and
consider the resulting correlation matrix as the ground truth
correlation matrix 6. The generation of synthetic samples given
this correlation matrix estimate is then outlined below. Note that
we do not impose any particular properties on the correlation
matrix estimate, such as bounded condition number or sparsity.

This construction is thus only useful for benchmarking different
correlation estimation techniques.

An alternative way of generating a correlation matrix 6 is
through explicitly controlling certain properties of the inverse
correlation matrix. Let p be the number of nodes, i.e., the number
of taxa or OTUs, and let 2 be the p by p symmetric adjacency
matrix such that θij = 1 if there is an edge between nodes i and
j, i 6= j, and θij = 0 otherwise. We assume that the induced
graph has no self-loops, i.e., θii = 0. We control the topology of
the graph by considering three types of graph topologies: band
graphs, cluster graphs, and scale-free graphs. The number of
edges in the graph is denoted by e. The default value considered
here is equal to twice the number of nodes (e = 2p), resulting in
sparse graphs. Given this fixed sparsity level and the graph type,
we use the R packageSpiecEasi (Kurtz et al., 2017) to generate
a precision matrix � with the pattern of zeros corresponding
to 2. The non-zero entries of the lower triangular elements of
�, ωij with i > j, are sampled uniformly at random from the
intervals [−3,−2] and [2, 3], and the upper triangular elements
are set to ωji = ωij. The diagonal elements are set to a constant
such that the final precision matrix � has a default condition
number κ = 100. Using �, we generate the correlation matrix
6 by taking the inverse of the precision matrix, followed by
scaling. This construction thus allows to benchmark different
sparse inverse or partial correlation estimation techniques.

Given a correlation matrix 6 from either of the two

constructions, we follow Kurtz et al. (2015) and use the

“Normal to Anything” (NorTA) approach to generate synthetic
abundance data. The NorTA method allows to generate variables

with arbitrary marginal distributions from multivariate normal
variables with given correlation structure. Specifically, we first

generate n × p matrix Z with independent normal rows zi ∼
N(0,6) with given correlation matrix 6, then get uniform
random vectors by applying standard normal cdf transformation
to each column of Z, uj = 8(zj) element-wise, and then
apply the quantile functions of the target marginal distributions
to each uj. In Kurtz et al. (2015), the zero-inflated negative
binomial distribution (zinegbin) from VGAM package (Yee,
2010) is used, where the marginal distributional parameters
are estimated from measured amplicon data. However, we
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FIGURE 2 | Summary of the workflow for quantitative microbiome profiling (QMP) and the associated synthetic data generation mechanism.

found that the zinegbin distribution does not emulate well
the overdispersion and skewness present in real data. This is
evident by comparing the summary statistics between, e.g., the
AGP data and corresponding synthetic data generated using the
zinegbin, as shown in Table 1. To better match real amplicon
data, we propose to take a different approach by using the
inverse of the empirical cumulative distribution function (ecdf)
of each OTU. This inverse can be calculated numerically by
using the uniroot.all function in rootSolve package
in R (Soetaert, 2009). As is evident from Table 1, the ecdf
approach works well in mimicking the summary statistics of
real TAS-based data. The match across all counts is considerably
better than the match across sample abundances since the ecdf
transformation is applied separately to each OTU. Although the
within-sample counts are affected by the imposed correlation
structure 6, the values of the sample total abundance of
synthetic data with the ecdf are much closer to the measured
ones than those with zinegbin. In terms of count summary
statistics, the synthetic data is nearly indistinguishable from the
measured data.

3.2. Estimation of Pairwise Correlations
3.2.1. Synthetic Data Generation and Methods for

Comparison
We first benchmark estimation of pairwise correlations
from synthetic quantitative microbial abundance data. For

this purpose, we generate synthetic count data based on
the quantitative microbiome profiling data, put forward in
Vandeputte et al. (2017) and referred to as QMP data, and
consider genus-level correlations. As the processed data used in
Vandeputte et al. (2017) are not publicly available, we apply the
work flow outlined in Figure 2. We reprocessed the available
amplicon sequencing data using the standard QIIME protocol
with closed-reference OTU picking (Caporaso et al., 2010),
adjusted for copy number variations of the 16S rRNA gene
using PICRUSt (Langille et al., 2013), filtered the data using
the following three steps: (i) exclude samples whose sequencing
depths (total read abundances) are ≤ 10000; (ii) exclude all taxa
present in <30% of samples; and (iii) exclude samples whose
abundance is less than the first percentile of all sequencing
depths. We then combined the resulting samples with the
corresponding measured total cell counts (Vandeputte et al.,
2017). We next pooled n = 106 healthy subjects from the

