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ABSTRACT: Triazoles have major roles in chemistry, medicine,
and materials science, as centrally important heterocyclic motifs
and bioisosteric replacements for amides, carboxylic acids, and
other carbonyl groups, as well as some of the most widely used
linkers in click chemistry. Yet, the chemical space and molecular
diversity of triazoles remains limited by the accessibility of
synthetically challenging organoazides, thereby requiring prein-
stallation of the azide precursors and restricting triazole
applications. We report herein a photocatalytic, tricomponent
decarboxylative triazolation reaction that for the first time enables
direct conversion of carboxylic acids to triazoles in a single-step,
triple catalytic coupling with alkynes and a simple azide reagent. Data-guided inquiry of the accessible chemical space of
decarboxylative triazolation indicates that the transformation can improve access to the structural diversity and molecular complexity
of triazoles. Experimental studies demonstrate a broad scope of the synthetic method that includes a variety of carboxylic acid,
polymer, and peptide substrates. When performed in the absence of alkynes, the reaction can also be used to access organoazides,
thereby obviating preactivation and specialized azide reagents and providing a two-pronged approach to C−N bond-forming
decarboxylative functional group interconversions.
KEYWORDS: carboxylic acids, radical reactions, triazoles, photocatalysis, visible light

Development of new synthetic methodologies has a
profound effect on organic synthesis, drug discovery,

and materials science. In particular, new functional group
interconversions can reveal previously inaccessible chemical
space.1−3 However, direct interconversions that provide access
to the target functionality in one step and by means of simple
catalytic processes remain underrepresented, and multiple
steps involving protection, preactivation, and handling reactive
intermediates, are typically required to achieve synthetic
goals.4,5

Triazoles have recently emerged as some of the most
synthetically important and versatile heterocycles. The
structural similarity, rigidity, stability toward enzymatic
cleavage, and the presence of both hydrogen bond donor
and acceptor sites have rendered the triazole ring a key
bioisosteric replacement for amides, carboxylic acids, and other
carbonyl compounds.6−10 Following the seminal studies by
Huisgen,11,12 the development of the copper-catalyzed azide
alkyne cycloaddition (CuAAC) in the context of click
chemistry13−26 has facilitated access to triazoles and unraveled
a plethora of applications as chemically robust linkers for
bioconjugation, as well as in the areas of molecular recognition,
catalysis, chemical sensing, polymer chemistry, and conducting
materials (Figure 1).27−36 Given the central role of organo-
azides in the cycloaddition reaction, the triazole-based click
chemistry relies heavily on the availability of azides that can be

challenging to prepare and handle and require additional
synthetic manipulations to access, which limits the accessible
chemical space of triazoles and impedes potential triazole-
based click chemistry applications.37

A reaction that directly converts carboxylic acids to triazoles
by a tricomponent coupling with alkynes and a simple azide
source could obviate the isolation and handing of organo-
azides, enable previously unknown one-step bioisosteric
replacement of carboxylic acid with triazoles, and dramatically
increase the triazole accessible chemical space because of the
substantial structural diversity and abundance of carboxylic
acids in natural products, industrial feedstocks, biological
macromolecules, and commodity polymers.
We hypothesized that such a tricomponent direct decarbox-

ylative triazolation could be accomplished by a triple catalytic
process that entails direct decarboxylative azidation and
subsequent cycloaddition with alkynes. However, the combi-
nation of the two processes into one multicatalytic process is

Received: November 7, 2022
Revised: February 7, 2023
Accepted: February 8, 2023
Published: February 16, 2023

