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A range of perceptual and cognitive processes have been characterized from
the perspective of probabilistic representations and inference. To understand
the neural circuit mechanism underlying these probabilistic computations, we
develop a theory based on complex spatiotemporal dynamics of neural
population activity. We first implement and explore this theory in a biophy-
sically realistic, spiking neural circuit. Population activity patterns emerging
from the circuit capture realistic variability or fluctuations of neural dynamics
both in time and in space. These activity patterns implement a type of prob-
abilistic computations that we name fractional neural sampling (FNS). We
further develop a mathematical model to reveal the algorithmic nature of FNS
and its computational advantages for representing multimodal distributions, a
major challenge faced by existing theories. We demonstrate that FNS provides

a unified account of a diversity of experimental observations of neural spa-
tiotemporal dynamics and perceptual processes such as visual perception
inference, and that FNS makes experimentally testable predictions.

Humans and other animals operate in a world that is noisy and
ambiguous. Moreover, it has been widely observed that the firing
activity of neural systems is inherently stochastic and neural responses
to stimuli exhibit large variability within and across trials'>. Such
exogenous and endogenous randomness naturally leads to the view
that neural computations are carried out in a probabilistic way*”’.
Indeed, a host of brain functions from sensory processing®’ and cog-
nitive tasks'®" to motor behaviors' have been successfully character-
ized from the perspective of probabilistic inference. The success of
probabilistic accounts of these brain functions raises the fundamental
question of how neural activity represents probability distributions
and how neural circuits implement probabilistic inference based on
that representation.

Two prominent types of models have been proposed to under-
stand the neural basis of probabilistic representations and computa-
tions. One type is based on neural population activity that encodes the
parameters of probability distributions (e.g., probabilistic population
codes) such as the variance of Gaussian distributions*”. The other type

of model employs sampling-based probabilistic representations' .

Probabilistic representations in these models are mainly based on the
variability or fluctuations of neural activity with Poisson or Gaussian
statistics. However, empirical evidence has increasingly demonstrated
that neural fluctuations occur at multiple scales with heavy-tailed, non-
Gaussian statistics?>?, and that such fluctuations unfold in both time
and space to give rise to rich, complex spatiotemporal dynamics of
neural circuits™?>.

Here we argue that these rich spatiotemporal dynamics enable a
new type of sampling-based probabilistic neural computation. This
probabilistic computation offers a unique perspective on the functional
role of spatiotemporal neural dynamics and provides a solution to a
long-standing challenge of reliably sampling complex probability dis-
tributions such as multimodal distributions. Sampling multimodal dis-
tributions is fundamentally important for processing natural
environments replete with multiple, distributed salient patches (i.e.,
modes)**?, and for learning and inference®. This form of processing
remains a major challenge in previous studies, because Gaussian
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fluctuations or noise used in existing models essentially implement
Brownian-motion-based Markov chain Monte Carlo (MCMC) sampling
and its variants'">". Due to the lack of ‘large jumps’ in Brownian motion
(Fig. 1a), when faced with multimodal distributions with far-apart
modes, neural samplers are unable to traverse through low-probability
regions; such samplers are thus prone to be trapped in one local mode
and lack the capacity of freely switching from one mode to another?”.

We illustrate our probabilistic computation theory through a
biophysically realistic, spatially-extended spiking neural circuit
(Fig. 1b), demonstrating that population activity patterns (i.e., neural
ensembles) emerging from the circuit possess large intrinsic fluctua-
tions at multiple spatial and temporal scales as empirically observed.
Rather than Brownian motion, the activity patterns propagating across
the neural circuit with such large fluctuations exhibit clusters of short
step-sizes that are intermittently interspersed by long jumps (Fig. 1a),
with the movement step sizes showing heavy-tailed, non-Gaussian
(Lévy) statistics®™. These intermittent, long jumps inherent in Lévy
motion enable the activity patterns to adaptively and freely switch
between different modes of multimodal distributions, thus sampling
these distributions with great efficiency. Besides these heavy-tailed
Lévy motions in space, our sampling approach exploits certain tem-
poral oscillatory components that play a fundamental role in speeding
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Fig. 1| Complex spatiotemporal dynamics of neural circuits implement prob-
abilistic computations. a Typical sample path of a Brownian motion and that of
a Lévy motion. The latter consists of clusters of short step sizes that are inter-
mittently interspersed by long jumps. In contrast, the Brownian motion lacks
such long jumps. Color indicates time. b Schematic diagram of the two-
dimensional E-I spiking neural circuit. The circuit consists of recurrently con-
nected excitatory and inhibitory neurons spanning a two-dimensional feature

feedforward

up the sampling process. We demonstrate that our sampling-based
representation accounts for key response properties of neural circuits
such as the reduction of neural variability after stimulus onset*>” and
theta oscillations (3-8 Hz) accompanied by 1/f activity as widely
observed during environmental sampling tasks®’, and that the sam-
pling dynamics of the neural circuit are the underlying mechanism for
perceptual switching®.

We further elucidate that the key spatial and temporal properties
of the sampling-based representation implemented in the circuit
model can be characterized by a stochastic differential equation with a
fractional order derivative, which generalizes the notion of differ-
entiation to fractional orders and captures heavy-tailed Lévy motions
occurring at multiple scales®. We thus develop a mathematical model
of our sampling approach; due to the fractional nature revealed by this
mathematical model, we term our sampling approach fractional neural
sampling (FNS). Based on this mathematical model, we illustrate the
essential algorithmic properties of FNS for efficiently sampling multi-
modal distributions and further validate predictions from the mathe-
matical model in our spiking neural circuit, thus revealing how and why
FNS works at both the circuit implementation and algorithmic levels.

FNS-based probabilistic inference produces estimates about the
mean and variance of probability distributions that match those of
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space (top layer), receiving multiple feedforward inputs (bottom layer). The
spiking activity pattern (dots) emerging from the circuit exhibits rich, complex
spatiotemporal dynamics. As indicated by the red arrow, the localized activity
pattern intermittently switches between different parts of the neural circuit
(black circles) and can implement sampling-based probabilistic computations.
¢ Schematic diagram of a generative process for sampling-based probabilistic
inference in our model.
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optimal Bayesian inference. However, due to the presence of small
movements occasionally interrupted by large ones in FNS, it naturally
generates switching-like behaviors and the resultant multi-modes of
the estimate probability distributions. Our FNS-based inference thus
provides a mechanistic account of why there exists bimodality in
estimate distributions, as observed in a recent psychophysics study of
visual perception inference®; this experimental result is not explained
by conventional models of probabilistic inference. Our FNS-based
inference model further makes quantitative predictions about how
statistics of perceptual estimate distributions are related to stimulus
contrast; these predictions are consistent with reanalysis of the exist-
ing experimental data. Dynamical switching between different activity
patterns representing either multiple external sensory inputs® or
multiple choices in decision making®* have been widely observed,
suggesting that FNS-based probabilistic computations could be of
general applicability to understanding brain functions ranging from
sensory processing to decision making.

Results

We first illustrate how FNS works based on a biophysically realistic
circuit model of spiking neurons and then reveal the circuit mechan-
ism underlying the emergence of key spatial and temporal properties
of FNS. Second, we formulate FNS by using a mathematical model
derived from fractional diffusion formalisms, based on which we elu-
cidate the computational properties of FNS for sampling multimodal
distributions. We then validate these properties in the spiking neural
circuit model. Finally, we illustrate how FNS-based probability infer-
ence can be implemented in the spiking neural circuit with the prior
embedded in recurrent synaptic weights, and demonstrate that our
model provides a novel account of visual perceptual inference as
observed in experimental studies.

Circuit implementation of fractional neural sampling

We consider a biophysically realistic spiking neural circuit model of
excitatory and inhibitory neurons that incorporates experimentally
established properties of the cortex, such as distance-dependent
synaptic connectivity’>” and correlated excitatory and inhibitory
synaptic inputs® (Fig. 1b, see “Methods”). The neural circuit spans a
two-dimensional feature space® with its x and y coordinates repre-
senting feature values such as orientation (angle) and color (hue),
respectively, both ranging from - to m. The circuit model exhibits a
rich repertoire of dynamical activity states including asynchronous
activity (i.e., disordered state) and localized propagating waves (i.e.,
ordered state)*’, depending on the relative strengths of synaptic
inhibition and excitation (characterized by an I-E ratio ; see “Meth-
ods”). Near the phase transition (§=§. = 3.4) between these two states,
localized activity patterns with rich, complex spatiotemporal dynamics
emerge and behave like random walkers, exhibiting clusters of small
movement step-sizes that are intermittently interspersed by long
jumps (Fig. 2a). Such intermittent motion of the localized patterns can
be characterized by Lévy motion (Fig. 1a), a type of non-equilibrium
motion that has been shown to be essential for animals to optimally
search for spatially distributed food**?, for T-cells to efficiently find
target pathogens in brain explants®, and for optimally transporting
energy in turbulent fluids**. Notably, it has been shown that Lévy
motion underlies the propagation of gamma (30-100 Hz) burst pat-
terns in the MT area of marmoset monkeys*, and that hippocampal
sharp wave ripples exhibit random movements with occasional long
jumps*®.