two available cohorts and merged all OTUs on the genus level,
resulting in p = 91 genera. To generate synthetic data based

on the QMP data with realistic correlation structure, we use the
first construction method of the correlation matrix, outlined in
section 3.3.1, thus considering the SPR correlation estimate on
the QMP data as the ground-truth correlation matrix6. We then
generate n = 91 synthetic genus-level quantitative microbial
abundance data that mimic the original QMP data both in terms
of marginal genus distributions and correlation structure.
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TABLE 1 | Comparison of summary statistics for all the counts and sample total abundance values between AGP data and two synthetic data generators.

Data Min. 1st Qu. Median Mean 3rd Qu. Max.

Count data

American Gut Project 0.0 0.0 3.0 144.9 34.0 176673.0

Synthetic (zinegbin) 0.0 0.0 33.0 170.0 125.0 54704.0

Synthetic (ecdf) 0.0 0.0 3.0 144.3 34.0 176673.0

Sample total abundance

American Gut Project 10002.0 15149.2 20715.5 28989.0 32964.8 341632.0

Synthetic (zinegbin) 21696.0 30119.2 32543.5 33995.7 36068.0 86033.0

Synthetic (ecdf) 7354.0 18860.5 25095.5 28854.7 34285.2 196732.0

The sample size is n = 2000, the number of OTUs is p = 200, and the synthetic data is based on scale-free graph type.

In addition to the SPR correlation estimation (section 2.1)
on the quantitative data, we consider three compositional
correlation estimation approaches: (i) Pearson sample correlation
on clr-transformed data with pseudocount addition [as used
in SPIEC-EASI (Kurtz et al., 2015)], (ii) SparCC estimation
from log-transformed compositions with pseudocount addition
(Friedman and Alm, 2012), and (iii) SPR estimation on mclrε-
transformed data (as described in section 2.3).

3.2.2. Results
Wemeasure the performance of the different estimators in terms
of absolute differences |σjk − σ̂jk|, where σjk is the ground-truth
correlation between genera j and k, and σ̂jk is the estimated
correlation for each of the four methods. Figure 3 shows box
plots of absolute differences for the different methods. We
observe that the SPR correlation estimates from the synthetic
quantitative data outperform all other estimates, closely followed
by the SPR estimates from mclrε-transformed data. SparCC
and Pearson correlation on clr-transformed compositions are
considerably outperformed by the SPR-type methods. The
superiority of SPR-type methods is likely due to the preservation
of the zero counts as zeros, thus avoiding distortions through
the use of pseudo-counts, and the effective handling of the
non-normality of the samples (as visible in the histogram
of mclrε-transformed data in Figure 1). Figure 4 shows the
corresponding scatter plots of estimated and true pairwise
correlations. We observe that SPR estimates on quantitative
data are unbiased and have the smallest variance among all
methods. SPR estimates on mclrε-transformed data have a
slight downward bias and higher variance. SparCC and Pearson
correlation on clr-transformed data have the worst performance
both in terms of bias and variance.

3.3. Estimation of Microbial Association
Networks
3.3.1. Synthetic Data Generation and Methods for

Comparison
We next consider the estimation of microbial association
networks. For this purpose, we generate synthetic counts from a
large subset of the American Gut Project (AGP) data (McDonald
et al., 2018), which comprises p = 27116 taxa across n =
8440 samples. The high dimensionality and the large sample