Articlepubs.acs.org/jacsau

© 2023 The Authors. Published by
American Chemical Society

813
https://doi.org/10.1021/jacsau.2c00606

JACS Au 2023, 3, 813−822

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hang+T.+Dang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Viet+D.+Nguyen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Graham+C.+Haug"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hadi+D.+Arman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Oleg+V.+Larionov"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/jacsau.2c00606&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00606?ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00606?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00606?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00606?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00606?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jaaucr/3/3?ref=pdf
https://pubs.acs.org/toc/jaaucr/3/3?ref=pdf
https://pubs.acs.org/toc/jaaucr/3/3?ref=pdf
https://pubs.acs.org/toc/jaaucr/3/3?ref=pdf
pubs.acs.org/jacsau?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/jacsau.2c00606?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/jacsau?ref=pdf
https://pubs.acs.org/jacsau?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


challenging because of the mismatch between the oxidatively
mediated azidation and the oxidant-intolerant CuI-catalyzed
cycloaddition that is instead diverted to a Glaser-type alkyne
dimerization.16−20 Additionally, an efficient photocatalytic
system would be needed that can both facilitate direct
decarboxylation of difficult-to-oxidize carboxylic acids to
bypass the typically required preactivation to more reactive
carboxylic acid derivatives38−63 and also be compatible with
the organoazide- and triazole-forming catalytic cycles.
Importantly, the successful development of direct, tricompo-
nent conversion of carboxylic acids to triazoles necessitates a
broad-scope, direct decarboxylative azidation of carboxylic
acids that is tolerant to oxidation-sensitive processes and is
mediated by a simple inorganic azide source. Such a process
remains unknown, as decarboxylative azidation has previously
required preactivation of carboxylic acids and specialized azide
reagents and has had a limited substrate scope, in particular
with respect to carboxylic acids that do not bear stabilizing α-
heteroatom substituents.64−70 Furthermore, although photo-
catalytic decarboxylative N-alkylation has recently emerged as a
new direction for the construction of N-heterocycles by C−N
bond-forming reactions, the scope of heterocyclic products
remains limited.39,53

We report herein the development of an unprecedented
triple catalytic direct decarboxylative triazolation reaction that
enables one-step conversion of a wide range of carboxylic acids
to triazoles in a tricomponent coupling with alkynes and a
simple and inexpensive azide source. The scope of the
carboxylic acids includes small molecule, peptide, and polymer
substrates, thereby pointing to applications that can take

advantage of the abundance of the carboxylic group in
biological and materials settings for the introduction of
functional payloads. Importantly, the interrupted version of
the reaction conducted in the absence of the alkyne produces
organoazides directly from carboxylic acids and, for the first
time without the need for specialized azide reagents, provides
access to valuable synthetic intermediates and opening avenues
for further functionalization.

■ RESULTS AND DISCUSSION
Analysis of the chemical space that is accessible by specific
reactions and subsequent collation with the known product
chemical space and the accessible chemical space of other
reactions can provide important information about the
synthetic potential of chemical methodologies and guide the
development of new reactions.71−73 The recently developed
PARSE (Prospective Analysis of Reaction Scope) tool enables
facile mapping of the accessible chemical space using molecular
weight (MW), molecular complexity (Cm),

74 and fraction of
sp3 carbon atoms (Fsp3)75 as descriptors76 and subsequent
comparison between different reactions and with the total
chemical space of expected reaction products.56 Importantly,
while the same chemical space can potentially be accessed by a
sequence of several reactions, PARSE studies are limited to the
comparison of direct transformations, which is in line with the
main goal of such studies, that is, to inform and guide the
development of more efficient synthetic methodologies for
direct functional group interconversions.58 Additionally,
PARSE studies are intrinsically limited to the investigation of
the product chemical space that can be accessed by direct
transformations from the known reactant chemical space
regardless of individual experimental conditions that are used
to mediate the transformation. Given the focus on the
underlying chemical transformation as a main design feature,
PARSE does not provide information on the efficiencies of
individual synthetic methods (i.e., specific sets of reaction
conditions enabling the transformation), or outcomes of
reactions with specific substrates. Instead, it informs about
the characteristics of the product chemical space (e.g.,
geometric diversity and molecular complexity) that can be
accessed by different direct transformations leading to a given
product class, thereby enabling comparison of their accessible
chemical space, as well as structural limitations, with regard to
the types of accessible products. In this context, PARSE
provides a quantitative, data-based analysis of reaction product
chemical space that cannot be gleaned from simple comparison
of relative sizes of reactant libraries or intuition and is an
additional analytical tool in the growing set of quantitative
cheminformatics approaches to reaction exploration.71−73,77−80