To quantify the Lévy motion of the localized activity pattern
(Fig. 2a), we calculate its mean-squared displacement and the dis-
tribution of the increment of the pattern’s movement as in ref. 43. We
track the pattern over time and calculate its center of mass (CoM),
S =(X;,;) (see “Methods”). As shown in Fig. 2a, the CoM trajectories
exhibit random diffusive properties with variable step sizes, resulting

in small-movement clusters occasionally interspersed by long jumps to
new locations. The mean-squared displacement of the pattern can be
calculated based on the CoM as, MSD(Af) = (|| §,. ; — §,/%), where At is
the time lag. As shown in Fig. 2b, the mean-squared displacement is
linear on a log-log scale, indicating that it is a power function of A¢,
such that MSD(A?) « At". The diffusion exponent 7 determines the type
of the random motion: a value of n=1 indicates Brownian motion,
commonly used for implementing MCMC sampling”’; a value of n>1
indicates a superdiffusive process and 5 <1 indicates a subdiffusive
process. We find that the localized activity pattern emerging in our
network has n=1.18 (Fig. 2b), indicating that its movement is super-
diffusive. We further examine the distribution of the increment
AX, =X, 5 — X, of the pattern’s CoM trajectory by fixing the time
interval At=15ms and find that it exhibits a heavy tail. The increments
can be fitted to a symmetric Lévy stable distribution withindex1<a <2
(see “Methods”); using maximum likelihood, we find that a=1.28
(Fig. 2c). The tail of this distribution asymptotically follows a power law
P(AX) ~|Ax|~1-%, where «a is often referred to as the tail index. The
heavy-tailed, power-law distribution of the increment and the corre-
sponding superdiffusion are the characteristic features of Lévy
motions?*%,

We next illustrate how the localized activity pattern (i.e., assem-
blies of neurons) with Lévy motion is able to implement FNS. To pro-
vide a conceptual understanding of the computational goal of FNS,
consider the probabilistic generative process shown in Fig. 1c. A sti-
mulus x (such as an image) is defined in terms of its latent feature s
(such as its orientation and color) and a global contrast level c. For
clarity, we denote the true value of the stimulus feature in a particular
trial as s* to distinguish it from the generic latent variable s. The sti-
mulus x evokes a sensory response r (spike counts). We assume that
the sensory response depends on the latent feature in the form of a
probabilistic population code; that is, the sensory response r; of each
neuron i follows an independent Poisson distribution with a bell-
shaped firing rate profile centered at s* with height proportional to the
stimulus contrast ¢ (see Eq. (10) in “Methods”). Thus, the sensory
response r conveys both information about the latent feature s* as well
as the strength of the sensory evidence (proportional to stimulus
contrast). The sensory response is used as the feedforward input to the
recurrent circuit, where probabilistic inference is performed by com-
bining the sensory evidence conveyed by the feedforward input and
the prior embedded in the recurrent circuit. Mathematically, this is
expressed with Bayes’ rule

Pp(r|s)p(s)

, 1
p(o) @

p(sir)=

where p(s|r) and p(s) represent the posterior and the prior distribu-
tions, respectively. In our FNS approach, a sample § from the feature
space is represented by the instantaneous CoM of the localized spiking
pattern in the recurrent circuit. The distribution resulting from the
random motion of the localized activity pattern then approximates the
posterior distribution.

In this section, we first consider the simple case of sampling a
unimodal distribution corresponding to sensory evidence with a flat
prior to illustrate the key spatial and temporal properties of FNS. The
neural circuit receives a unimodal feedforward input centered at the
true value of the stimulus feature s*, with its strength proportional to
the stimulus contrast level ¢, as described by Eq. (10) (“Methods”).
Figure 2d shows a typical sample path traced by the CoM of the
localized spiking pattern, which exhibits complex spatial and temporal
dynamics. Spatially, the sampling path exhibits the signature of Lévy
motion, i.e., the presence of occasional large jumps in space (Fig. 2d).
Similar to the case of spontaneous activity, the distribution of the
sample path increment is characterized by a heavy tail. Temporally, the
sample path displays an oscillatory component as indicated by its
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as a function of time lag. The red line indicates a power-law fit, MSD(A¢) < At", with
the diffusion exponent 1 =1.18. ¢ Distribution of trajectory increments. The red line
indicates a fitted symmetric a-stable distribution, with the tail index a =1.28. Inset:
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distribution of the trajectory increment on a log-log scale. d A typical sample
trajectory overlaid on top of the sampled probability density. Large jumps with
lengths greater than 0.25 are highlighted with connected green dots.

e Autocorrelation of the sample trajectories for different stimulus contrast levels.
Averaged across 100 trails of 10 s duration. f Mean squared error of the sample
mean decreases with time lag, with a small baseline due to quenched noise (ran-
domness in synaptic connectivity). g Dependence of the sample variance on input
contrast; shades indicate the standard deviation of the sample variance across 20
trials.

autocorrelation (Fig. 2e), which can be fitted as a function of the form
exp(—At/t)cos(2mfAt) with the decay constant 7=36ms and the
oscillation frequency f=5.5Hz. The frequency of the oscillation is
higher for the stronger contrast level (Fig. 2e). It is interesting to note
that this frequency is in the range of theta oscillations (3-8 Hz), an
elementary oscillatory component widely observed during environ-
mental sampling tasks such as spatial attention sampling®® and
whisking in rodents*’. We will come back to this point in “Discussion”.

We next calculate the convergence speed of statistical estimates
based on these samples toward the true value of the stimulus feature;
in particular the convergence of the sample mean, s; =1 fOT S.dt. As
shown in Fig. 2, the mean-squared error of the sample mean,
E[ll §7 — s*|1?], with s* denoting the true value of the stimulus feature,
decreases to half-maximum at Ty,,=128 ms for contrast c=1 and
Tum =81 ms for ¢ =2, which are around the same order as the adapta-
tion time constant 7= 80 ms and are several times the membrane time
constant (7, =15 ms). The rate of convergence is faster for the higher
contrast level, as consistent with the observation that the frequency of
oscillation increases with contrast (Fig. 2e). This result indicates that
the activity pattern emerging from the circuit implements sampling-
based representation of the stimulus features, and that the sampling
process is quite efficient.

As the stimulus contrast level represents the strength of sensory
evidence, the increase in contrast should lead to a reduction of the
sample variance, as suggested by the generative model in Eq. (1) as well
as by existing studies®. We find that this property is indeed satisfied in
FNS: as shown in Fig. 2g, the sample variance %fOT (X, —)_(T)Zdl' (cal-
culated over a time period T=10s) decreases with stimulus contrast.

From the dynamics aspect, the reduction of sample variance with
contrast is primarily due to the modulation of the random motion of
the activity pattern by the feedforward input; that is, as the contrast
level of the input increases, the CoM of the pattern becomes more
concentrated around the center of the input.

FNS with realistic neural response properties

We now demonstrate that the sampling dynamics of FNS capture key
response properties of the cortex including the reduction of neural
firing variability>?’. To this end, we calculate the spike-count Fano
factor for individual neurons by using a fixed time window of At=
100 ms. The Fano factor following stimulus onset has a pronounced
drop compared to the Fano factor during spontaneous activity’>. We
find that this reduction of Fano factor displays a U-shaped dependence
on the stimulus feature (orientation) as found in the middle temporal
area of monkeys®’, with the largest reduction occurring when the sti-
mulus orientation is equal to the neuron’s preferred orientation
(Fig. 3a). As shown in Fig. 3b, the Fano factor is greater than one for the
spontaneous activity (c=0) and is reduced by an amount largely
proportional to stimulus contrast, with the exception of low contrast
levels (c<0.3).

We also investigate how the Fano factor in the recurrent circuit
depends on the width of the feedforward input. As shown in Fig. Sla,
when the width of the input is smaller than that of the receptive field,
the Fano factor decreases with the input width; the converse is true
when the input width is larger than the receptive field. It has been
shown that in the primary visual cortex of monkeys, Fano factor
exhibits a similar trend as the stimulus size varies (see Fig. 2f of ref. 50).
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In addition, we find that as the input width increases, the uncertainty of
the sampled distribution changes in the similar way as the Fano factor
(Fig. S1b). This correspondence between the uncertainty of neural
responses and that of the sampled distribution is due to the reduction
(or increase) in the variability of the instantaneous firing rates of
neurons as the variance of the samples (represented by the CoM of the
spiking pattern) decreases (or increases).

Another key feature of neural responses arising from the sampling
dynamics is that neural population firing rate possesses a theta oscil-
latory component (3-8 Hz), as indicated in its power spectral density
(PSD) (Fig. 3c). Interestingly, these oscillations ride on top of a 1/f
arrhythmic component. Certain oscillatory components such as theta
accompanied by 1/f-like activity have been widely observed in the
cortex®*?; they are particularly relevant for cognitive functions such as
visual-spatial attention®*2, These results provide further neurophy-
siological validity of our circuit model of FNS.

Circuit mechanism of FNS

We next elucidate the circuit mechanism underlying the emergence of
the sampling dynamics in our circuit model. More specifically, we aim
to pinpoint the origin of the two key features of FNS: the fractional
Lévy motion and the theta oscillatory component.

The circuit model exhibits a rich repertoire of dynamical
activity states, ranging from the asynchronous to propagating wave
states*’. Particularly, by varying the I-E ratio (£), it has shown that
around the transition state between the asynchronous (i.e., dis-
ordered) and localized propagating wave (i.e., ordered or coherent)
states, the circuit model explains a range of nonlinear neural
response properties; this state transition has been characterized by
calculating the susceptibility and the branching indices of neural
spikes*. Figure 4a shows that when the I-E ratio § is large, the
network exhibits an asynchronous state without any structured
patterns (State Ill, Fig. 4b), in which neural correlations (see
“Methods”) are low. On the other hand, when the I-E ratio is small,
coherent patterns emerge from the circuit in the form of a localized
propagating wave; this wave pattern propagates across the neural
circuit with a relatively smooth and regular trajectory (Fig. 4c). In
this state (State I), neural correlations are much greater than those
in the asynchronous state. In the transition regime (State II)
between these two states (State I and State IlI), neural correlation
changes rapidly as £ varies. Only in State II, the CoM of the pattern
exhibits fractional Lévy motion with small steps occasionally
interrupted by long jumps (Fig. 1a)”, as indicated by a tail index of
a <2 with the trough of a coinciding with the transition point at

&=&.=3.4. This value of I-E ratio ({.=3.4) is quantitatively con-
sistent with that measured in the visual cortex of awake mice™. It is
interesting to note that this dynamical mechanism underlying Lévy
motion in our circuit model is similar to other complex physical
systems whose critical phase transitions are essential for the
emergence of Lévy motion’*.

