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Abstract

Sex impacts the development of the brain and cognition differently across individ-

uals. However, the literature on brain sex dimorphism in humans is mixed. We aim to

investigate the biological underpinnings of the individual variability of sexual dimor-

phism in the brain and its impact on cognitive performance. To this end, we tested

whether the individual difference in brain sex would be linked to that in cognitive

performance that is influenced by genetic factors in prepubertal children (N = 9,658,

ages 9–10 years old; the Adolescent Brain Cognitive Development study). To capture

the interindividual variability of the brain, we estimated the probability of being male

or female based on the brain morphometry and connectivity features using machine

learning (herein called a brain sex score). The models accurately classified the biologi-

cal sex with a test ROC–AUC of 93.32%. As a result, a greater brain sex score corre-

lated significantly with greater intelligence (pfdr < .001, η2p = .011–.034; adjusted for

covariates) and higher cognitive genome-wide polygenic scores (GPSs) (pfdr < .001,

η2p < .005). Structural equation models revealed that the GPS-intelligence association

was significantly modulated by the brain sex score, such that a brain with a higher

maleness score (or a lower femaleness score) mediated a positive GPS effect on intel-

ligence (indirect effects = .006–.009; p = .002–.022; sex-stratified analysis). The

finding of the sex modulatory effect on the gene–brain–cognition relationship pre-

sents a likely biological pathway to the individual and sex differences in the brain and

cognitive performance in preadolescence.
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1 | INTRODUCTION

Sex impacts the development of the brain, cognition, and behaviors.

Sex differences in psychological cognitive well-being, mental, and

cognitive health outcomes (Assari, Boyce, & Jovanovic, 2021) and

psychopathology (Loso et al., 2021) may originate from sex differ-

ences in brain structure and function in children. Several studies

attempted to test the sex-dependent structural and functional varia-

tions in the brains of males and females in youth (Satterthwaite

et al., 2015; Sepehrband et al., 2018). Human neuroimaging reports

sex differences in the total brain volume, cortical thickness, func-

tional, and white matter structural connections (Ingalhalikar

et al., 2014; Kaczkurkin, Raznahan, & Satterthwaite, 2019; Kurth,

Gaser, & Luders, 2020; Raznahan et al., 2011; Ritchie et al., 2018;

Zhang, Dougherty, Baum, White, & Michael, 2018). Others view

that the human brains present the mosaics of female and male char-

acteristics with a great extent of individual variability (Joel

et al., 2015).

In human literature, reported differences in the brain structure

and function do not always map onto those in cognition. This may be

related to the fact that the prior research primarily focused on the

group differences between sex and thus failed to account for individ-

ual variations of the impact of sex on the brain and cognition. Since

numerous brain, cognitive, and behavioral traits have extensively

overlapping distributions between sex (Joel et al., 2015; Maney, 2016;

Vosberg et al., 2020), sex may be considered as a continuous rather

than binary factor. Indeed, a recent elegant study shows that the con-

tinuum of sex derived from brain or body measures accounts for the

individual variability of sex hormone levels and behaviors in adoles-

cents (Vosberg et al., 2020). Therefore, determining how sex affects

one's brain, cognition, and individuality is an important research ques-

tion toward precision neuroscience.

A crucial but understudied factor in the sex differences in brain

and cognition is the genetic underpinning. The genetic basis of the

brain and cognitive performance, and the relationship with sex may

provide new mechanistic insights into the impact of sex on the

brain and cognitive performance. Literature shows the heritability

and genetic differences across individuals account for between

20 and 70% of the variance in general intelligence (Haworth

et al., 2010). Large-scale genome-wide association studies (GWAS)

have discovered the variants significantly related to cognitive ability

in European-descent populations (Davies et al., 2019; Hill

et al., 2019; Savage et al., 2018). Concerning the genetic variants of

small effects associated with the heritability of intelligence, a

genome-wide polygenic score (GPS) could provide an overall esti-

mate of the genetic influence on a trait at the individual level (Choi,

Mak, & O'Reilly, 2020) and expand its utility to multiethnic

populations (Joo et al., 2020; Plym et al., 2021). Indeed, the GPS

approach shows the inherited genome-wide genetic effect accounts

for up to 13% of the variance in educational attainment and 7–10%

in cognitive performance (Lee et al., 2018). An important outstand-

ing question regarding neurocognition is whether the genetic influ-

ence on cognitive performance is related to the impact of sex on

the brain and cognition. Testing this relationship may provide an

insight into the understanding of the vital biological factors of

neurocognitive development.

In this study, we investigate the individual differences in brain

sex in a rigorous, unbiased, data-driven manner leveraging large-

scale multimodal brain imaging of grey matter morphometric and

white matter connectomes, together accounting for the key brain

processes in prepubertal children. We then test whether the individ-

ual differences of the brain sex map onto that of cognitive perfor-

mance. Finally, we investigate the relationship between brain sex

and cognitive performance concerning the genetic influence on cog-

nitive performance. The integrative analysis of brain imaging, cogni-

tion, and the GPS in the large pediatric samples provides new and

mechanistic insights.

2 | MATERIALS AND METHODS

2.1 | ABCD participants

We obtained the study data from the Adolescent Brain Cognitive

Development (ABCD) study release 2.0 (http://abcdstudy.org).