To gain insight into the potential synthetic impact of the
direct decarboxylative triazolation on the accessible triazole
chemical space, a PARSE study was first carried out wherein a
data set of triazoles that are accessible from Pubchem-derived
data sets of known carboxylic acids and alkynes was generated
by means of a reaction SMARTS81-based protocol. The
triazolation-accessible triazole chemical space was then
compared with the chemical space of known triazoles and
the chemical space of triazoles that are accessible by the
cycloaddition of azides with alkynes as one of the most
common methods of triazole construction (Figure 2). The
PARSE study revealed a substantially more densely populated
chemical space for the carboxylic acid-derived triazoles
compared with the known triazoles (Figure 2A), especially in

Figure 1. Triazoles and the direct decarboxylative triazolation. (A)
Applications of triazoles. (B) Huisgen and CuAAC routes to triazoles.
(C) Direct decarboxylative triazolation and azidation.
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the area of higher molecular complexity that describes
structural and functional group content, and a broad
representation across the Fsp3 scale, which indicates that
decarboxylative triazolation can provide access to comple-
mentary and more structurally complex triazole chemical
space. This conclusion is supported by a comparison of the
population density plots obtained by kernel density estimation
(KDE) of the probability density function (PDF)82 of the
distribution of the triazolation-accessible (Figure 2B) and
known triazoles (Figure 2C) in the Fsp3/Cm chemical space
that points to the greater density of structures in a higher
molecular complexity region and broader distribution in the
upper Fsp3 region for the triazolation-accessible products
(Figure 2B). Additionally, greater geometric diversity is also
observed for the triazolation-accessible triazoles (Figure 2D),
especially in the disk and sphere regions that are typically
underrepresented in current drug discovery applications.83

Similar trends are observed when the triazole chemical space
that is accessible by the cycloaddition of azides and alkynes is
compared with the chemical space of the triazolation-accessible
triazoles (Figure 2D,E). Notably, triazolation provides access

to a more densely populated chemical space because of a
greater abundance of carboxylic acids. Taken together, the
PARSE study indicates that direct decarboxylative triazolation
can provide access to broad triazole chemical space, is
complementary to current synthetic methods for triazole
construction, and can facilitate construction of more
structurally diverse libraries for drug discovery applications.
Following up on the results of the PARSE study, we next

sought to identify the reaction conditions that enable
decarboxylative triazolation (Figure 3). Experimental studies

revealed that carboxylic acid 1a and alkyne 2a can be
converted to triazole 3a in 93% yield (86% isolated yield) in
a reaction with potassium azide catalyzed by acridine A1 and a
copper(I) salt in the presence of tert-butyl perbenzoate
(TBPB) as an oxidant and 400 nm LED light in a mixture
of acetonitrile and trifluorotoluene. Acridine A1 emerged as an
optimal photocatalyst, with o-chloro analogue A2 providing
similar levels of reaction efficiency, while more hindered
acridine A3 gave a lower yield of triazole 3a. Notably, other
photocatalysts (e.g., Ru and Ir complexes, eosin Y, and
4CzIPN) did not catalyze the reaction,84 which underscores
the versatility of the acridine photocatalytic system. Light and
both acridine and copper catalysts were essential for the
catalytic process. Furthermore, while warmer reaction
conditions (e.g., 45 °C) had a beneficial effect on the reaction
efficiency, the reaction at room temperature still delivered the
product in a synthetically useful yield. By contrast, other
solvents and azide sources resulted in a substantially lower
reaction performance.
The scope of the reaction was evaluated next with a range of