Previous studies have shown that negative feedback mechanisms
such as spike-frequency adaptation or depression are essential for the
emergence of oscillations™*¢. Our realistic spiking network model also
incorporates spike-frequency adaptation in the form of slow potas-
sium currents, which could be the origin of oscillation in our model. To
test this, we remove the adaptation completely from the network by
setting the potassium current in Eq. (5) to zero. We use the sponta-
neous activity to re-calibrate the inhibitory synaptic strength by a
factor of 1.2 so that the neural dynamics is restored to the transition
regime between the asynchronous and localized pattern states. Within
this regime, the increments of the CoM of the localized activity pattern
still follow a symmetric Lévy stable distribution, with the tail index
a =119 (Fig. 4d), indicating that the pattern moves in a fractional Lévy
manner. However, we find that in the circuit without adaptation, the
sample autocorrelation function of the sample path decays exponen-
tially as exp(—At/7) with 7=13-19 ms when the pattern samples the
unimodal distribution; it does not show any feature of oscillation or
anticorrelation (Fig. 4e). This lack of theta oscillations in the circuit
model without adaptation results in a slower decay (time-at-half-
maximum Atyy =317 ms for c=1 and Aty =220 ms for c=2) of the
mean squared error of the mean estimate (Fig. 4f) than for the case
with oscillations (Fig. 2f), indicating that theta oscillations play a role of
speeding up sampling of FNS. These results indicate that the oscilla-
tory component of FNS originates from neural adaptation in
our model.

A mathematical model of fractional neural sampling

We next develop a mathematical model to gain further theoretical
insights into the probabilistic sampling processes implemented in
our spiking circuit model. Based on this mathematical model, we
reveal the unique computational properties of FNS through high-
lighting the functional roles of temporal oscillations and Lévy
motion.

As demonstrated above, the spiking pattern behaves like a ran-
dom walker that exhibits far richer spatiotemporal dynamics than
Brownian motion: the pattern exhibits occasional long jumps in space,
a characteristic feature of Lévy motion, and an oscillatory component
in its CoM. To model a random walk with these features, we use a
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featuring asynchronous activity (£=4.25, 15 ms time window) and a localized pro-
pagating wave (§=2.55, 2 ms time window), respectively. Red curve indicates the
CoM trajectory of the propagating wave. d When adaptation is removed, the his-
togram of the sample increments (solid line) still exhibits a power-law tail (dashed
line). e Sample path autocorrelation shows the absence of anticorrelation as a result
of removing neural adaptation. f Mean squared error of the sample mean decreases
slowly with the time lag, with a baseline due to quenched noise (randomness in
synaptic connectivity).

stochastic differential equation (SDE) driven by Lévy motion with an
auxiliary momentum term

dx, =yb(x,)dt +Bo.de+y"dL?, )

do, =pb(x,)dt, @
where X, is the CoM of the activity pattern, v, is an auxiliary variable
representing momentum, £ is the damping coefficient, b(x) is a drift
term related to the probability landscape, y is the strength of the noise,
and LY is the Lévy motion whose step sizes over a time period At follow
a symmetric Lévy stable distribution SaS(a,Até) possessing a power-
law tail with a tail index 1< a <2 (see “Methods”)?. It has been shown
that the momentum term v, is responsible for generating temporal
oscillations in the trajectory of the random walker”, with the frequency
of the oscillations controlled by the damping coefficient B. Thus, the
mathematical model (Eq. (2)) is able to capture the essential dynamical
features of the localized pattern, i.e., the Lévy motion and the temporal
oscillations. For analytical tractability we consider the case with one
spatial dimension.

As the trajectory of a random walker evolves over time, its prob-
ability density converges towards a stationary distribution (target
distribution) m(x). Therefore, the trajectory of the random walker, after
a sufficient burn-in time, can be considered as approximate samples
from m(x). In the case of Eq. (2), the stationary distribution m(x) is the
stationary solution (marginalized by treating momentum v as a nui-
sance variable) to the corresponding fractional Fokker-Planck equa-
tion, and it is related to the drift term b(x) by (see Method for
mathematical derivations of this result)

DY 2[1(x)d, log m(x)]

b(x)= 700

, 3

where D2 is the partial Riesz fractional derivative. Using Eq. (3), we
can determine the drift term b(x) required for producing samples from
any desired target distribution m(x).

This mathematical model provides a simple yet effective
theoretical framework for revealing the key computational prop-
erties of FNS. Without loss of generality, we set the tail index in Eq.
(2) to be a=1.2, similar to the tail index characterizing the Lévy
motion of the spiking patterns emerging in the neural circuit
model, and set f=1to capture the oscillatory aspect of FNS; other
values of 1<a <2 and >0 would generate qualitatively similar
results. We then compare the computational performance of this
default model with three other sampling processes: (1) Sampling
without oscillation (8 = 0) but with fractional Lévy motion (@ =1.2).
(2) Sampling with oscillation (8=1) but without fractional Lévy
motion (a=2), which is the standard Hamiltonian Monte Carlo
(HMC) sampling®. Such Hamiltonian dynamics have been pre-
viously mapped to a neural network with excitatory and inhibitory
populations®® for performing efficient sampling. (3) Sampling with
neither oscillation nor fractional Lévy motion (a =2 and 8= 0). For
this case, the sampling process reduces to the standard MCMC
driven by Brownian motion*, called Langevin sampling, which is
used as a general-purpose algorithm in machine learning; it has
been proposed that neural networks may implement such
sampling!*16°?,

Typical sample paths of the four cases for sampling a standard
normal distribution with zero mean and unit variance are shown in
Fig. 5a, each exhibiting distinct features. Immediately noticeable
are the jumps in the sample paths of the two sampling processes
powered by the fractional Lévy motions, but are absent in their
non-fractional counterparts. Despite the drastic differences in the
sample path structure, all four cases are able to produce samples
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Fig. 5| Properties of different sampling approaches. a Sampling processes driven
by fractional Lévy motion (a =1.2, top two panels) exhibit long jumps, in contrast to
their non-fractional counterparts (a =2, bottom two panels). Right panels: sample
histograms agree with the target distributions (dashed line). b Autocorrelation
functions of different sampling processes. The processes with momentum (8=1)

Time lag At

exhibit an oscillatory component. ¢ Mean squared error as a function of At. The two
cases with an oscillatory component (8 =1) have significantly faster convergence to
the true mean (gray line) than those without (8 = 0). Fractional Lévy dynamics do
not affect the convergence speed in a significant way.

from the target distribution, as seen through the agreement
between the sample histogram and the target distribution (right
panels in Fig. 5a). The finer temporal structures of these sampling
processes are further revealed through calculating the auto-
correlation function of the sample path, (X, X;), as we have cal-
culated for the spiking pattern in the circuit model. As shown in
Fig. 5b, the autocorrelation functions of the two cases without the
oscillatory component (f=0) decay exponentially to zero. How-
ever, those with the oscillatory component (8=1) drop to zero
quickly and exhibit negative-going lobes. This indicates that suc-
cessive samples rapidly decorrelate, speeding up the sampling
processes and thus resulting in a faster convergence to the target
distribution. As shown in Fig. 5c, the mean-squared error decays
significantly faster for the two cases with the oscillatory compo-
nent (8 =1), with a time-at-half-maximum of 1.42 fora=1.2 and 1.70
for a=2, than that without oscillation (8= 0), with a time-at-half-
maximum of 1.95 for a=1.2 and 2.51 for a=2. These results are
consistent to the observations in the spiking neural circuit model
in Fig. 2, and show that the temporal oscillatory property of FNS
plays an essential role in improving sampling speed. Note that the
cases with the momentum (8>0) and without the momentum
(B8=0) in the mathematical model correspond to neural sampling
in the circuit model with and without adaptation, respectively. In
the mathematical model, the momentum pushes successive sam-
ples further apart, giving rise to the oscillatory behavior and
accelerating the sampling speed. In the neural circuit model,
adaptation plays a similar role by pushing the localized activity
pattern away from its present location, thus speeding up sampling.

We next elucidate that FNS possesses the powerful computational
property of sampling multimodal distributions with far-away modes.
For this purpose, we set the target distribution as in Eq. (3) to be a

bimodal Gaussian mixture

11 (x — % 1 (x +5%)?
mx)= ZJZ—ﬁUGXp{ 202 } + = 2 /oo exp {— 207 ] 4)

Without loss of generality, we set s*=2.5 and o=0.32. For clarity and
simplicity, here we consider a bimodal distribution, but the results can
be generalized to any multimodal distributions. Note that the modal
separation As* is significantly larger than the modal width o, implying
vanishingly small probability density between the modes; in other
words, the modes are separated by a high potential barrier,
U(x)= — log m(x), which is extremely difficult to penetrate. For the two
fractional cases (a=1.2), despite the impenetrable energy barrier
between the two modes located at +s* the sample path is able to
switch intermittently between them due to the inherent long jumps of
Lévy motion (Fig. 6a). This property enables efficient sampling of the
bimodal distribution, with the sample histogram matching the target
distribution. In contrast, in both sampling processes driven by con-
ventional Brownian motion (a¢=2), i.e.,, the Langevin Monte Carlo
sampling and the Hamiltonian Monte Carlo (HMC) sampling, the
sample paths are completely trapped in one of the modes and are
unable to explore the entire state space, thus failing to sample bimodal
distributions. Particularly, we stress that while HMC has been pre-
viously implemented in neural networks for speeding up sampling
processes, it cannot on its own resolve the issue of sampling multi-
modal distributions with far-apart modes because the sampler has a
negligible chance to gather a sufficiently large momentum to
overcome high potential barriers®.