size of the AGP data enable a more comprehensive and realistic
investigation of the effects of dimensionality and sample size on
the estimation of microbial associations than the QMP data. We
consider the same data filtering steps as used in section 3.2.1:
we (i) exclude samples whose sequencing depths (total read
abundances) are ≤ 10000; (ii) exclude all taxa present in <30%
of samples; and (iii) exclude samples whose abundance is less
than the first percentile of all sequencing depths. This leads to
a reduced dataset with p = 481 taxa across n = 6482. We
consider two scenarios for the simulation studies: a large and
a small sample size setting. For the large sample size setting,
we randomly pick n = 2000 samples with total abundance
at least 10,000, and then select p = 100 OTUs with largest
abundances leading to 2000 × 100 matrix of synthetic counts.
For the small sample size setting, we use the same strategy
with n = 500 and p = 200. In the synthetic benchmarks,
we treat the total observed read abundances as quantitative
microbiome profiling abundances and impose sparse conditional
dependencies on these counts by using the second correlation
construction method, outlined in section 3.1. We refer to these
samples as “True data” in the simulations. To investigate the
robustness of SPRING to misspecifications of the assumed total,
we also generate “Distorted data” by multiplying counts in
every sample with an individual scale factor chosen uniformly
at random from the interval [0.5, 3]. The scale factor does
not affect a sample’s compositional data but does distort the
total abundances. The scale factor interval [0.5, 3] represents a
realistic distortion scenario in gut microbiome samples (see e.g.,
in Vandeputte et al., 2017, Figure 2) and is on the same order
as typical fold changes of observed image-based total species
counts in marine ecosystems (Ducklow, 2000). We study the
performance of SPRING both on the “True” and “Distorted”
synthetic data in order to assess how strongly a misspecification
of the total affects association network inference.

Along with SPRING, we consider three methods for

comparison. To study the influence of the sample correlation
estimation, we consider the standard MB method using the

Pearson sample correlation (Meinshausen and Bühlmann, 2006)

[implemented in the R package huge (Zhao et al., 2012)]. We
also consider two popular methods for microbial association
inference from relative abundance data: SPIEC-EASI in the MB
mode (Kurtz et al., 2015) and SparCC (Friedman and Alm, 2012)
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FIGURE 3 | Absolute differences between true and estimated correlation coefficients, |σjk − σ̂jk |, for four methods: SPR correlation estimation on quantitative data

(green), SPR correlation estimation on mclrε-transformed compositional data (brown), SparCC estimation (Friedman and Alm, 2012) (purple), and Pearson sample

correlation on clr-transformed data (red) [as used in SPIEC-EASI (Kurtz et al., 2015)].

FIGURE 4 | True pairwise correlation values σjk (y-axis) vs. estimated values σ̂jk (x-axis) for four methods (from left to right): SPR correlation estimation on quantitative

data, SPR correlation estimation on mclrε-transformed compositional data, SparCC estimation (Friedman and Alm, 2012), and Pearson sample correlation on

clr-transformed data [as used in SPIEC-EASI (Kurtz et al., 2015)].

(both implemented in the R package SpiecEasi). The
original SparCC method, however, is used for inferring marginal
rather than conditional dependencies. For fair comparison with
the other methods, we therefore introduce a modification of
SparCC, termed invSparCC. The invSparCC method estimates
the correlation matrix using the default SparCC method (as
implemented in the R package SpiecEasi), and then uses
the SparCC correlation estimator as input to the MB method,
described in section 2.2. All considered methods use the
neighborhood selection principle to derive a sparse graphical
model, see Table 2 for summary of all methods. The inferred
adjacency and coefficient matrices are thus not guaranteed to
be symmetric. We use the “or” rule and the “maxabs” rule to
symmetrize the estimated adjacency and coefficient matrices,
respectively. The “or” rule assigns an edge between nodes i and

j if either node i is selected as a neighbor of j or node j is selected
as a neighbor of i. The “maxabs” rule symmetrizes the coefficient
matrix by taking the coefficient with maximum absolute value.
For tuning parameter λ selection, we use the R package pulsar
with “StARS” edge stability criterion and use 50 subsamples
with subsampling ratio being fixed at 10

√
n/n, where n is the

sample size.

3.3.2. Results
We first compare the methods in terms of the Hamming distance
between the true and the estimated graph. The Hamming
distance is calculated as the number of edges that disagree
with the true graph at each value of tuning parameter λ. The
comparison of Hamming distance curves across the values of
λ allows us to check the best achievable Hamming distance
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value that is agnostic to tuning parameter selection scheme.
We consider 50 values of λ for all methods equally spaced
on a logarithmic scale, with λmax corresponding to no edges
in the estimated graph, and λmin = 0.01λmax. For more
accurate comparison, we consider 50 replications of the data
generating process for each specified combination of n and p.
The mean Hamming distance values over 50 replications as
functions of λ are plotted in Figure 5, with bands corresponding
to ± two standard errors. The MB method is uniformly
outperformed by all methods, confirming that standard sample
correlation is not suitable for capturing dependencies in sparse
quantitative microbiome data. SPIEC-EASI and invSparCC have
comparable performance, with SPIEC-EASI achieving smaller
mean values. SPRING performs best in all cases considered here.
The most challenging scenario is the scale-free graph with low
sample size, with SPRING, SPIEC-EASI, and invSparCC having
comparable performance. As expected, the distortion of total
abundances has no effect on the compositional methods SPIEC-
EASI and invSparCC, but decreases the performance of MB
and SPRING. Nevertheless, the minimum Hamming distance
achieved by SPRING on distorted data is still comparable or
better than the minimum distances achieved by other methods,
thus suggesting that SPRING is robust to misspecification of total
abundance values.