The ABCD study is the largest longitudinal study of brain devel-

opment and child health across the United States (Jernigan,

Brown, & Dowling, 2018). The ABCD study aims to investigate

psychological and neurobiological development trajectories for

adolescent mental health (Garavan et al., 2018). Multiethnic chil-

dren (N = 11,875) with ages of 9–10 years were recruited from

21 research sites composed of 52.3% Caucasians, 20.3%

Mexican-Americans, 14.7% African-Americans, and 12.5% Asian-

Americans and others based on self-reported ethnicities. Informed

consent and assent forms were collected from all the participants

and parents, and/or legal guardians. About 9,658 participants

were used for the analysis after quality control (see “Brain
Imaging-Quality Assessment and Control”). Missing values of the

income variable (403 missing values in males, 362 missing values

in females) were imputed with median values. All experimental

protocols were approved by the Seoul National University's insti-

tutional review board (IRB).

2.2 | Cognitive intelligence

We used total intelligence, fluid intelligence, crystallized intelligence

composite scores measured by the NIH Toolbox (Luciana et al., 2018).

They are based on the following tests: dimensional change card sort

test, flanker inhibitory control and attention test, oral reading recogni-

tion test, pattern speed test, picture vocabulary test, and list sorting

working memory test. The test scores were z-scored and not normal-

ized to age and sex; instead, these were used as covariates in the sta-

tistical models. The NIH Toolbox assessment scores of each

participant were available from the neurocognitive data of the ABCD

release 2.0.
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2.3 | Genome-wide polygenic scores

We created genome-wide polygenic scores (GPSs) of three represen-

tative cognitive traits: educational attainment, cognitive performance,

and intelligence quotient (IQ). The saliva DNA samples were collected

for 10,659 participants and genotyped at Rutgers University Cell and

DNA Repository (RUCDR) with Affymetrix NIDA Smoke Screen Array.

After removing the SNPs with genotype call rate <95%, sample call

rate <95%, and minor allele frequency (MAF) <1%, we performed

imputation using the Michigan Imputation Server using the 1000

Genome phase3 version5 panel and Eagle v2.4 phasing. Among the

imputed variants with INFO score > .3, we additionally removed the

inferior SNPs with genotype call rate <95%, sample call rate <95%,

rare variants with MAF <1%, and Hardy–Weinberg equilibrium (HWE)

p-value <1 � 10�10 for an ethnically diverse population. We per-

formed identity-by-descent analysis on the pruned data and excluded

genetically related individuals closer than first cousin relatedness or

grandparent-grandchild relatedness (phi hat > .18) using PLINK soft-

ware, which resulted in keeping only one subject from each biological

family (Purcell et al., 2007). Then, principal component analysis () of

the study samples with 1000 Genome phase3 reference samples was

conducted, showing that all the study samples were clustered as

admixed American population (super population code AMR), falling

inside the mean pairwise Euclidean distance between admixed Ameri-

can samples (Figure S1). Next, GPSs of cognitive phenotypes were

computed as the sum of effect allele count (0,1,2) weighted by the

effect based on the publicly available summary statistics from the

large-scale GWASs on educational attainment, cognitive performance,

and intelligence quotient (IQ) (Lee et al., 2018; Savage et al., 2018).

The score estimation with linkage-disequilibrium clumping was per-

formed using R2 > .2 thresholds over 500 kb sliding windows over the

reference panel (p-value <1) using PRSice2 software (Euesden,

Lewis, & O'Reilly, 2015; Luciana et al., 2018). To evaluate the general-

izability of our results to multiethnic populations, we performed sensi-

tivity analyses with European-ancestry participants (44.04% of total

ancestry). We determined genetically the participants of European

descent by computing the principal components of individual geno-

type data and compared those with the European reference samples

from HapMap phase 3 (International HapMap 3 Consortium

et al., 2010) using the PLINKQC R package (Anderson et al., 2010;

Chang et al., 2015). For the entire multiethnic analysis, we used self-

reported ethnicity variables as covariates to address potential con-

founding by population stratification.

2.4 | Sex hormones

We used saliva salimetrics mean scores (pg/ml) of testosterone and

dehydroepiandrosterone (DHEA) available from the curated ABCD

dataset. Since estradiol was not collected in males, we excluded the

estradiol in the present study. The saliva collection was implemented

following Granger, Johnson, Szanton, Out, and Schumann (2012). Par-

ticipants did not eat or any drink before the saliva collection. There

are variations in collection time and the cold chain for the sample pro-

tection depending on the ABCD study site (Herting et al., 2020).

2.5 | Brain imaging–anatomical imaging: T1/T2,
Freesurfer 6

T1-weighted (T1w) and T2-weighted (T2w) 3D structural MRI were

acquired in the ABCD study. The images were processed using the

following protocol (Casey et al., 2018; Garavan et al., 2018): To

improve geometric accuracy and image intensity reproducibility, the

gradient nonlinearity distortion correction method was performed in

structural MRI (Jovicich et al., 2006). T2w images were registered to

T1w images using mutual information (Wells 3rd, Viola, Atsumi,

Nakajima, & Kikinis, 1996). Based on tissue segmentation and sparse

spatial smoothing, intensity non-uniformity was corrected. Then, the

data were resampled with 1 mm isotropic voxels into rigid alignment

with an atlas brain.