The Lévy motion can fundamentally improve the mixing ability of
the sampling process, that is, the ability to traverse through the
probability landscape including the low-probability regions between

Nature Communications | (2022)13:4572



Article

https://doi.org/10.1038/s41467-022-32279-z

d

4 a=12,B=1
< 0 '
i a=12,8=0
| i b e
< 0 -
_4: W Sl
a=20,B8=
4 P >
< 0 -
4 =
a=20,B=0
4. B
e >
< 0 -

 p—
100 150 200

0 50

(op

100

80

60

40

Mean exit time Texit

1 2 3 4 5
Modal separation As*

the two modes. To quantify this mixing property, we calculate the exit
time Tey; (See “Methods”), which is the duration the random walker
remains in one of the modes, and examine how the mean exit time
changes with the modal separation As*. As shown in Fig. 6b, the
dependence of the mean exit time on the modal separation has striking
differences between the cases with and without fractional Lévy

Fig. 6 | Illustration of the computation properties of FNS for sampling bimodal
distributions. a Sampling processes driven by fractional Lévy motion (a =1.2, top
two panels) are able to alternate between two modes rapidly (modal separation
As*=35), rather than being stuck at one mode as their non-fractional counterparts
(a=2.0, bottom two panels). Right panels: sample histograms and target dis-
tribution (solid line). b Mean exit time of the sampling processes driven by frac-
tional Lévy motion grows linearly with modal separation, whereas those driven by
Brownian motion grow exponentially; averaged across 24 trials of duration 7=10*
Circles and crosses represent results from the mathematical model; solid lines
denote the fitted exponential and linear curves.

dynamics. For the two cases driven by fractional Lévy motions, the
mean exit time increases linearly with the modal separation; in con-
trast, for the conventional cases driven by Brownian motion (Langevin
sampling and Hamiltonian sampling), either with or without the
oscillatory component, the mean exit time blows up exponentially as
As* increases. Note that these results are achieved with all the other
parameters such as the strength of the noise and the shape of the
probability landscape fixed. Therefore, the mixing ability can be fun-
damentally attributed to the fractional Lévy motion L{. The linear
dependence of the mean exit time on modal separation is the hallmark
of FNS, indicating that it can effectively sample multimodal distribu-
tions regardless of variations in modal separation.

Relations between the drift term and neural circuit parameters
As illustrated in the mathematical model of FNS, the drift term b(x)
determines the sampled distribution according to Eq. (3). To demon-
strate that the spiking neural circuit performs non-trivial probabilistic
computations as in the mathematical model, it is necessary to show
how the drift term is related to the feedforward input (for encoding
sensory evidence) and recurrent synaptic connections (for encoding
prior). Due to the mathematical intractability of the spiking neural
circuit model, we employ a neural field model (Eq. (27)) to derive the
relationships between b(x) and parameters of the feedforward input
and the recurrent synaptic weights (see “Methods” for the neural field
model and Supplementary Information for details of the mathematical
derivations); we then numerically validate these relationships in our
spiking neural circuit model, thus providing insights into the prob-
abilistic computations implemented in the spiking neural circuit.

Figure 7a (upper panel) shows b(x) when the neural field model
receives a bell-shaped feedforward input (Eq. S5) centered at s;=0
with varying contrast levels c;. The drift is positive when x <s; =0 and is
negative when x>s; =0, indicating that the localized pattern experi-
ences a drift toward s; = 0 and subsequently samples from a probability
distribution centered at s;. Further analysis shows that the drift mag-
nitude is proportional to stimulus contrast ¢; (Eq. (28)). Using b(x), we
then analytically obtain an explicit solution to the resulting sampled
distribution (Fig. 7a, lower panel), whose variance is inversely pro-
portional to ¢; (Eq. S20). In addition, our analysis shows that a bell-
shaped perturbation centered at so=0 to the recurrent synaptic
weights (Eq. S6) can induce a drift b(x) with a similar shape around sq
(Fig. 7b, upper panel); the magnitude of the drift is proportional to the
strength of synaptic perturbation co (Eq. (28)). For this case, we also
derive the corresponding sampled probability distribution (Fig. 7b,
lower panel) and find that its variance is inversely proportional to co
(Eq. S21); note that this probability distribution caused by changes in
synaptic weights is the prior distribution.

We next calculate the drift b(x) in the spiking neural circuit model
from the CoM trajectory of the spiking pattern. Since the increments of
the CoM are equal to the sum of a deterministic drift and random noise
according to the mathematical model (Eq. (2)), we can obtain b(x) by
averaging the increments of the CoM trajectory over time and across
trials to remove the noise. We then divide the two-dimensional space
into bins and calculate the drift as a function of the feature coordinate
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Fig. 7 | Drift term related to feedforward input and synaptic perturbations.

a Drift term (upper panel) and sampled distribution (lower panel) when the neural
field model receives a feedforward input with varying contrast levels c;. b Drift term
(upper panel) and sampled distribution (lower panel) when the neural field model
receives synaptic weight perturbation with varying strengths co.

x. We find that when the neural circuit receives a feedforward input as
in Eq. (10), the drift b(x) is positive for x <s;=0 and negative for x>
$1=0, resulting in a sampled distribution centered at s; (Fig. S2a). A
bell-shaped perturbation to the recurrent synaptic weights (Eq. (12))
also yields a similar outcome (Fig. S2b), thus properly embedding the
prior to the circuit. These results are qualitatively consistent with the
analytical results based on the neural field model, indicating that the
drift term is determined by the feedforward input and recurrent
synaptic connectivity.

Fractional neural sampling of multimodal distributions

We next validate the powerful mixing property for sampling multi-
modal distributions in our spiking circuit implementation of FNS. For
this purpose, we change the spatial profile of the feedforward input to
be the superposition of two Gaussian functions centered at s; and s,
with contrast levels ¢; and c,, respectively (Eq. (11) in “Methods”); for
simplicity, here we use a bimodal input as an example, but multimodal
distributions can be similarly sampled in the circuit. Such multimodal
inputs can be thought as representing sensory responses from multi-
ple sensory channels, as in multisensory perception tasks®.. It may also
arise from a single stimulus with alternative interpretations such as the
spatial orientation of a Necker cube. In both cases, the true state s* of
the latent stimulus feature could be either s; or s,.

Figure 8a shows that the localized pattern wanders around the
location of one of the modes for a short while and then jumps to the
other one, thus alternately sampling these modes in a similar fashion as
in the mathematical model. Consequently, the sampling process leads
to bimodal sample histograms whose modes are separated by low-
probability regions (right panel in Fig. 8a). To calculate the exit time for
the localized activity pattern performing sampling, we assign the
spatial coordinates of the CoM trajectory at each time moment to one
of the stimulus peaks depending on which peak location it is closer to.
The exit time is then defined as the duration the trajectory spends in
one region before it switches to the other. We investigate how the exit

time changes as the modal separation As increases. As shown in Fig. 8b,
the mean exit time ranges from 30 to 60 ms, indicating that the
alternating sampling between the two modes occurs rapidly. The mean
exit time increases linearly for As < 21, before it saturates due to the
periodic boundary condition of the circuit model. This result indicates
that FNS implemented in the neural circuit exhibits the salient feature
as predicted in the mathematical model; that is, the mean exit time of
the activity pattern increases linearly with the modal separation.

We next demonstrate the effectiveness of our circuit imple-
mentation of FNS for different contrast levels by systematically varying
¢; while keeping ¢, =1 fixed. Rather than being trapped in the spot with
a higher contrast level, the activity pattern is still able to dynamically
switch between the two modes intermittently. By calculating the exit
time, we find that when the contrast level of one of the stimuli becomes
stronger, the mean exit time from this stimulus location increases
monotonically while that from the other stimulus location decrea-
ses (Fig. 8c).

In summary, these results indicate that FNS can sample multi-
modal probability distributions in such a flexible and effective way that
it is insensitive to their modal separations and contrast differences,
thus retaining the excellent mixing ability. These dependencies of the
exit time on modal separations and contrast levels form testable pre-
dictions of our FNS theory.

Sampling dynamics of FNS underlie perceptual switching

When presented with a stimulus with alternative interpretations such as
the Necker cube or conflicting stimuli such as in binocular rivalry,
humans may experience two alternating percepts®. Such phenomenon
known as perceptual switching can be naturally explained in the fra-
mework of FNS. To model a simple case of binocular rivalry in which two
conflicting stimuli with opponent colors are presented to two eyes, we
add inputs to two neural groups whose preferred hues differ by m, as in
existing modeling studies®’. Alternations between the responses of the
two neural groups (left panel, Fig. 8a) are interpreted as switching
between different percepts. The exit time from each neural group cal-
culated above is equivalent to the dominance duration of each percept
in the context of perceptual switching. The result with varying contrast
level ¢; and fixed c; (c; =1), as shown in Fig. 8¢, is thus consistent with
one of the key properties of perceptual switching of binocular rivalry®.
When the contrast level of one stimulus is increased from zero with the
other fixed, it primarily decreases the mean dominance duration of the
stronger percept while increasing that of the weaker one to a lesser
extent and equi-dominance is reached when the contrast levels of both
stimuli are equal (c;=c,). Further increasing the contrast level of the
stimulus primarily increases the dominance duration of the stronger
percept while decreasing that of the weaker one to a lesser extent™. We
also increase the contrast levels of the two stimuli simultaneously and
find that the mean dominance duration of both percepts decreases
(Fig. 8d), which is another key property of perceptual switching®.

In addition, dominance durations in our model follow a right-
skewed distribution (Fig. 8e), consistent with psychophysical stu-
dies of perceptual switching. Although the specific forms of this
type of right-skewed distribution have been found to vary across
different experimental and modeling studies, which are still a
matter of debate®, we find that the dominance durations in our
model are best fitted by a right-skewed distribution called Burr
distribution rather than a gamma distribution (see “Methods” for
the fitted parameters of these distributions). The key difference is
that the former features a slowly decaying power-law tail whereas
the latter has a faster decaying exponential tail. It is interesting to
note that such a slowly decaying tail in the distribution of percep-
tual dominance duration has been previously found in
experiments®, albeit not explicitly stated. Our results thus propose
another right-skewed distribution for capturing dominance dura-
tion, which can be tested in future experimental studies.