To gain further insights into the edge selection performance
of the different methods, we analyze the overlapping sets of
selected edges for all methods. We here focus on the cluster
graph type in the low sample size regime (n = 500, p = 200).
For each method we select the tuning parameter λ using StARS
at tS = 0.1 and repeat the experiment over 50 replications.
Figure 6 shows the average number of edges that overlap

across all methods as well as average proportions of true edges
among the selected ones. Among all sets uniquely identified
by an individual method, SPRING shows the highest true
positive rate (0.72), followed by SPIEC-EASI (0.42), invSparCC
(0.12), and MB (0.01). The edge set that is jointly selected
by SPRING, SPIEC-EASI, and invSparCC shows the highest
true positive rate (0.95) and highest number of selected edges
(≈ 246), followed by the edge set jointly selected by all
four methods (true positive rate 0.94 and ≈ 54 edges). This
suggests that a promising strategy for a practitioner screening
for true statistical associations is to apply SPRING, SPIEC-
EASI, and invSparCC independently and select the overlapping
edge set.

Next, we consider one data replication and compare the
Hamming distances achieved by selecting the tuning parameter
λ using StARS. The results are shown in Figure 7 with two
StARS thresholds considered (stars indicating 0.1 and circles
indicating 0.05). As expected, smaller threshold corresponds to
larger tuning parameter leading to sparser graph. At the same
time, based on numerical results, the threshold of 0.1 tends to
reach smaller Hamming distances for all methods except MB. In
general, both thresholds lead to reasonable values of λ in terms
of Hamming distance. As in the previous comparison, SPRING
leads to smaller Hamming distance values for “True” data and is
robust to misspecified total abundance values.

Finally, we compare the estimated graphs from all methods in
terms of precision and recall curves, where

Precision =
TP

TP+ FP
, Recall =

TP

TP+ FN
;

FIGURE 5 | Hamming distance as a function of tuning parameter λ. The lines correspond to mean values across 50 replications, and the bands show ± two standard

errors. True abundance and distorted abundance data are distinguished by the transparency level and the line type: true data are less transparent and have solid lines;

distorted data are more transparent and have dotted lines.
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FIGURE 6 | Average number of overlapping edges (top row) and the average proportion of true edges in each corresponding overlap (bottom row) for four methods

over 50 replications with n = 500, p = 200, and cluster-type graph. Corresponding standard deviations are given in parentheses.

FIGURE 7 | Hamming distance as a function of tuning parameter λ. The distances at the tuning parameters selected by StARS are marked with star-shaped points

(tS = 0.1) and circle-shaped points (tS = 0.05). True data are plotted with solid lines and distorted data are plotted with dotted lines.

TP, FP, and FN indicate the number of True Positives, False
Positives, and False Negatives, respectively. To construct the
curves, we extract the edge selection probabilities based on 50
subsamples from pulsar corresponding to tuning parameter
with tS = 0.1. We calculate precision and recall values by
changing the threshold for edge selection probability from 1 to
0, interpolating the precision-recall values at the edges for no

selection (recall= 0, precision= 1) and complete selection [recall
= 1, precision = 4/(p − 1)]. Here 4/(p − 1) is the probability of
choosing true edges (e = 2p) at random among all possible edges
(p(p − 1)/2). The resulting curves are shown in Figure 8. For
True data, SPRING achieves the highest precision-recall curves
across all scenarios. The Area Under the Precision-Recall curve
(AUPR) values are reported in Table 3. For the distorted data,
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FIGURE 8 | Precision-Recall curves based on edge selection probabilities from pulsar with tS = 0.1. True data are plotted with solid lines and distorted data are

plotted with dotted lines.

SPRING is still best or among the best methods for band and
cluster graph types, and is outperformed by the compositional
methods for scale-free graph type in the low sample size regime.

In conclusion, SPRING exhibits considerably better graph
recovery performance than existing methods, and is robust to
misspecification of total sample abundance. This suggests that
incorporating quantitative abundance information in the analysis
leads to more reliable graphical model inference.