Cortical surface reconstruction was applied using the following

procedures: Structural MRI was processed using FreeSurfer v6.0

(https://surfer.nmr.mgh.harvard.edu) for cortical surface reconstruc-

tion (Dale, Fischl, & Sereno, 1999), which includes skull-stripping

(Ségonne et al., 2004), white matter segmentation and initial mesh

creation (Dale et al., 1999), correction of topological defects, surface

optimization (Fischl, Liu, & Dale, 2001; Ségonne, Pacheco, &

Fischl, 2007), and nonlinear registration to a spherical surface-based

atlas (Fischl, Sereno, Tootell, & Dale, 1999). For the extraction of brain

regions, we used autonomic image segmentation methods using

Desikan–Killiany and Destrieux atlas. We extracted 1,086 brain

regions, including volumes, surface area, thickness, mean curvature,

sulcal depth, and gyrification.

2.6 | Brain imaging–diffusion spectrum imaging

We used the diffusion spectrum images from the ABCD study

preprocessed using the following protocol (Hagler Jr et al., 2019) by

the ABCD Data Analysis and Informatics Center (DAIC). Eddy current

distortion correction was used with a nonlinear estimation using diffu-

sion gradient orientations and amplitudes to predict the pattern of

distortions (Zhuang et al., 2006). Head motion was corrected by regis-

tering to images synthesized from tensor fit (Hagler et al., 2009). Dif-

fusion gradients were adjusted for head rotation (Hagler et al., 2009;

Leemans & Jones, 2009). We then fitted the diffusion tensor model

(Chang, Jones, & Pierpaoli, 2005). B0 distortion was corrected with

reversing gradient method (Holland, Kuperman, & Dale, 2010). Gradi-

ent nonlinearity distortion correction was applied (Jovicich

et al., 2006). We obtained the data by using mutual information of

T2-weighted b0 images to T1w structural images (Wells 3rd

et al., 1996). Then, the data were resampled to a standard orientation

with 1.77 mm isotropic resolution.

To estimate accurate brain imaging phenotypes, we used individ-

ual connectome data. First, we applied MRtrix3 (Tournier et al., 2019)
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for whole-brain white matter tracts estimation and individualized

connectome generation. For connectivity metrics, we used streamline

counts associated with fiber connection strength (Cha et al., 2015,

2016) and fiber integrity. We estimated the spatially varying noise

maps and calculated the objective threshold on the eigenvalues for

PCA denoising derived from the noise level (Veraart et al., 2016).

Then, we performed bias correction with the Advanced Normalization

Tools (ANTs) pipeline' N4 algorithm (Tustison et al., 2010). To obtain

a connectivity index with a white matter pathway (Ciccarelli

et al., 2006), we performed probabilistic tractography by 2nd order

integration over fiber orientation distributions (Calamante, Tournier,

Jackson, & Connelly, 2010) with random seeding across the brain and

target streamline counts of 20 million. These initial tractograms were

filtered out preliminary tractograms with spherical-deconvolution

informed filtering (2:1 ratio). With a final streamline count of 10 mil-

lion, we generated an 84 � 84 whole-brain connectome matrix for

each participant using the T1-based parcellation and segmentation

from FreeSurfer. This pipeline thus ensures that individual partici-

pants' connectomes are restricted to their neuroanatomy. Computa-

tion was carried out on the supercomputers at Argonne Leadership

Computing Facility Theta and Texas Advanced Computing Center

Stampede2.

2.7 | Brain imaging–quality assessment and control

Quality assessment of the ABCD brain imaging data was performed by

the ABCD DAIC. The ABCD MRI quality assessment consisted of pro-

tocol compliance checking, automated quality control metrics, and man-

ual review of data quality (Hagler Jr et al., 2019). In the first part, the

protocol compliance checking included the match between key imaging

parameters and expected values for a given scanner, such as voxel size

or repetition time. The protocol compliance checking was performed by

on-site FIONA workstations for feedback to scan operators. The pres-

ence or absence of the B0 distortion field map series was also checked

for diffusion MRI (dMRI). In the second part, automated quality metrics

were used. For structural MRI (sMRI), the mean and standard deviation

of brain values and spatial SNR was used. For dMRI, mean motion and

the number of slices and frames affected by slice dropout due to head

motion. Finally, with the combination of automated and manual

methods, the DAIC reviewed data quality, such as incorrect acquisition

parameters, imaging artifacts, or corrupted data files.

For FreeSurfer cortical surface reconstruction and dMRI

preprocessing, we used the quality control results from the ABCD

DAIC (Hagler Jr et al., 2019). The DAIC reviewed FreeSurfer cortical

surface construction and DTI reconstruction and generated a binary

QC score. A sample is deemed unusable when the data has the most

severe artifacts or irregularities, results still included in shared tabu-

lated data, and recommended exclusion from group analyses involving

cortical, subcortical, and tract-based ROIs. Reviewers gauged the

severity of five types of artifacts for FreeSurfer QC: motion, intensity

inhomogeneity, white matter underestimation, pial overestimation,

and magnetic susceptibility artifact; and, for DTI, B0 wrapping, image

quality based on motion, intensity inhomogeneity, and magnetic sus-

ceptibility artifact, full head coverage, registration with T1w image,

and registration with FreeSurfer segmentation.

2.8 | Sex classification with machine learning

We conducted machine learning modeling to classify biological sex,

using the brain morphometric and white matter structural

connectomic estimates as the input. The features related to the whole

brain volume were excluded because of the apparent volume differ-

ence between the male and female brains: for example, total intracra-

nial volume, total gray matter volume. We additionally excluded

features with a zero-variance. Finally, we used 988 features for struc-

tural MRI and 3,486 features for white matter connectivity. We used

an ensemble machine learning pipeline consisting of data loading, fea-

ture preprocessing, model and feature tuning for the optimal hyper-

parameters of light gradient boost machine (von Luxburg et al., 2018),

general linear model, and xgboost (Chen & Guestrin, 2016).