Nature Communications | (2022)13:4572



Article

https://doi.org/10.1038/s41467-022-32279-z

a R ! v s Sy .
= "Lir i i - R PO
o ™ \ . ¥ i P T !
8 or I HER . 4k ]
= P W G V. 5V I W B 3
- T Y ¥ oo Ty :v‘,,'v TR
0 0.5 1 15 2 t (ms)
— ‘ e L 1 {60
L Y P uoa A
o . = . 3 : T 40
S op : ' - a
~ ] N . A
g ; [f /2 )_:w Ja /M\.. WIVH A .J.’ 20
A NEE gl T A 0
0 0.5 1 15 2
t(s)
b C o3
|2 _ ~ —&— Stimulus 2
g:: 60 % § '_75 +Stimu|us 1
-8 0 0.2
50
o —
£ = a
= =
'E 40 Linear fit 2 0.1
o —i— Circuit model @
[ [0 I
3 30- =,
E I T 1 f T 1
0 2 il 0 1 2
Modal separation As (rad) Contrast level ¢,
0.2’ 30,
d — e > * Circuit model
Z ‘® . Burr
) qc) ——Gamma
£ 20
= 2
é 0.1 %
C 910
3 °
s o
0- r T T T 1 07\ T 1
04 06 038 1 1.2 0 0.1 0.2
Contrast level ¢; = ¢, Exit time (s)

Fig. 8 | Circuit implementation of FNS for sampling bimodal distributions.
a Time series of the x- and y-coordinates of the sample path when ¢; = ¢, =1. Sam-
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rapidly between them without being trapped. Right panel: contour plot of the log
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b Mean exit time (circle) grows linearly with the modal separation (with saturation

due to periodic boundary conditions). ¢ Mean exit time for varying c; with c, fixed
(c2=1). d Mean exit time decreases as both contrast levels are kept the same and
increased simultaneously. Error bars in b-d show the standard deviation of the exit
time within trials. e Exit time (perceptual dominance duration) follows a right-
skewed distribution better fitted with a Burr distribution (red line) with a more
slowly decaying tail than a gamma distribution (blue line).

As in our model, previous noise-driven attractor models have
successfully reproduced the dependence of perceptual switching on
stimulus contrast and the distribution of dominance duration through
a combination of adaptation and externally added noise®. In our
model, however, intrinsically emergent fluctuations in the form of
fractional Lévy motion are the dynamical origin of perceptual switch-
ing. To demonstrate this, in the transition regime of the circuit model
without adaption as described above (see Fig. 4), we apply the same
feedforward input described by Eq. (11) and find that the localized
activity pattern exhibits rapid switching between the two neural
groups (Fig. S3). This result thus indicates that the fractional Lévy
motion underlies perceptual switching. It is important to note that in
our model, the movement of the activity pattern in space has large
fluctuation across multiple scales, as evidenced by the heavy-tailed,
power-law distribution of its movement step sizes; however, switching
behaviors between different attractors possess characteristic scales in
existing modeling studies. In ref. 15, it has been shown that noise-
driven activity states in a neural network model can be used to perform
MCMC sampling and to model perceptual switching. In this study, the
effect of modal separation on perceptual switching was not

investigated; however, as demonstrated in the mathematical model
(Eq. (2)), at the algorithmic level, the MCMC sampler with Langevin
dynamics is unable to traverse through low-probability regions, par-
ticularly when multimodal distributions have far-apart modes. In
contrast, the FNS theory suggests that Lévy motion with large fluc-
tuations emerging from the spiking neural circuit can serve as a robust
mechanism for explaining perceptual switching, as the FNS-based
sampling dynamics are insensitive to modal separation.

FNS-based perceptual inference

We next illustrate the properties of FNS-based probabilistic inference
particularly through accounting for the key features of human per-
ceptual inference in a motion direction task®. In this experiment,
subjects were presented with visual stimuli consisting of moving dots,
some of which move in the same direction while the rest move in
random directions; the fraction of dots moving in the same direction is
called coherence. It has been shown that the mean and variance of
perceptual estimates match those predicted by the basic Bayesian
observer model. However, the distribution of the perceptual estimates
was found to be bimodal®; this observation was at odds with the basic
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Bayesian observer model which gave rise to a unimodal posterior. We
now demonstrate that FNS-based inference provides a neural
mechanism for resolving this puzzle and further makes new predic-
tions about perceptual inference.

To proceed, we first establish a connection between the experi-
mental setup and our model by interpreting the x-component of the
2D feature space as motion direction. The x-component of the CoM of
the localized pattern at a particular time instant thus represents the
perceived motion direction, whereas the y-component is considered as
representing a nuisance parameter. We assume that the visual stimulus
is represented through a population code as a bell-shaped feedforward
input to the spiking neural circuit model (Eq. (10)), such that its center
s; represents the motion direction and its contrast c; is proportional to
the motion coherence, similar to that used in ref. 32. With this
understanding, we compare the FNS-based inference results with the
experimental results by carrying out the similar procedures as in the
original experiment. In the experiment, the subjects were first trained
with a block of visual stimuli to learn a prior distribution, and then were
presented with a visual stimulus for a brief period of 300 ms before the
subject was required to report the motion direction. Correspondingly,
in our spiking neural circuit model we first embed a prior by applying a
bell-shaped perturbation to the synaptic weights centered at s, with
amplitude ¢ according to Egs. (12) and (13) (see “Methods”). As illu-
strated above, these synaptic changes can be used to properly embed a
prior to the recurrent circuit (Fig. 7). We then add a unimodal feed-
forward input with contrast ¢; centered at s, (Eq. (10)), which encodes
the sensory evidence about the motion direction of the visual stimulus.
The sampler (i.e., the localized activity pattern) is able to switch freely
between the prior and the newly added sensory evidence within the
short stimulus presentation period. The instantaneous position of the
activity pattern at the end of the stimulus presentation is then inter-
preted as the perceptual estimate.

We then use our model to explain the three sets of experiments in
ref. 32. The first set of experiments involves fixing the coherence of the
random moving dots and the prior while varying the motion direction
relative to the prior mean. Correspondingly, in our neural circuit
model, we fix the contrast level ¢c; = 0.5 in Eq. (10) and the strength of
synaptic perturbation co = 0.002. Without loss of generality, we fix the
prior mean sy = (0, 0) and systematically vary the center s,=(s, 0) of
the feedforward input with s varying from - to . As shown in Fig. 9a
(left panel), the estimate distribution is characterized by two peaks:
one corresponding to the prior centered at the origin and another
corresponding to the sensory evidence with varying motion directions.
Notably, the similar feature of bimodality versus modal separation has
been observed in the experiments® (see Fig. 4 of their paper). As
illustrated above, the bimodality in our circuit model arises as the
spiking activity pattern intermittently alternates between the two
modes (Fig. 8a). We further quantify the FNS-based probabilistic
inference by calculating the mean and variance of perceptual estimates
across trials. As the center of the feedforward input (thus the modal
separation relative to the prior at the origin) increases from - to 7, the
mean of the bimodal perceptual estimate distribution also increases
from negative to positive values in an approximately linear fashion
(Fig. 9a, top right panel); this relationship is consistent with the
experimental results* (see Fig. 3a of their paper). The variance of the
perceptual estimate is approximately a quadratic function of modal
separation (Fig. 9a, bottom right panel). We find that the linear and
quadratic dependences of the mean and variance of perceptual esti-
mates on the modal separation are also consistent with the analytical
results obtained from the neural field model (see Eqgs. S23-S24
in Supplementary Information).

To test the predictions from our inference results, we re-analyze
the published data® and find that the variance of the perceptual esti-
mates also matches a quadratic curve when the prior standard devia-
tion is large (80 degrees), as shown in Fig. 9d (red dots). However, for

smaller prior standard deviations (Fig. 9d, green and orange dots),
whether the experimental data matches our prediction remains
inconclusive due to the limited data range®. Specifically, since the
perceptual stimuli used in the experiments were pooled from the same
dataset with which the prior was trained, its range was limited by the
prior standard deviation (e.g., for a prior std of 10 degrees, the range of
the presented stimulus is only about +20 degrees). Future experiments
could test our predictions by extending the range of the perceptual
stimuli even when the prior standard deviation is small.

The second set of experiments involves varying the motion
coherence while fixing the prior uncertainty and the distance of
motion direction relative to the prior mean®. In our neural circuit
model, this corresponds to varying the contrast level of the feedfor-
ward input ¢; while fixing the strength of the synaptic perturbation
€0 =0.002 and the modal separation between them. The sample dis-
tributions for this case are shown in Fig. 9b (left panel), likewise
exhibiting bimodality. As the contrast level increases, the height of the
mode corresponding to sensory evidence increases whereas the height
of the prior decreases. The mean and variance of perceptual estimates
are also largely consistent with the experimental results: as the con-
trast level of the stimulus increases from zero, the mean of the bimodal
perceptual estimate distribution gradually shifts from the prior at so
toward the sensory evidence at s; (Fig. 9b, top right panel). Meanwhile,
the perceptual estimate variance decreases with the contrast level, but
with the exception at low contrast levels (Fig. 9b, bottom right panel).

This finding that the variance of perceptual estimates varies non-
monotonically with the stimulus coherence therefore provides a tes-
table prediction for future experimental studies. By re-analyzing the
published data®, we find that the perceptual estimate standard
deviation decreases with the stimulus coherence for a number of
coherence values (Fig. 9e). Experimental data for coherence smaller
than 5% is unavailable so whether monotonicity is violated cannot be
directly verified. However, if we impose the theoretical argument that
the perceptual estimates should simply be samples from the prior
distribution when the coherence is zero, we can then extrapolate the
estimate standard deviation with the prior standard deviation. By
presenting all data points together, we find that the monotonicity is
indeed violated (Fig. 9e). To directly test our prediction, future
experiments should more closely examine changes in the variance of
perceptual estimates when the stimulus contrast levels are low.