4. STATISTICAL MICROBIAL
ASSOCIATIONS IN GUT MICROBIOME
DATA

We provide two applications of SPRING to TAS-based microbial
abundance data: a subset of the relative abundance data from the
American Gut Project (AGP) (McDonald et al., 2018) and the
QMP data from Vandeputte et al. (2017).

4.1. Taxon-Taxon Associations From the
American Gut Project Data
We first use SPRING to infer taxon-taxon associations from the
relative abundance AGP data. After the pruning and filtering
steps described in section 3.3.1, we arrive at p = 481 OTUs from
n = 6482 samples. Prior to applying SPRING, we transform the
compositions X ∈ S

n×p using the mclrǫ transform introduced
in Equation (2). The minimum value of the mclr0-transformed
data across all samples is zmin = −4.8142. To make all non-
zero values strictly positive, we add an arbitrary constant c =
1 to |zmin| and use the shift ε = |zmin| + c = 5.8142

in the final mclrε transform. We also consider SPIEC-EASI,
MB, and invSparCC (see Table 2) for comparison. All four
methods use the same parameterization for the regularization
path and StARS model selection: 50 subsamples with the same
seed number, subsampling ratio (10

√
n/n = 0.1242) and 50

tuning parameter values with the same ratio of the smallest to
largest λ value (λmin/λmax = 0.01). For each method, λmax is
set to the maximum value of the off-diagonal elements of the
respective correlation matrix. All computations were performed
in R using the R packages pulsar, SpiecEasi, huge, and
mixedCCA, respectively.

We report summary statistics of the estimated association
networks for two StARS stability thresholds: 0.05 (the standard
setting in SpiecEasi) and 0.1 (the standard setting in
Liu et al., 2010) in Table 4. For both stability thresholds,
the MB method estimates the sparsest networks with highest
percentage of positive edges (PEP) while invSparCC estimates
the densest networks with the lowest percentage of positive
edges. SPRING and SPIEC-EASI’s association networks have
similar edge densities while SPRING has a considerably higher
percentage of positive partial correlation edges.

To get a bird’s eye view of the topologies of the different
association networks we visualize the four different networks at

StARS threshold 0.05 in Figure 9A. The force-directed layout

of all networks follows the optimal layout of the SPRING

network. At the selected StARS threshold, all networks have one
connected component. The overall network structure suggests
a dense core with two peripheral network modules, similar to
previous analysis (Müller et al., 2016). The networks of the
compositionally-adjusted methods SPIEC-EASI and invSparCC
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connect the core and one of the modules by a large number
of positive (shown in green) and negative (shown in red)
associations. SPRING considerably sparsifies these connections,
leaving only few positive and negative edges between the
modules, and MB does not infer any negative associations. We
assess the similarity among the estimated networks by analyzing
their edge set overlap in Figure 9B. All methods share common
core of 601 edges. As expected, SPIEC-EASI and invSparCC share
the largest unique two-set overlap with 637. SPRING’s network
takes an intermediate role between MB and the compositionally-
adjusted methods. It shares 833 edges with SPIEC-EASI and
invSparCC, and 112 edges exclusively with MB. Each method by
itself also comprises a considerable set of exclusive edges, ranging
from 418 for SPIEC-EASI to 767 for SPRING.

4.2. Genus-Genus Associations From
Quantitative Gut Microbiome Profiling Data
We next analyze the quantitative gut microbiome data put
forward in Vandeputte et al. (2017). We focus on estimating
genus-genus associations both from the quantitative and the
relative microbiome profiles, referred to as QMP and RMP, and
analyze the consistency among the inferred networks. We follow
the processing steps outlined in section 3.2.1 leading to n =
106 subjects and p = 91 genera. To infer statistical genus-
genus associations we use SPRING for the QMP data (without
transformation), and SPIEC-EASI for the corresponding RMP
data (using the standard clr transformation) with the same
computational protocol as detailed in the previous section.

We first show the agreement of signed edges between the
two association networks at StARS stability level 0.1 in Table 5.
Overall, out of the 4095 possible genus-genus associations,
SPRING infers a set of 237 stable edges with a PEP of 98%.
SPIEC-EASI infers 220 edges with a PEP of 66%. From the

TABLE 2 | Summary of methods considered for comparison.