carboxylic acids and alkynes (Schemes 1 and S1). Primary
aliphatic and benzylic carboxylic acids bearing ester, halogen,
and unprotected phenol and indole groups were suitable
substrates (3b−3k). Notably, N-methyltriazoles can be easily
accessed from acetic acid by the tricomponent decarboxylative
triazolation (3k) with acetic acid, thereby bypassing handling
of the reactive and difficult to isolate methyl azide. Secondary
carboxylic acids also produced the corresponding triazoles 3l−
3v in good yields. Both cyclic and acyclic secondary acids were
equally reactive, and α-heteroatom-substituted as well as
benzylic substrates were tolerated. Similarly, cyclic tertiary

Figure 2. PARSE study of the accessible triazole chemical space of the
direct decarboxylative triazolation of known carboxylic acids and
alkynes (red/orange), known triazoles (purple), and the cycloaddition
of known azides and alkynes (blue). Higher population density (PDF)
is represented by darker colors. (A) The Cm/Fsp3/MW plot for the
direct decarboxylative triazolation of known carboxylic acids and
alkynes (red/orange) and known triazoles (purple). (B) The
population density plot for the decarboxylative triazolation-accessible
triazoles. (C) The population density plot of known triazoles. (D)
Geometric diversity population analysis for known (purple) and
decarboxylative triazolation-accessible triazoles. (E) The Cm/Fsp3/
MW plot for the direct decarboxylative triazolation of known
carboxylic acids and alkynes (red/orange) and the cycloaddition of
known azides and alkynes (blue). (F) Geometric diversity population
analysis for the azide-derived (blue) and decarboxylative triazolation-
accessible triazoles.

Figure 3. Direct decarboxylative triazolation. (A) Acridine photo-
catalysts. (B) Influence of other reaction parameters. Reaction
conditions: alkyne 2a (0.2 mmol), carboxylic acid 1a (0.4 mmol),
potassium azide (0.4 mmol), A1 (10 mol %), tert-butyl perbenzoate
(TBPB) (0.4 mmol), MeCN/PhCF3 (3:1) (2 mL), LED (400 nm),
16 h. Yields were determined by 1H NMR with 1,4-dimethoxybenzene
as an internal standard. aIsolated yield.
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acids, including those featuring strained small rings were
efficiently converted to triazoles (e.g., 3w−3y), while acyclic
tertiary acids were unsuitable for the triazolation. The reaction
also tolerated a broad array of alkynes. Aromatic alkynes
featuring halogen, cyano, hydroxy, ester, and the medicinally
relevant trifluoromethyl and trifluoromethoxy groups all
produced the corresponding triazoles (3b−3f, 3i−3r, 3w−
3y). Aliphatic alkynes were also suitable coupling partners (3g,
3h, 3s−3v). Importantly, the reaction can also be extended to
alkynes bearing silyl and boryl groups, which affords facile

access to triazoles 3u and 3v that may be used for subsequent
functionalizations.85−87

The synthetic scope and functional group tolerance of the
reaction were further examined with an array of natural
products and active pharmaceutical ingredients (Scheme 2).
The reaction enabled a smooth conversion of a number of
nonsteroidal anti-inflammatory drugs and (hetero)aromatic
and aliphatic alkynes to the corresponding triazoles, featuring
pyridyl, boryl, and unprotected carbazole and hydroxy groups,
as well as indole (4a−4q). Notably, cis-pinonic acid underwent