The third set of experiments involves varying the uncertainty of
the prior while fixing the coherence of the stimulus and the motion
direction®. In the neural circuit model, this corresponds to varying the
strength of the heterogeneous synaptic perturbation co while fixing
the contrast of the feedforward input ¢; = 0.5 and the modal separa-
tion. As the synaptic perturbation becomes stronger, the height of the
prior increases and the height of the mode corresponding to sensory
evidence decreases (Fig. 9c, left panel). The perceptual estimate mean
gradually shifts from the sensory evidence at s; to the prior s (Fig. 9c,
top right panel). The perceptual estimate variance also depends non-
monotonically on the strength of synaptic perturbation (Fig. 9¢c, bot-
tom right panel). This observation cannot be verified in the experi-
mental data due to the limited data size and thus forms a testable
prediction for future experiments.

Discussion

In this study, we have presented a theory (i.e., FNS) of probabilistic
neural computations through the illustration of its neural circuit
implementation as well as the normative formulation of its computa-
tional properties. By extending existing models that are mainly based
on temporally variable or fluctuating dynamics™", FNS exploits rich,
complex fluctuations of neural population activity both in time and in
space for efficiently performing sampling-based probabilistic compu-
tations; FNS thus offers an approach to addressing the long-standing
challenge of sampling and representing multimodal distributions. Our
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probabilistic neural computation theory provides a unified account of
a variety of findings on neural dynamics at the individual neuron and
circuit levels as well as on perceptual phenomena such as perceptual
switching and visual perception inference, thus establishing a frame-
work for understanding neurophysiological and computational
mechanisms of brain function.

Our FNS theory provides a new perspective on the role of complex
spatiotemporal neural dynamics that exhibit large fluctuations across
multiple scales, which are of a non-Gaussian (i.e., heavy-tailed) nature.

Particularly, FNS-based probabilistic computations harness the power
of the fractional Lévy motion of population activity patterns (i.e.,
neural ensembles); these patterns hover around one location for a
while and then move or switch to another location in an intermittent
manner, with their movement step sizes following heavy-tailed, power-
law distributions. Such fractional motions in space give rise to irregular
propagation trajectories and speeds with large variability. Propagating
activity patterns have been widely observed at the circuit and the
whole brain levels**?; notably, localized gamma activity patterns with
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Lévy motion have been found in the MT area of marmoset monkeys®.
We have repeated the analysis on the broadband LFP from ref. 45
(see Supplementary Information) and found that localized activity
patterns of such broadband activity also show Lévy motion (Fig. S4). It
has been shown that hippocampal sharp wave ripples exhibit move-
ments with clusters of short step sizes that are intermittently inter-
spersed by long jumps*. Nevertheless, to directly test our modeling
prediction of propagating spiking patterns with Lévy motion, future
studies need to focus on massive individual-neuron recordings and to
analyze spiking patterns in the same way as done in our
modeling study.

Another key property of sampling dynamics of FNS is that the
autocorrelation function of the sample path exhibits an oscillatory
component. Such an oscillatory component induces negative-going
lobes in the autocorrelation; consequently, this would result in inde-
pendent samples occurring in a much shorter time, thus playing an
essential role in increasing the effective sampling speed as in the
Hamiltonian Monte Carlo method*’*%, In a previous modeling study®®,
such oscillatory activity arises from mapping Hamiltonian dynamics to
the activity of excitatory and inhibitory neurons and its peak frequency
is around 40 Hz (i.e., gamma oscillation). Importantly, it has been
demonstrated that such gamma oscillations can naturally emerge in a
circuit model trained for optimally performing sampling-based prob-
abilistic inference®. In our model, as illustrated in the autocorrelation
analysis of the sampling process, the temporal oscillation is in the theta
range (3-8 Hz). We have found that the spike frequency adaptation is
essential for the genesis of the theta oscillatory component, in accor-
dance with other modeling studies®. However, different from oscilla-
tory activity with clock-like periodicity in these models, neural
oscillations in our model exhibit great variability and are accompanied
by heavy-tailed, 1/f-like activity, as shown in the power spectrum of the
firing rates of neural population activity. Notably, such temporal fluc-
tuations with a 1/f component have been widely observed in neural
population activity as recorded by LFP, EEG, and MEG during both
spontaneous activity and task conditions®. Traditionally, such 1/f-like
activity has been deemed unimportant and often removed from ana-
lyses to emphasize oscillatory components. In our theory, however, it
is an integral part of our circuit implementation of FNS.

It has been found that theta oscillations are a hallmark feature of
environmental sampling having now been linked to spatial attention
sampling ***?, eye movements in primates®, and whisking in rodents*’.
In some of these environmental sampling tasks, such as eye
movement-based sampling of natural scenes, the existence of Lévy-like
motion has been reported®’. These observations lead us to predict that
our FNS-based probabilistic computation might be the underlying
computational mechanism of these cognitive functions; indeed,
recently we have successfully applied FNS dynamics to explain key
neural and behavioral effects of visual attention®. Furthermore, it is
interesting to note that the phase of theta oscillations often modulates
the amplitude of gamma fluctuations®®. Such theta-gamma coupling
suggests that it is important to explore whether and how each theta
sampling cycle can be implemented through gamma activity, poten-
tially unifying our FNS approach with the gamma dynamics-based
sampling approaches®®® and gaining a comprehensive understanding
of probabilistic computations in neural circuits.

As formulated in the mathematical model with fractional order
derivative and further illustrated in the spiking neural circuit, FNS
exploiting the complex spatiotemporal dynamics mentioned above
possesses some profound computational advantages. The sampling
processes of FNS are quicker than those of the other methods such as
the classical Langevin sampling method that has been implemented in
stochastic recurrent neural networks. Importantly, FNS enables the
efficient sampling of multimodal distributions even with far-away
modes, due to the long jumps inherent to fractional movements of
neural activity patterns. Sampling multimodal distributions is crucial for

probabilistic computations, which, however, would not be possible in
existing models, because they rely on Gaussian dynamics (i.e., Brownian
motion) for implementing classical Langevin Monte Carlo sampling
methods used in machine learning®. These methods are notorious for
becoming trapped in a single mode, and lack the capacity to efficiently
traverse through complex probability landscapes. Based on both the
circuit and mathematical models, our theory of FNS makes a core pre-
diction; that is, the mean exit time (i.e., the average time the sample
path takes to leave one of the modes of a bimodal distribution) depends
linearly on the modal separation. This prediction is falsifiable and hence
represents a strong test of our FNS theory.

Our FNS can be implemented in biophysically realistic, two-
dimensional spiking neural circuits incorporating two well-established
properties of the cortex. One property is the dependence of synaptic
connection probability on distance®** and another is the balance
between excitatory and inhibitory inputs, with the former closely
tracked by the latter®®. Most previous models of sampling-based
representations'>**°, however, have focused on either normative
probabilistic models or theories without specifying their underlying
neural circuit mechanisms'", or on abstract neural circuits models %,
some of which have no separation of excitatory and inhibitory neurons
thus violating Dale’s principle’®. Networks with one-dimensional
structure (i.e., a ring structure) have been trained to produce a fast
sampling-based inference exploiting cortical-like temporal dynamics®.
Since these networks do not intrinsically produce variable neural
dynamics, an external source of fluctuations is required. In contrast, in
our circuit model, spatiotemporal activity patterns with large fluctua-
tions are intrinsically generated and the 2D spatial structure supports
the emergence of such fluctuations. This scenario is similar to other
complex physical systems where such a 2D spatial extension is
important for the emergence of spatiotemporal patterns with complex
dynamics. In our model, the complex spatiotemporal patterns with
fractional motions only emerge when the circuit works near the tran-
sition between different activity states; these findings are consistent
with recent studies proposing that complex cortical dynamics could be
better understood in the dynamical regime close to the transition
between different cortical states (i.e., asynchronous and synchronous/
coherent states)’”?, but go beyond them by revealing the fundamental
functional role of complex spatiotemporal cortical dynamics in prob-
abilistic neural computations.

The circuit mechanism of FNS also has important implications
for constructing efficient artificial neural networks in machine
learning. Large-scale artificial neural networks such as the Boltz-
mann machine’ and deep belief networks™ often perform complex
computations through employing probabilistic sampling. Most of
these artificial neural networks perform probabilistic sampling by
using the classical MCMC driven by Gaussian noise, so they suffer
from the similar problem as faced by the existing models of neural
probabilistic sampling, in that these methods lack the ability to jump
across low-probability regions and to traverse through the prob-
ability landscape (also known as the ‘mixing’ ability). The problem of
mixing becomes even more pronounced when dealing with larger
complex datasets. The common remedy for these methods relies on
some variants of simulated tempering’®, which change the tem-
perature parameter in order to globally flatten the solution land-
scapes during the sampling process. These tempering methods,
however, come with a cost of their own, because they require extra
computations and parameter-tuning that assume knowledge about
the global state of the artificial neural networks. However, our
circuit-based FNS mechanism indicates that powerful mixing abil-
ities for representing multimodal distributions can emerge from the
circuits that are essentially locally coupled, and importantly this
happens in a fundamentally autonomous manner without tuning any
global parameters during the sampling process. Motivated by these
properties of the circuit-implementation of FNS, we thus suggest
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that future large-scale, information processing neural network
models may benefit from our circuit mechanism of FNS, if they are
designed to exploit fractional Lévy-like diffusion and oscillations for
sampling complex, high dimensional probability landscapes.