Method Type of data transformation Correlation

estimation

MB Absolute abundance None Sample correlation

SPIEC-EASI Relative abundance clr Sample correlation

invSparCC Relative abundance log SparCC

SPRING Absolute/relative abundance∗ None/mclr∗ SPR correlation

For all methods, the final graphical model is estimated based on combining neighborhood

selection approach with pulsar tuning parameter selection. ∗When absolute abundance

data is not available, SPRING can be applied to relative abundance data following mclr

transform described in section 2.3.

quantitative data, SPRING is able to detect considerably more
positive associations, 140 of which are missed by SPIEC-EASI
from the relative abundance data. SPRING detects only four
negative associations three of which are missed by SPIEC-EASI
despite having a considerable larger set of negative edges (74
overall). However, both methods do agree on a set of 93 edges, 92
positive and one negative edge. Importantly, we do not observe
any sign flips among the different inferred edge sets. Missed
positive or negative edges are simply absent in the other method.

We next focus on the induced genus-genus sub-network

which only includes genera that have an assigned taxonomy
and have at least one strong association ≥ |0.2| in either the

SPRING-inferred or SPIEC-EASI-inferred association network.
The weighted adjacency of this sub-network includes 32 genera
and is shown in Figure 10. Among the 14 genera with highest
total abundance across all samples (Bacteroides to Odoribacter),
we observe 50% agreement between the two estimated networks
(six edges are the same across all networks, three edges
are different in SPIEC-EASI, four are different in SPRING).
Both networks include a strong negative association between

Phascolarctobacterium and Dialister and exactly four positive
associations of Bacteroides with Parabacteroides, Holdemania,

Bilophila, and Odoribacter (first row and column in Figure 10).

We also observe the absence of a negative association between

Bacteroides and Prevotella genera in the quantitative data which

is often reported in the literature and also present in the SPIEC-
EASI network (see also Vandeputte et al., 2017 for a discussion).

5. DISCUSSION

Advances in experimental microbiome profiling protocols
have combined high-throughput environmental sequencing
techniques with robust measurements of microbial cell counts

TABLE 4 | AGP data: total number of partial correlation edges and percentage of

positive partial correlation edges (PEP) (Faust et al., 2015) as estimated by MB,

SPRING, SPIEC-EASI, and invSparCC for StARS stability thresholds tS = 0.05

and 0.1.

MB SPRING SPIEC-EASI invSparCC

StARS threshold, tS Number of stable edges

0.05 1621 2725 2702 3099

0.1 2970 4004 4008 4681

StARS threshold, tS Percentage of positive edges (PEP)

0.05 1.0000 0.9835 0.8531 0.8341

0.1 0.9798 0.9515 0.7867 0.7584

TABLE 3 | Area under the Precision-Recall curves (AUPR) of Figure 8.

Dimension (n, p) Graph type SPIEC-EASI SPRING MB invSparCC

(2000, 100) Band 0.91 (0.92) 0.95 (0.94) 0.42 (0.34) 0.91 (0.91)

Cluster 0.93 (0.93) 0.95 (0.92) 0.32 (0.27) 0.93 (0.93)

Scale-free 0.93 (0.93) 0.96 (0.93) 0.26 (0.18) 0.94 (0.94)

(500, 200) Band 0.89 (0.90) 0.93 (0.89) 0.20 (0.16) 0.87 (0.88)

Cluster 0.83 (0.84) 0.90 (0.88) 0.25 (0.22) 0.81 (0.82)

Scale-free 0.55 (0.54) 0.58 (0.50) 0.01 (0.01) 0.54 (0.54)

In each cell, AUPR of the True data and the Distorted data (given in parenthesis) are reported. AUPR value is based on edge selection probabilities using StARS with tS = 0.1.
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FIGURE 9 | Analysis of AGP data. (A) Force-directed layout (using igraph package in R) of the microbial association networks inferred by MB, SPRING,

SPIEC-EASI, and invSparCC at StARS stability level 0.05. Green edges represent positive associations, red edges negative ones. (B) The four set Venn diagram

showing the overlap of edge sets of the different association networks.

TABLE 5 | QMP data: summary of agreement of signed genus-genus partial

correlations, inferred by SPRING and SPIEC-EASI at StARS stability threshold

tS = 0.1.