To find the optimal final machine learning model, we performed

the following ML pipeline in H2O's Driverless AI package (Hall, Gill,

Kurka, & Phan, 2017) (DAI version 1.9.0.6) (Figure 1c). In model and

feature tuning, we combined random hyperparameter tuning with fea-

ture selection and generation. In each iteration, we updated features

using important variables calculated from the previous iteration. Then,

the best performing model and features are passed to the feature

evolution stage. Feature evolution is the stage that uses a genetic

algorithm to find the best set of model parameters and feature trans-

formations to be used in the model. To find the best representation of

the data for the final model training, we evaluated the features over

iterations and trained and scored 153 models to further evaluate

engineered features. This feature evolution approach helps search for

the best representation of the data (Whitley, 1994). Then, using those

features, 27 models were trained varying the three model algorithms

(GLM, GBM, xgboost) and their hyperparameter sets. We finally built

a stacked ensemble model with the three best models in discovery

sets. A stacking ensemble model is an algorithm that learns how to

combine the best prediction models from multiple machine learning

models (van der Laan, Polley, & Hubbard, 2007). To test the reproduc-

ibility and generalizability, we evaluated the final model's performance

in the replication set (20% split of the ABCD). To compare model per-

formance between machine learning and deep learning, we performed

deep neural network (DNN), TabNet, to predict the biological sex of

the participants. TabNet is a high-performance and interpretable deep

learning architecture with a sequential attention mechanism for fea-

ture selection that enables feature interpretability and efficient learn-

ing (Figure S2) (Arik & Pfister, 2019).

2.9 | Machine learning interpretation

To make neural inferences, we applied a machine learning interpreta-

tion framework, “K-Local Interpretable Model-agnostic Explanation
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(K-LIME),” a variant of LIME (Ribeiro, Singh, & Guestrin, 2016), avail-

able in H2O's Driverless AI package (Hall et al., 2017). The K-LIME

technique allows both global (i.e., group-level) and local (i.e., subject-

level) explanations of given machine learning models. K-LIME gener-

ates a single surrogate linear model on the entire training samples for

global explanations and multiple local surrogate linear models on sam-

ples created from K-means clusters in the discovery data set for local

explanations. The features of K-means were selected from the vari-

able importance in a random forest surrogate model. To estimate the

predictions in a final ensemble model, linear surrogate models were

F IGURE 1 The descriptions of ABCD data and machine learning pipeline. (a) Data processing procedures. (b) Sex differences in the
demographic characteristics of the study participants. (c) Machine learning model pipeline
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trained. The number of clusters for local explanations were selected

based on a grid search, where the R2 of predictions was maximized

between the final ensemble and all the local K-LIME models.

2.10 | Cross-validation

We split the ABCD data into a discovery (80%) and replication set

(20%) stratified by biological sex. Distributions of the covariates (age,

race/ethnicity, sites, parental education, marital status, income, height,

weight, and BMI) were consistent between the split. We used leave-

one-site-out-cross-validation (21-folds) to test the generalizability of

model performance across different data collection sites. In addition,

we performed random five fold cross-validation.

2.11 | General linear model

We tested the relationship between brain-based sex scores from the

ML model and NIH toolbox scales and the cognitive GPSs using a gen-

eral linear model (GLM). The following covariates were used: age,

race/ethnicity, sites, parental education, marital status, income, height,

weight, BMI, additionally family ID as a random variable. All the

models were fit to the males and females separately. To isolate the

effect of brain-based sex score from that of the total brain volume,

we additionally performed Gram-Schmidt orthogonalization regres-

sion. Gram-Schmidt process orthogonalizes the columns in an inner

product space by projecting each successive variable on the previous

ones and subtracting (Leon, Björck, & Gander, 2013; Liu, Wang, &

Wang, 2018). GLM was then fit to the resultant decorrelated

variables.

2.12 | Structural equation modeling

To test the putative hidden relationship among the cognitive GPSs,

brain, and intelligence, we performed the structural equation model-

ing (SEM) using the lavaan R package (Rosseel, 2012). We defined

three latent variables: cognitive GPSs, brain-based sex, total intelli-

gence from different data sources described above. The GPSs of

three representative cognitive traits (educational attainment, cogni-

tive performance, and intelligence quotient) were used as observed

variables for cognitive GPSs. Fluid intelligence composite score

(flanker inhibitory control and attention, dimensional change card

sort, pattern comparison processing speed, picture sequence mem-

ory, list sorting working memory) and crystallized intelligence com-

posite score (picture vocabulary, oral reading recognition) from NIH

Toolbox assessment data were observed for total intelligence.

Parameters were estimated using a bias-corrected bootstrap method

with a 95% confidence interval. We included the following covariates

in the models: age, race/ethnicity, sites, parental education, marital

status, income, height, weight, and BMI (categorical variables were

dummy coded).

3 | RESULTS

3.1 | Demographic characteristics

The total brain size showed a significant sexual difference among the

demographic variables, with males having a larger total brain size

(p < .001). Others showed trivial sexual differences (Cohen's Ds < .06;

ps < .037; Figure 1b; Table 1).