As we have demonstrated, the FNS-based probabilistic sampling
can implement perceptual inference that explains both perceptual
estimate statistics and the bimodality of perceptual estimate dis-
tributions as found in a recent study of motion direction estimation
task®’. Regarding probabilistic inference, our model makes two main
predictions: first, the perceptual estimate variance is approximately a
quadratic function of the modal separation between the sensory evi-
dence and the prior; second, the perceptual estimate variance
decreases with stimulus contrast but this trend is reversed when the
contrast level is small. These model predictions are consistent with our
reanalysis of the experimental data®, except for the cases when the
stimulus contrast level is low; a conclusive test of these predictions will
require more specific manipulation of stimuli to cover the low contrast
range. Previously, a binary switching model with Gaussian noise was
used to explain the bimodal property of perceptual estimates®. In our
model, due to the non-equilibrium, fractional nature of Lévy motion,
the activity patterns exhibit short-step clusters that are interspersed by
long jumps, thus giving rise to clustering and switching:-like behaviors
and the resulting bimodality of the estimate probability distributions.
Rather than being simplistic and binary, the switching-like behavior in
our FNS model happens across multiple scales with large fluctuations,
as evidenced by step sizes with heavy-tailed, power-law distributions.
Switching-like dynamics with large fluctuations have indeed been
found in the inferotemporal area of monkey during sensory
processing®, in the orbitofrontal cortex*, and in the lateral intrapar-
ietal area® during decision making. Our FNS mechanism of probability
inference might therefore be generally applicable to understanding
these key brain functions.

Methods
Spiking neural circuit implementation of FNS
The spatially extended spiking neural circuit model consists of N
excitatory neurons and N' inhibitory neurons embedded in a two-
dimensional feature space with periodic boundary conditions*’. Each
neuron i is assigned to spatial coordinates s; = (x;, y;) representing the
preferred stimulus features (orientation and color) of that neuron,
with both x; and y; ranging from - to m. We consider Nf=63 x 63 =
3969 excitatory neurons on a square grid and N =1000 inhibitory
neurons with uniformly random locations. The ratio between N and
is around 4. The Euclidean distance is calculated between each pair of
neurons i from population a andj from population 8, where a and S are
either excitatory (E) or inhibitory (I). The connection probability
between neurons is proportional to the distance-dependent factor
Q“ﬁ D /1y . For the excitatory connections the spatial scales are

Eé =8 and T'E =10 grid units, whereas for the inhibitory connections
the spatial scales are i = 78/ =20 grid units.

The subthreshold membrane potential V{ of neuron i in popula-

tion a follows

d V"‘(t)

VL]+IgK(t)+I rec(t)+ll ext(t)’ (5)

where the membrane capacitance C=0.25nF, the leak conductance
g;=16.7nS, and V; =-70 mV is the reversal potential for the leak cur-
rent. /7 (t) is the potassium current, /7 ..(¢) is the recurrent synaptic
current received by the neuron and /7, (¢) is the external current.
When the membrane potential reaches the threshold V;,=-50mV, a
spike is emitted and the membrane potential is reset to the potential
V.« =-60 mV for an absolute refractory period 7r= 4 ms. The potassium
current is given by /i ()= — g (O(V{(£) — Vi), where g (¢) is the
active potassium conductance and Vi =-85mV. The dynamics of the

potassium conductance are described by

dgix(®) _  gik(®
dt K

+AgK%6(t— %) (6)

where ¢, is the time of the kth spike emitted by neuron i from
population a, Agx=10nS and =80 ms. Because spike frequency
adaptation has been primarily observed in cortical pyramidal neurons,
we only include such adaptation for excitatory neurons in our model.
The recurrent synaptic current /7 ..(t) in Eq. (5) is

Tiec(©= 32| 8O (VI = Vi) . @)

where g;"ﬂ(t) is the conductance of the recurrent current from the
presynaptic population B. The excitatory and inhibitory reversal
potentials are VE,,=0mV and V!,,= — 80 mV, respectively. The con-
ductance g}’ ap (¢t) is given by

Pe)= z afjfsb), ®)

where a;jx.” and jg.ﬂ represent the coupling topology and the connection
strength, respectively, as detailed in the original paper*°. Specifically,
the synaptic connection probability between neurons decreases in an
exponential manner as distance between neurons increases, con-
sistent with experimental findings®*. The non-dimensional gating
sgﬂ (¢t) describes the synaptic dynamics

dsg-ﬁ([) Sgﬁ(t) 8 ap ap
P05 g, ap(i-gre).

B B
hﬁ(t): l/Tr,lfOSl’STr' 9)
0, otherwise

where Tﬁ and 72 are the decay and rise time constants, respectively,

is the time point of the kth spike of neuron from population 3, and d i
is the conduction delay drawn from a uniform distribution between O
and 4 ms.

In our model, we consider an essential neurophysiological feature
of local cortical circuits, that is, the excitatory post-synaptic currents
are proportional to the inhibitory ones, with a homogeneous ratio
across all excitatory neurons, as found in mouse primary visual cortex
layer 2/3%. To model this in our heterogeneous circuit, we consider the
I-E ratio §;= Zk“" Jii/SJi, where K, denotes the number of con-
nections (in-degree) received by excitatory neuron i from the inhibi-
tory population and the connection strength values jiEjE are determined
by the reverse pooling method*’. To equalize the I-E ratio & across the
neurons to a desired network-wide ratio, that is, (§;)=¢ the j;‘ for
neuron iare sampled from a Gaussian distribution with a mean equal to
§5J5 /Kt and a standard deviation that is 25% of the mean. The I-E
ratio £ is varied as a system parameter for demonstrating the emer-
gence of localized activity patterns with Lévy motion (Fig. 4) but is
otherwise fixed at the value & =3.4.

It has been shown previously that the circuit model exhibits a rich
repertoire of dynamical activity states, ranging from asynchronous to
localized and global propagating wave states'. Particularly, it has
shown that around the phase transition between the asynchronous
and localized propagating wave states, our circuit model exhibits
nonlinear response properties different from the classical balanced
state and can quantitatively reproduce a variety of major empirical
findings regarding neural spatiotemporal dynamics. The phase
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transition was characterized by calculating the susceptibility and the
branching parameter of spikes*. In the present study, we only change
one parameter, the I-E ratio, to study the spatiotemporal properties
(i.e., Lévy motion in space and theta oscillations in time) of the dyna-
mical activity pattern emerging in this transition regime and their
fundamental roles in probabilistic computations.

To study how the activity pattern samples non-trivial distribu-
tions, external stimuli are applied in the form of independent Poisson
spike trains with specific firing rates. First, for sampling unimodal
distributions, we apply an external feedforward input to each neuron i
in the recurrent population as independent Poisson spikes whose fir-
ing rate is equal to

L e*|12
Ai=ro {1+ceXp<—7” 5'20: ” H

where 0=0.6 is the width of the feedforward input, and ¢ >0 is the
contrast. When ¢ =0, the network receives the baseline background
input with a uniform rate ro = 0.85 kHz. The true value of the stimulus
feature is fixed at s*=(0,0) without loss of generality. Second, for
sampling bimodal distribution, we apply an external feedforward input
with firing rate equal to

_ Il 's; — sy l12 Il's; — 8,11
Ai—r0{1+clexp<’20%>+czexp<’20% .1

The baseline firing rate is reduced to ro = 0.5 kHz so that spontaneous
activity (corresponding to when ¢; =c, =0) is suppressed, ensuring a
low-probability region between the modes of the sampled bimodal
distribution. The true value of the stimulus feature s* is unknown by
the observer and could be either of the alternative interpretations s; or
s,. We investigate the performance of our network in sampling
bimodal distributions by varying the stimulus contrast levels ¢; and ¢,
and the modal separation As = ||s; — ;||

To embed prior in the recurrent synaptic connectivity, we apply a
spatially heterogeneous perturbation to the excitatory-to-excitatory
synaptic weight

10)

A = Cod(s;; So.d)P(S;: 80,d) (12)
wheres; = (x;, y;) is the coordinates of neuron i in the feature space, ¢, is
the magnitude of the weight perturbation, and ¢ is a two-dimensional
bell-shaped function

1
@(s;So,d)= exp [?(cos(x —Xg)+ cos(y —Yo))|, (13)

centered at so = (Xo, Yo) with the width parameter d. In this study, we fix
$o=(0,0) and d=1.3.

Calculating CoM, MSD, increment distributions, and neural
correlations

Our spatially extended network exhibits localized spiking activity
patterns with complex spatiotemporal dynamics. To characterize the
dynamics of the pattern, we first track its center of mass (CoM),
s, =(X,,J,) based on the population vector of excitatory neurons’’

X, = Al’gjg_ nj(t)eix/, (14)

where x; € [-11, m) is the x-coordinate of the jth excitatory neuron, n; is
the spike count over a small time window [t—17,¢) (here we set
t=15ms), i is the imaginary unit, and Arg is the principal complex
argument in [-m, m). The y-coordinate of the CoM jy, is defined

similarly. From a population coding point of view, Eq. (14) is also
known as a complex estimator, which is equivalent to fitting a cosine
function to the spike counts in the least-square sense’®. In our study,
the trajectory of the CoM of the activity pattern is the sample
path of FNS.

Based on the trajectories of CoM, we next calculate the
increments and the MSD. Specifically, the raw coordinates §, over
the periodic space are first unwrapped to linear coordinates in
order to accommodate distance calculations across the periodic
boundary. The mean-squared displacement of the CoM is then
MSD(At)= (|| §;.a; — §;1?), where At is the time lag. For fitting the
increment distribution, we set AT=15ms to ensure no temporal
correlation is artificially introduced due to overlaps in the spike
count time window. The increments are then fitted to a symmetric
Lévy stable distribution SaS(a,y) with the tail exponent a € (0, 2]
and the scale parameter y >0, as defined by Eq. (15). The para-
meters of the distribution are estimated with maximum likelihood.
The MSD is averaged across 100 independent realizations of net-
works, each collecting 50 s of samples, whereas the increment
histogram is produced with samples collected over 10 s, repeated
across 5 random realizations of the network.