SPRING

Sign of estimated edges Positive Zero Negative

SPIEC-EASI Positive 92 54 0

Zero 140 3731 4

Negative 0 73 1

(Gifford et al., 2011; Satinsky et al., 2013; Stämmler et al., 2016;
Props et al., 2017; Vandeputte et al., 2017; Tkacz et al., 2018),
providing, for the first time, a more quantitative picture of the
underlying microbial ecosystems in their natural habitat. To
facilitate a high-level summary of the complex interplay between
the constituents of the ecosystem, an important first exploratory
analysis step is the estimation of statistical association networks
between the identified operational taxonomic units or gene
sets (Faust and Raes, 2012; Fuhrman et al., 2015; Sunagawa
et al., 2015; Ruiz et al., 2017). In order to learn such association
networks from sparse quantitative microbiome data, we have
introduced the Semi-Parametric Rank-based approach for
INference in Graphical model (SPRING). SPRING combines
neighborhood selection (Meinshausen and Bühlmann, 2006)
to infer the conditional dependency graph with stability-
based model selection (Liu et al., 2010; Müller et al., 2016)

to identify a sparse set of partial correlation estimates. The
resulting network of partial correlations represents direct (i.e.,
conditionally independent) microbe-microbe associations
and provides a statistical community-level description of the
underlying microbial ecosystem. As ground truth microbial
association networks are largely elusive in the literature,
we have based our numerical simulation benchmarks on
a novel synthetic quantitative microbiome data generation
mechanism which might be of independent interest to
researchers who want to test novel statistical techniques on
such data.

Our benchmark test cases revealed a number of interesting
observations. Firstly, we showed that, on synthetic quantitative
microbiome data with prescribed ground-truth correlation
structure, the SPR-type correlation estimates are considerably
more accurate than SparCC and naive Pearson sample
correlation on clr-transformed compositional data. Secondly,
we showed that Pearson sample correlation estimation cannot
be used to identify sparse partial correlations in quantitative
microbiome data. Thirdly, SPRING outperformed sparse
graphical modeling techniques that were designed with
compositional data in mind, namely SPIEC-EASI (Kurtz
et al., 2015) and the invSparCC estimator introduced here,
which uses neighborhood selection with SparCC correlation
estimation (Friedman and Alm, 2012). SPRING compared
favorably to the other methods both in terms of achievability,
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FIGURE 10 | Genus-genus association network using relative (lower triangular part) vs. quantitative count data (upper triangular part). Only genera with at least one

strong association ≥ |0.2| in either SPIEC-EASI or SPRING are shown. The genera are ordered by the total quantitative abundance over healthy subjects (n = 106).

that is, in terms of minimum Hamming distance to the true
underlying network achieved across the regularization path
(see Figure 7), and in combination with stability-based model
selection in terms of Precision-Recall (see Figure 8). We also
quantified the robustness of SPRING to misspecification of
the total by randomly distorting the counts of each sample
up to a 6-fold change which represents a realistic distortion
scenario in gut microbiome samples (see e.g., in Vandeputte

et al., 2017, Figure 2) and is on the same order as typical
fold changes of observed image-based total species counts
in marine ecosystems (Ducklow, 2000). Even under these
distortions SPRING’s performance was on par or superior
to SPIEC-EASI and invSparCC (which are scale-invariant by
design). SPRING’s robustness to total count misspecifications
thus suggested to include an application of association inference
from relative microbiome profiling data. In order to apply
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SPRING to relative abundance data we introduced a modified
centered log-ratio (clr) transform that can seamlessly handle
excess zeros without pseudo-count addition. Contrary to recent
efforts in data-driven pseudo-count inference (see de la Cruz
and Kreft, 2018 and references therein) we computed the
geometric mean of each sample from positive proportions
only, normalized and log-transformed all non-zero proportions
by using that geometric mean, and applied an identical
shift operation to all non-zero variables in the dataset. This
transformation is rank-preserving while leaving the original zero
proportions unchanged, thus enabling the application of the
SPRING methodology without further modification to relative
abundance data.

We applied SPRING to two prominent gut microbial datasets,
the relative abundance data collected in the American Gut
Project (AGP) (McDonald et al., 2018) and the quantitative gut
microbiome profiling (QMP) data from Vandeputte et al. (2017).
As the processed data from Vandeputte et al. (2017) was not
publicly available, a reprocessing of the amplicon sequencing
reads was necessary.