3.2 | Brain sex classification

We classified sex using machine learning and deep neural networks with

morphometric data (including surface area, mean curvature, thickness,

and volume) and white matter structure connectomes. Across the cross-

validation methods, combining the morphometric data and white matter

structure connectome consistently outperformed the models with mor-

phometric data and white matter structure connectome, respectively

(Figure 2a,b; Table S1). In addition, five fold cross-validation showed

slightly better performance than leave-one-site-out-cross-validation. The

brain-based sex score from the optimized ML model showed consider-

able individual differences in both males and females (Figure 2c).

Our machine learning interpretation showed specific brain fea-

tures contributing to the classification of sex (Figure 2d,e; Table S2).

Top 100 important features showed a negative logarithmic curve with

a few most important features followed by a number of features with

small relative importance (Figure 2d). Among the top 100 features,

41 features were diffusion white matter connectivity (streamline

counts), the rest were grey matter morphometric features. The K-Lime

analysis showed that 55% of the features positively contributed to

maleness (e.g., an increase in precuneus thickness linked to a greater

maleness) and 45% contributed to femaleness (e.g., an increase in

postcentral thickness linked to a greater femaleness). This highlights

the importance of the spectrum of the brain maleness and femaleness.

Furthermore, many of the brain features showed significant, but trivial

sex differences (Table S3). That is, each feature alone showed an

insufficient statistical power to classify sex, but their aggregated

effects (in this case, by means of machine learning) showed a suffi-

cient power to accurately classify sex in a given individual.

3.3 | Individual differences in brain-based sex
score correlate with cognitive intelligence

We then tested whether the machine-predicted brain-based sex score

is linked to cognitive performance in preadolescent children in each

sex. As a result, a greater brain-based maleness score positively corre-

lated with greater cognitive intelligence; reversely, a greater female-

ness score negatively correlated with greater cognitive intelligence

(Figure 3). Crystallized intelligence showed the most significant posi-

tive association with the brain-based maleness score (Male,

β = 2.507, pfdr < .001, η2p = .011; Female, β = 2.125, pfdr < .001,

η2p = .034), followed by total intelligence (Male, β = 2.128, pfdr < .001,
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η2p = .005; Female, β = 1.912, pfdr < .001, η2p = .004). Fluid intelligence

showed the smallest, nonsignificant association with brain-based

maleness score (Male, β = 1.074, pfdr = .094, η2p = .001; Female,

β = 1.094, pfdr = .076, η2p = .001) (Figure 3, Table S4). Cognitive intel-

ligence showed significant sex differences in intercepts (Table S4);

however, the intercepts in our models may not be readily interpret-

able because our input variables were not mean-centered.

3.4 | Individual differences in brain-based sex
score correlate with cognitive GPSs but nonsignificant
associations with sex hormones

What is the biological underpinning of the association between brain-

based sex score and intelligence? We tested whether the brain sex-

intelligence association is related to sex hormones and a well-

established genetic influence on cognitive ability (Lee et al., 2018). As

a result, sex hormones showed no significant associations with the

score of brain sex (maleness) (Male—Testosterone: pfdr = .855;

DHEA: pfdr = .306; Female—Testosterone: pfdr = .632; DHEA: pfdr =

.357) or cognitive abilities (Male—Total Intelligence: pfdr = .955 with

Testosterone; pfdr = .329 with DHEA; Female—Total Intelligence:

pfdr = .706 with Testosterone; pfdr = .954 with DHEA) in prepubertal

children (Table S5).

On the other hand, the cognitive GPSs significantly correlated

with brain-based sex (maleness) score and cognitive abilities

(Table S6). Of the three cognitive GPSs, the cognitive performance

GPS significantly correlated with the brain-based sex (maleness) score

when adjusted for effects of biological sex (β = .252, pfdr < .001,

η2p = .004) (Table S7). In the subsequent, sex-stratified analysis, we

TABLE 1 Demographic characteristics

Demographic data Mean (SD)

t/χ2 (p) Cohen's d/φMale Female

(n = 9,658) (n = 4,980) (n = 4,678)

Age (months) 119.36 (7.50) 118.91 (7.47) 2.943** 0.06

Height (inches) 55.25 (3.11) 55.35 (3.26) �1.59 �0.03

Weight (lbs) 81.49 (22.29) 82.91 (23.79) �3.03** �0.06

Total brain size (cm3) 1,579.61 (140.45) 1,450.47 (127.02) 47.44*** 0.96

BMI (inches/lbs2) 18.607 (4.01) 18.82 (4.20) �2.57* �0.05

Maternal education (highest grade) 16.71 (2.67) 16.69 (2.74) 0.52 0.01

Income 7.33 (2.36) 7.32 (2.36) 0.36 0.01

Ethnicity White: 2,756

Black: 642

Hispanic: 992

Asian: 93

Other: 497

White: 2,469

Black: 681

Hispanic: 951

Asian: 103

Other: 474

9.34* 0.03

Site 1: 152, 2: 275 1: 149, 2: 235 22.44 0.05

3: 283, 4: 292 3: 265, 4: 288

5: 159, 6: 254 5: 169, 6: 262

7: 156, 8: 117 7: 139, 8: 105

9: 176, 10: 275 9: 188, 10: 267

11: 194, 12: 257 11: 193, 12: 258

13: 239, 14: 294 13: 246, 14: 250

15: 174, 16: 530 15: 155, 16: 421

17: 245, 18: 137 17: 230, 18: 117

19: 195, 20: 307 19: 216, 20: 306

21: 269 21: 219

Married Married: 3,488 Married: 3,210 9.18* 0.03

Widowed: 38 Widowed: 40

Divorced: 460 Divorced: 401

Separated: 174 Separated: 184

Never married: 539 Never married: 584

Living with partner: 281 Living with partner: 259

Note: ***p < .001, **p < .01, *p < .05.
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F IGURE 2 Brain-based sex score shows individual sex difference in brain. (a) Classification performance of machine learning (leave one site
out cross-validation). (b) Classification performance of deep tabular networks. (c) Histograms of brain-based sex score across sex. The brain-based
sex score was from the optimized ML model trained on morphometric and structural connectome data. (d) Top 100 important features
contributing to sex classification. (e) Top 20 important features contributing to sex classification
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found the effect size of this correlation was greater in females than in