To characterize the state transition from the asynchronous to
propagating wave state, we calculate local pairwise correlations of
spike counts. We first divide the two-dimensional network into non-
overlapping local patches of size 9 x 9 grid units and then calculate the
pairwise spike count correlation within each patch. Finally, the mean
local pairwise correlation is obtained by averaging the correlation
coefficients of individual patches (49 patches in total). A weak local
pairwise correlation indicates asynchronous activity without any
structured patterns, whereas a strong local pairwise correlation indi-
cates a spatially coherent wave pattern. The spike count time window
is set to 100 ms with a total simulation time of 10 s repeated over 5
independent trials.

Derivations of the mathematical model for FNS

To understand the algorithmic nature of FNS implemented by our
spiking circuit model, we develop a mathematical model based on
stochastic dynamics driven by Lévy motion, rather than Brownian
motion as in the classical Langevin MCMC. We consider a class of Lévy
motion LY whose increments follow symmetric Lévy stable distribu-
tions, denoted as SaS(a,y), with a tail index a and a scale parameter y.
For clarity and analytical tractability, we restrict our discussion to the
one-dimensional case. The probability density of SaS can be expres-
sed as™®

1 o0
poo=— /0 exp(—yw®) cos(wx)dw. as)

The probability density exhibits a heavy tail, with power-law asymptote
of the form”

na) l'(a+1)}, (16)

- —1-a |,,a i n=
o)~ Ix| {V sin (5 ) =—
for all 0 <a<2. Note that a=1 corresponds to the special case of a
Cauchy distribution and a =2 corresponds to a Gaussian distribultion.
The increment ALY =L{ — L with At=t — ¢'> O follows SaS(a,At?).

To derive the mathematical model described by Eq. (2), we start
with the general formula presented in ref. 80

dz, =(D+Q)b(z)dt +DY*dL?, 17)

where z, = (x,,v,)", D is a positive semi-definite matrix describing the
fractional diffusion, and Q is a skew-symmetric matrix describing the
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interplay between position x; and momentum v, The temporal
evolution of the probability density p(z, t) is given by the fractional
Fokker-Planck equation,

0,p(z,t)= — 0,(D+Q)b(z)p(z,t) - DDp(z,t), (18)
where the fractional Riesz derivative D% is defined as
DYf1=F kI FIf], 19)

through the Fourier transform F[f]= [ dze-*Zf(z). Fractional order
derivatives generalize the notion of differentiation to fractional orders
and are powerful mathematical tools for describing complex
dynamics®; recently, fractional Fokker-Planck equations have been
used to explain how non-Gaussian neural dynamics emerge from
biologically realistic neural circuits®. It can be shown that the temporal
evolution of p(z,t) converges to a stationary distribution
m(Z) x ¢(z) = exp(—H(z)) = exp(—U(x) — T(v)), related to the drift
term by

D" 2[p(2)0,H(2)]

b= ="

(20)

To retain both the efficient sampling provided by the Hamiltonian
dynamics as well as the powerful mixing ability provided by the frac-

14 0} andQ:[O _ﬁ} and obtain

tional dynamics, we setD=[ g O

- _ D 2[@(2)d, U(x)] D 2[¢(z)d,T(v)] Vaga
=y P(2) de+p P(2) de+y/*dL;, 1)
a—2
o, = - p 7DV

Although convergence to the stationary distribution is guaranteed
mathematically, numerically simulating this set of equations is chal-
lenging since there are no straightforward ways for evaluating the
Riesz fractional derivative with two dimensions. To overcome this
numerical challenge, we exploit the fact that we are only interested in
sampling the target distribution of m(x) instead of the joint stationary
distribution of m(x, v) and make two simplifications as follows. First, we
approximate the Riesz fractional derivative D* with its partial versions
D% and DY, such that

DL [Pp(x)0, U(x)] DI 2[P()d, T(v)] Ve gy«
g Py Ayl

a—2
dv, = _ﬁ%;?xu(xﬂdt,

The partial Riesz fractional derivative can then be effectively evaluated
using a fractional centered difference scheme®***. We find that this
approximation in practice provides the correct sample distribution
through numerical simulation. Second, by setting ¢(v) = exp(—T(v)) to
be a symmetric a-stable distribution SaS(1/a), it holds that

dx;=—y
(22)

Dy, Ty _ 23)
()

By applying these two simplifications, we obtain the fractional Hamil-
tonian dynamics for modeling fractional neural sampling (Eq. (2)). As
we show numerically in Results, the distribution of the samples gen-
erated by Eq. (2) converges to the target distribution m(x). For all
simulations we use the Euler-Maruyama scheme with a step size of
At=0.001 with y=1, and apply a clipping b(x)= min(b(x),byqy) With
bax =500 to avoid numeric overflow of the Riesz derivative near low-
probability regions.

A number of properties about the Riesz derivative are worth
noting. First, when a =2, the Riesz fractional derivative coincides with
the ordinary second-order derivative with a change of sign, that is,
D?= — d,, — 0,,. Second, unlike integer-order derivatives, the Riesz
derivative cannot be broken down into the sum of the partial deriva-
tives in each of its dimension, that is, D* # D§ + DY, as the right-hand
side of this equation cannot preserve isotropy in the space spanned
by (x, v).

Exit time calculation for sampling processes of FNS
To characterize the ability of FNS for sampling bimodal distributions,
we calculate how the mean exit time, which measures the average
duration the sampler spends near one of the modes, changes as a
function of modal separation. Suppose that the two modes of a
bimodal distribution are centered at s; and s,, then the exit time Tey;,
from the first mode to the second mode can be defined as the duration
the sample trajectory remains closer to s; than to s,
Texic = INf{E=0:]| S, —s; | > ]| S, — 85 |1}, (24)
where the 8, is any point satisfying || 85, —s; | < [ 89—, | withsg,
denoting the one-sided limits lim, _ ., §,. The mean exit time is then
calculated as the average of all exit times in a sample trajectory. This
definition applies to both the 1D mathematical model and the 2D
neural circuit implementation. For the mathematical model, we use an
open boundary condition rather than a periodic boundary condition in
order to highlight the impact of modal separation on sampling. For the
case of periodic boundary condition, the exit time increases similarly
for small modal separations but saturates for large modal separations.
In the context of perceptual bistability, the exit time can be
interpreted as perceptual dominance duration which is known to fol-
low a right-skewed distribution. We fit the exit time calculated from the
neural circuit model to two candidate distributions using the method
of maximum likelihood. The first one is the Burr distribution with
probability density function

- () o)

with parameters found to be 1=65.0 ms (95% CI 62.7-65.3), c=8.05
(95% CI 7.58-8.55), and k=0.528 (95% CI 0.476-0.586). The second
one is the gamma distribution with probability density

25

i

1
x;k,0)= — xk1es,
P ) ot

(26)
with parameters found to be k=10.4 (95% CI 9.9-10.9) and 6 =7.51ms
(95% Cl 7.14-7.88). Note that the former features a power-law tail (with
an exponent equal to -1-ck) whereas the latter features a faster
decaying exponential tail. Outliers (dominance duration <29 ms) are
occasionally produced during the asynchronous phase of the spiking
pattern and thus are omitted for this analysis.

Analysis of a neural field model

To gain theoretical insights into how the drift term and sampled dis-
tribution are related to sensory input and synaptic weights, we con-
sider a continuous neural field model®, which captures some features
of the spiking circuit model, including the distance-dependent
synaptic coupling and a localized activity pattern (bump activity)
that moves randomly in the presence of noise. The continuous neural
field model with one spatial dimension is described as

M s / ' JO¢, X)F[U), pdx’ +1(x), (27)

ot
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where u(x, t) represents the synaptic current, J(x,x’) is the synaptic
coupling function, p is the neural density, /(x) is the feedforward input
current, and F is a quadratic neural activation with divisive normal-
ization. We consider the following form of synaptic coupling
Jox)=J(x —x)+ cJ(x, X';So), where J is a translation-invariant synap-
tic coupling function and J is a heterogeneous synaptic perturbation
centered around s, and c¢q is the strength of the perturbation.
Similarly, the feedforward input is /(x)=1+c;I(x; s;) + £(x), where ] is a
constant background input, /(x;s,) is a stimulus-dependent feedfor-
ward input centered at sy, ¢; represents stimulus contrast, and §(x) is an
additive noise; see Supplementary Information for the detailed
definitions of these terms. By applying a projection method, we obtain
an explicit analytical expression for the drift term

2 Y
yb(x): — 01&(1312(3( _51) exp _%
w@+dy” 4@ +d}) 8
A mdd? X — So)°
—cOrO\/——ZOZ(x —Sp)exp {— 4(270)2} ,
(a2 +d5) 3(a*+d

where a is the width of the homogeneous synaptic coupling, d; is the
width of the feedforward input, dy is the width of the synaptic per-
turbation, and rg is the height of the localized activity. The corre-
sponding sampled distribution is bimodal when s; and s are far apart,
in which case we can apply Laplace approximation to cast it into the
form of a Gaussian mixture

w,

PO~ B, /)4 B8 g S0 Ko o) (29)

where g(x; i, 0°) denotes a Gaussian distribution with mean u and var-
iance ¢>. The variance of each of the modes is inversely proportional to
the strength of perturbation ¢; or ¢y, with the constant of proportion-

= reu@ )’

3/2

= V@) T
2

! 4 /maddyr,

ality equal to k;= > idd , respectively. The
1

¢ 4v2dd, )

ycﬂr(a2+df)1/z
3 2
and wy = /21Ky /Co €Xp (yiﬂr%)- See Supplementary Informa-

tion for the details of the mathematical derivation of Eq. (28) and
Eq. (29).

mixture proportion is determined by w; = \/2mk, /¢, exp (

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The local field potential data used in this study are available on
Zenodo®® (https://doi.org/10.5281/zenodo.6806648). Source data are
provided with this paper.

Code availability

The code for simulations and analyses of the spiking neural circuit
model® (https://doi.org/10.5281/zenodo.6806437) and the code for
fractional Hamiltonian Monte Carlo sampling® (https://doi.org/10.
5281/zenodo.6799461) are available without restrictions on Github.
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