From the AGP data, we inferred taxon-taxon association
networks across p = 481 taxa from n = 6482 samples
using neighborhood selection (MB), SPIEC-EASI, invSparCC,
and SPRING. In line with previous findings (Faust et al., 2015),
the percentage of positive edges in the networks is > 75%, with
MB and SPRING having even higher percentages than SPIEC-
EASI and invSparCC. At both StARS stability levels 0.05 and
0.1 reported here, SPRING and MB tended to infer slightly
sparser association networks than SPIEC-EASI and invSparCC.
At StARS stability level 0.05, we analyzed the overlap of edge
sets among the different methods (Figure 9). All methods
share a common core of 601 edges. In addition, SPRING,
SPIEC-EASI, and invSparCC shared the largest common edge
set of size 833 among all three-set overlaps. As expected,
the two compositionally-adjusted methods SPIEC-EASI and
invSparCC shared the largest common two-set overlap of 637
edges. In the absence of verified taxon-taxon associations, our
analysis suggests that a practitioner screening for coherent
statistical associations among taxa can apply SPRING, SPIEC-
EASI, and invSparCC independently and select the set of
strongest edges out of the edge set these three methods
inferred. This strategy is also supported by our synthetic
benchmark results where the joint edge set of the three
methods achieved a true positive rate of 0.95 for cluster
graphs. For the analysis on the AGP data, this strategy would
result in an edge set of size 1434, an average of about three
associations per taxon. This core network can then be further
studied in terms of modularity, network stability, and node
centrality measures, as shown, e.g., in Ruiz et al. (2017);
(Tipton et al., 2018).

For the QMP data, we used SPRING and SPIEC-EASI to
estimate the genus-genus associations from the quantitative
and the relative microbiome profiles, respectively. Our analysis
revealed considerable differences to the published results
in Vandeputte et al. (2017). The original study described
dramatic differences between significant marginal genus-genus
correlations from 66 healthy control samples in the QMP disease

cohort when applying Spearman’s ρ correlation to the relative
and quantitative microbiome profiling data (see e.g., Figure 3
in Vandeputte et al., 2017). Our results here showed more
coherence of the statistical associations inferred from relative
and absolute abundance data. Overall, 92 positive, 1 negative,
as well as 3731 zero associations were in common among
both association networks, while both networks differed in 280
associations (Table 5). Our analysis on the genus sub-network
that comprised all genera with at least one strong association
≥ |0.2|, shown in Figure 10, verified a strong negative association
between Phascolarctobacterium and Dialister inferred from both
data types, as well as the absence of a negative association
between Bacteroides and Prevotella genera in the quantitative
data, both in agreement with published results. However, we
recovered, for both data types, exactly four positive associations
for Bacteroides, namely with Parabacteroides, Holdemania,
Bilophila, and Odoribacter (First row and column in Figure 10).
The latter two associations were previously reported only to be
present in the quantitative data. Overall, more than 30% of the
edges in the sub-network agreed which is in marked contrast
to the results reported in Vandeputte et al. (2017). The higher
network consistency reported here can be attributed to several
factors. Firstly, our amplicon data processing framework may
result in slight differences in terms of OTU picking and avoids
a rarefaction step which was included previously. Secondly, we
considered partial rather than marginal correlations among the
genera to avoid any influence of indirect associations. Thirdly,
we analyzed both data types within the same coherent statistical
learning framework: sparse learning of partial correlations
via neighborhood selection followed by stability-based model
selection with the identical stability threshold (here 0.1). Finally,
we considered a larger sample size of n = 106 representing
healthy subjects from two different cohorts available in the QMP
data as opposed to the n = 66 samples used in the original
study. We conclude that differences in association networks from
relative and absolute abundance data are not only attributable to
the data themselves but also highly method-dependent.

In summary, we believe that, as quantitative microbiome
profiling will become increasingly available, the semi-parametric
rank-based estimators for correlation and partial correlation
estimation discussed here provide an important tool for
reliable statistical analysis of quantitative microbiome data.
While we have focused here on targeted amplicon-based
sequencing datasets, our methodology is broadly applicable
to other biological high-throughput data with large excess
of zero counts, including quantitative metagenomics (Satinsky
et al., 2013), single-cell RNA-Seq data (see Risso et al.,
2018 for a recent statistical analysis framework), and mass
spectrometry proteomics data (Drew et al., 2017). Moreover,
the concept of SPR-type correlation employed in SPRING can
naturally generalize to joint analysis of multi-omics dataset
when, on the same sample, several zero-inflated data types
are measured in tandem. The approach in Yoon et al. (2018)
already exploits this idea for RNA-seq and micro-RNA data
in the context of canonical correlation analysis. Extending
SPRING in a similar way to joint graphical modeling of
mixed data types is a promising next step toward a consistent
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and coherent statistical analysis framework for sparse high-
throughput biological datasets.
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