males (Female—Educational Attainment: β = .287, pfdr < .001,

η2p = .001; Cognitive Performance: β = .306, pfdr < .001, η2p = .005;

Male—Educational Attainment: β = .131, pfdr = .082, η2p = .001; Cog-

nitive Performance: β = 0.179, pfdr = .077, η2p = 0.002, Intelligence

Quotient: β = .148, pfdr = .082, η2p = .001, Figure 4; Table S7). In the

analysis of European-ancestry participants, educational attainment

and cognitive performance is significantly related in females

(Educational Attainment: β = .424, pfdr = .001, η2p = .014; Cognitive

Performance: β = .432, pfdr = .002, η2p = .011; Table S8).

3.5 | Brain-based sex score modulates the
relationship between cognitive GPSs and cognitive
intelligence

To test the potential hidden relationship among the cognitive GPSs,

brain, and intelligence, we performed SEM. In the admixed American

participants, sex-stratified SEM showed acceptable model fits

(Comparative Fit Index (CFI)—Male: .921, Female: .940, Root Mean

Square Error of Approximation (RMSEA)—Male: .022, Female: .019)

(Figure 5). As in the GLMs, the total effect of the cognitive GPSs on

intelligence was confirmed significant and positive in both sex

(Male—total effect = .253, p < .001; Female—total effect = .326,

p < .001, bias-corrected percentile method in bootstrap samples).

The proportion of the variance for total intelligence explained by

cognitive GPSs and brain-based sex score was R2 = .536 in males

and R2 = .626 in females (R2 = .437 in males and R2 = .621 in

females in European-ancestry participants). Of note, the brain male-

ness score partially modulated the cognitive GPS's effect on the total

Intelligence in both sexes (Male—indirect effect = .006, p = .022;

Female—indirect effect = .009, p = .002). Note that this means that

while the cognitive GPS has a positive direct effect on intelligence in

females, a greater brain maleness score (i.e., a lower brain femaleness

score) strengthens it. However, when modeling in only European-

ancestry samples, we found no significant indirect modulatory

effects of brain sex score (p's > .204) (Figure S6). These results may

suggest the modulatory effect of brain sex on the genetic pathway

to cognitive performance.

3.6 | Confounding of the whole brain volume

We found the whole brain volume was significantly correlated with the

brain-based sex score (pfdr < .001 in males and females), with the top

10 important features contributing to sex classification (pfdr ≤ .008), and

with the total Intelligence (pfdr < .001). These results together with the

literature of the whole brain volume correlating with cognitive intelli-

gence in youth (Reiss, Abrams, Singer, Ross, & Denckla, 1996; Ruigrok

et al., 2014; van Leeuwen et al., 2009) led us to the question whether

the brain-based sex score is an epiphenomenon resulting from the two

statistically significant patterns: that is, the sex difference in the total

F IGURE 3 Brain-based sex score correlates with cognitive intelligence. Associations between brain-based sex score and cognitive
intelligence. Effects adjusted for covariates. ***p < .001, **p < .01, *p < .05
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brain volume and the correlation between the total brain volume and

intelligence. In testing this question, we firstly found that brain-based

sex score better explained cognitive GPSs than the total brain volume

did (Brain-Based Sex Score—Male, β = .179, pfdr = .077, η2p = .002,

Female, β = .306, pfdr < .001, η2p = .005 in cognitive performance;

Total Brain Volume—Male, β = .007, pfdr < .001, η2p = .006, Female,

β = .009, pfdr < .001, η2p = .009 in cognitive performance). Secondly, in

an orthogonalized regression model to decorrelate the total brain vol-

ume and the brain-based sex score, we found that the brain-based sex

score independently accounted for the variance of cognitive intelli-

gence (Total Intelligence—Male, β = 2,578.335, pfdr < .001,

η2p = 0.008; Female, β = 2,978.230, pfdr < .001, η2p = .025; Fluid

Intelligence—Male, β = 1,528.188, pfdr < .001, η2p = .002, Female,

β = 3,002.295, pfdr < .001, η2p = .016; Crystallized Intelligence—Male,

β = 2,853.268, pfdr < .001, η2p = .016; Female, β = 2,043.587,

pfdr < .001, η2p = .019; Table S9). These two results may support that

the estimated brain-based sex score may capture a neurobiological

process related to the continuum of brain sex differentiation in each

individual above and beyond the total brain volume.

4 | DISCUSSION

We report the novel relationship between brain sex difference, cogni-

tive performance, and shared genetic influence in an admixed

American population of prepubertal children. As trained on the grey

matter morphometric and white matter connectomes, our machine

learning models showed the accurate classification of sex with over

93.32% ROC–AUC in a replication set. Furthermore, the individual

variability of the sexual brain development, indexed by the brain-

based sex score, showed significant correlations with general intelli-

gence and the inherited genetic influence on general intelligence, the

cognitive GPSs. Moreover, the SEM showed that the effect of the

cognitive GPSs on cognitive outcomes was modulated by the brain

sex score significantly in females and with a similar trend in males.

Thus, this study indicates the critical role of brain sex in cognitive per-

formance in prepubertal children, influenced by genetic factors,

providing a biological account for the individual variability of

neurocognition.

Our study departs from the prior literature on sex differences in

intelligence in children by showing the role of the continuum of brain

sex on cognitive performance. Literature shows that the group sex dif-

ferences in mind and behaviors, such as hormonal influences

(Vuoksimaa, Kaprio, Eriksson, & Rose, 2012), brain differences

(Ostatníková et al., 2010), cultural influences (Penner & Paret, 2008),

gender stereotypes (Stoet & Geary, 2012), and biopsychosocial inter-

actions (Haier, Karama, Leyba, & Jung, 2009; Miller & Halpern, 2014).

In intelligence, however, literature shows mixed findings of sex differ-

ences (Dykiert, Gale, & Deary, 2009). Some show that males have

advantages (Irwing & Lynn, 2005; Jackson & Philippe Rushton, 2006;

F IGURE 4 Cognitive GPSs explains genetic underpinnings of the relations between brain and cognitive GPS. Effects adjusted for covariates.
***p < .001, **p < .01, *p < .05
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van der Linden, van der Linden, Dunkel, & Madison, 2017) in general

intelligence over females, while others show females have advantages

over males (Keith, Reynolds, Patel, & Ridley, 2008). These mixed find-

ings may allude to large individual variability in intelligence within sex.

Indeed, a recent seminal study shows the biological underpinnings of

the individual variability in behavioral phenotypes in adolescents

(Vosberg et al., 2020). This study presents an estimate of the contin-

uum of sex based on the brain and body traits, which predicts within

each sex the individual variability in sex hormones, personality traits,

and internalizing–externalizing behaviors. In line with this, our study

further demonstrates the utility of multimodal brain imaging combined

with machine learning in estimating an individual status of brain sex.

For example, our method permitted the accurate estimation of an

individual's developmental status of the brain sex and revealed that

the brain sex estimates varied across individuals even within the nar-

row age range. The discovery of the correlation of the brain sex vari-

ability with the genetic and cognitive variables further reflects that

this novel estimate may represent a critical neurobiological process.

Another pattern to note is the greater association of crystallized

intelligence (the ability that is acquired throughout life:

i.e., knowledge, facts, and skills) with the brain-based sex, as well as

GPSs for cognitive capacity, compared with fluid intelligence (the

F IGURE 5 Structural equation modeling of tripartite relationships: Cognitive GPSs–brain sex score-intelligence. The direct effect is the
pathway from the exogenous variable (Cognitive GPSs) to the outcome (Total Intelligence) while controlling for the mediator (Brain-Based Sex).
The indirect effect is the pathway from the exogenous variable (Cognitive GPSs) to the outcome (Total Intelligence) through the mediator (Brain-
Based Sex). (a) Structural equation modeling of tripartite relationships in males. (b) Structural equation modeling of tripartite relationships in

females. Standardized weights are shown with statistical significance (bootstrapping). Shown in brackets are explained variances (R2). *** < p .001
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ability to reason and solve problems in novel situations; a trend

towards significance). These findings are partially in line with prior

genetic research showing that crystallized intelligence is greatly asso-

ciated with genetic influence than fluid intelligence (Christoforou

et al., 2014; Genç et al., 2021). Furthermore, since learning attitude

(i.e., reading books) may be genetically inherited (Krapohl et al., 2014;

Olson, Vernon, Harris, & Jang, 2001), it adds to the genetic propensity

of crystallized intelligence. Taken together, these empirical findings

including ours may challenge the historical conceptualization that fluid

intelligence may be more driven by genes and crystallized intelligence

by the environment (Cattell, 1971).

Our structural equation models show the potential relationships

among the genes, brain sex, and cognition. The results indicate that a

higher brain maleness score (a lower femaleness score) positively

modulates the positive effect of the cognitive GPS on general intelli-

gence significantly in both sexes. Considering that the modulatory

effect remains significant after controlling for several potential

confounding factors of the brain and cognitive performance, this GPS-

brain sex-intelligence pathway has a significant statistical association.

These results thus suggest the novel role of brain sex in children,

linking the genetic influence to cognitive performance.

Then, what is the biological account of the modulatory effects of

the brain sex on the genetic influence on cognitive performance: that

is, positive toward maleness and negative toward femaleness? Litera-

ture shows that sex chromosomes play a crucial role in cognitive per-

formance (Bender, Puck, Salbenblatt, & Robinson, 1990; Hong &

Reiss, 2014; Warling et al., 2020). However, since we did not include

the sex chromosomes when constructing the GPSs (following the

common practice of the GWAS designs to boost statistical power), it

might not fully explain the differences in the mediation effects across

sex. Alternatively, we speculate that the different expression patterns

of autosomal variants across sex (Boraska et al., 2012; Wijchers &

Festenstein, 2011; Zuo et al., 2015) may account for the modulatory

effects of sex. Indeed, in line with this speculation, recent literature

highlights sex differences in brain transcriptomes related to schizo-

phrenia and alcohol effects (Hitzemann et al., 2021; Hoffman

et al., 2022). Future research may test the association between sex

differences in genetic expression in the brain and neurocognitive

development.

Note that only females showed a significant correlation between

brain-based sex score and cognitive GPSs, whereas males showed a

marginally significant correlation after correction for multiple compari-

sons. We think this should not be interpreted as the female-only

effect of the cognitive GPSs in the brain sex development. Rather, it

should be noted that their effect sizes were similar across sex

(in educational attainment GPS) and the models combining males and

females showed the significant correlations of the brain-based sex

score and cognitive GPSs (in educational attainment and cognitive

performance GPSs). Furthermore, regardless of the modulatory

effects of sex, in both females and males, the influence of the cogni-

tive GPSs on cognition was positive. This is in line with the literature

in adults (Lee et al., 2018; Savage et al., 2018). Taken together, we

think that the genetic underpinnings of cognitive development might

be related to sex differentiation in the brain. Therefore, our integra-

tive analysis reveals the subtle relationships among sex, genes, brains,

and cognition, otherwise undetectable. We suggest this is a novel bio-

logical pathway to individual differences in brain sex. It may be inter-

esting to test whether this pathway is related to epigenetic effects of

environmental factors, such as early life stress.

This study confirms that biological sex can be classified accurately

based on morphometric and white matter connectivity. A recent study

with ABCD data show that the biological sex was classified with

89.6% accuracy in the replication set using a deep neural network

trained on ABCD T1-weighted structural MRI (Adeli et al., 2020). Our

study extends this prior work by showing the additive classification

performance increase with the diffusion white matter connectomes.

This performance increase perhaps presents that the multimodal MRI

effectively accounts for the heterogeneous developmental trajectories

of grey and white matter (Giedd et al., 1999). It further shows the

importance of the multimodal MRI approach in accurate delineation

of brain development status.

Our brain features exclude the total volumes of the brain, grey

and white matter, of which the sex differences have been reported

(Ruigrok et al., 2014). Though the whole brain volume difference

between sexes may be a biological aspect, we reasoned that the mea-

sures of gross anatomy would confound the brain–cognition relation-

ship. Therefore, beyond the sex difference in the gross anatomy, this

study shows that the patterns of the grey matter and white matter

fibers are associated with the continuum of brain sex.

In testing the relationships among the brain sex, cognitive ability,

and the genetic influence on cognitive ability, we focused on the cog-

nitive GPSs. However, our discovery of the significant tripartite corre-

lation among the brain-based sex score, total brain volume, and

intelligence may lead to a question whether the genetic underpinning

of cognitive ability is related to that of the total brain size. Indeed, a

recent GWAS meta-analysis reveals an overlap of GWAS hits

between cognitive intelligence and brain size in 5 genomic loci

(Jansen et al., 2020). We hope that future research may test the mod-

eration effect of sex on the genetic influence on brain size and its

impact on cognitive intelligence.

In our study, we found no significant relationship among our key

variables with salivary measures of sex hormones. Given the prepu-

bertal stages of the participants, the negative statistical findings may

reflect that the gene–brain sex–cognition relationship is not signifi-

cantly related to the effects of sex hormones. Literature shows a com-

plex relationship between the level of sex hormones and cognitive

intelligence (Castanho et al., 2014; Gurvich, Hoy, Thomas, &

Kulkarni, 2018). Though different sex hormonal levels across the

sexes are observed from the prepubertal ages (Courant et al., 2010),

the actual effect of the sex hormones on cognitive intelligence (or its

modulation) may not appear until puberty (Shangguan & Shi, 2009).

This study shows a novel relationship among genetic factors,

brain sex, and cognitive intelligence. The link between genome-wide

factors and cognitive ability has been shown in previous studies. Cog-

nitive GPSs account for general cognitive ability up to 3.5% in pre-

adolescence children (Allegrini et al., 2019), 11% of the variance in
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general intelligence, and 16% of the variance in educational achieve-

ment in adolescents (Selzam et al., 2017). Extending this literature, our

study shows that an individual's degree of brain sex may modulate the

impact of the genetic factor on cognitive intelligence. Since this mod-

ulatory effect is positive toward brain maleness and negative toward

brain femaleness, it adds another source of sex and individual variabil-

ity in intelligence. This inference also presents the benefit of using the

brain data as an endophenotype in assessing the genotype–

phenotype association (Glahn, Thompson, & Blangero, 2007). Taken

together, brain sex is linked to the inherited genetic influence of cog-

nition, accounting for a novel pathway to the individual difference in

cognitive intelligence in preadolescence.

In contrast to the multiethnic participants, the SEM in the

European-ancestry participants only showed nonsignificant indirect

effects of brain sex score. The discrepant results may not be easily

reconciled. It should be noted that the cross-ethnic transferability of

our cognitive GPS based on the European-ancestry GWAS remains to

be validated. However, our cognitive GPS was rigorously adjusted for

the potential ethnic confounding. Our result of the significant modula-

tory effects in the admixed American participants needs to be inter-

preted with caution.

This study shows the novel relationships among brain sex, cogni-

tion, and cognitive GPSs. The brain sex score based on grey matter

morphometric and white matter connectivity may represent a neu-

rodevelopmental process in preadolescence related to the inherited

genetic influence on cognitive intelligence and unrelated to sex hor-

monal levels. This study thus provides a novel framework for future

research in neurocognitive development and mental disorders.
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