Scheme 1. Scope of Carboxylic Acids and Alkynes in the Direct Decarboxylative Triazolation

aReaction conditions: alkyne (0.3−0.4 mmol), carboxylic acid (0.2 mmol), potassium azide (0.3 mmol), A1 (10 mol %), Cu(MeCN)4BF4 (10−15
mol %), TBPB (0.24 mmol), MeCN/PhCF3 (2−3:1, 1.8−3 mL), LED (400 nm), 45 °C, 16 h. bAlkyne (0.2 mmol), carboxylic acid (0.4 mmol),
potassium azide (0.4 mmol), A1 (10 mol %), Cu(MeCN)4BF4 (10−15 mol %), TBPB (0.4 mmol), MeCN/PhCF3 (2−3:1, 1.8−3 mL), LED (400
nm), 45 °C, 16 h. cWith dtbpy (10−15 mol %). dWith bpy (15 mol %). eAcetone (2 mL) as a solvent. fMeCN/PhCF3/H2O (2:1:1, 2 mL) as a
solvent. gWith A3 (10 mol %) as a photocatalyst.
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a clean conversion to triazole 4g without the previously
documented concomitant ring-opening of the intermediate
alkyl radical,52 thereby pointing to a rapid radical capture.
Derivatives of fructose and menthone also readily produced
triazoles 4h and 4i. Amino acids can also be used as substrates
to produce triazole analogues of proline and glutamic acid 4j
and 4k. Similarly, aleuritic acid afforded triazole 4l. Alkynyl-
group-containing substrates can also be converted to triazole
analogues, as shown for dehydro-β-linalool (4m), the
anticancer drug erlotinib (4n), and the progestin drug
ethisterone (4o), thereby demonstrating functional group
tolerance of the reactive enone and diarylamine groups that
may also undergo decarboxylative N-alkylation and alkyl
addition reactions. Likewise, the unprotected bile acids readily
produced triazoles 4p and 4q. Importantly, the reaction can be
carried out with either acid or alkyne as a limiting reagent and
used to access triazoles on the gram scale (4o and 4q). The
addition of nitrogenous ligands (e.g., bpy and dtbpy) also

improved the reaction performance for some less reactive
substrates (3d, 3i, 3k−3m, 3r, 3u, 3w−3y, 4h, 4i, 4n−4q,
5a−5e). Acetone also proved to be an optimal solvent for
acetic acid (3k) and tertiary carboxylic acids (e.g., 3w−y),
while 9-mesitylacridine (A3) was the catalyst of choice for
triazole A3. These results indicate that further improvements
of the reaction efficiency can be achieved for specific substrates
by adjusting key reaction parameters, for example, the ligand,
solvent, and photocatalyst.
The azide−alkyne cycloaddition-based click chemistry has

emerged as an important tool in biorthogonal chemistry and
for grafting applications in materials science that require
preinstallation of the azide or alkyne group in the biomolecule
or polymeric material of interest.27 We hypothesized that the
new decarboxylative triazolation reaction could enable direct
introduction of alkyne-tethered probes by taking advantage of
unprotected carboxylic acid groups that are present in peptides
and polymers. Indeed, decarboxylative triazolation was readily

Scheme 2. Functionalization of Natural Products and Drugs by Direct Decarboxylative Triazolation

aReaction conditions: alkyne (0.3−0.4 mmol), carboxylic acid (0.2 mmol), potassium azide (0.3 mmol), A1 (10 mol %), Cu(MeCN)4BF4 (10−15
mol %), TBPB (0.24 mmol), MeCN/PhCF3 (2−3:1, 1.8−3 mL), LED (400 nm), 45 °C, 16 h. bAlkyne (0.2 mmol), carboxylic acid (0.4 mmol),
potassium azide (0.4 mmol), A1 (10 mol %), Cu(MeCN)4BF4 (10−15 mol %), TBPB (0.4 mmol), MeCN/PhCF3 (2−3:1, 1.8−3 mL), LED (400
nm), 45 °C, 16 h. cWith dtbpy (10−15 mol %). dWith bpy (15 mol %). eMeCN/PhCF3/H2O (2:1:1, 2 mL) as a solvent. fWith A3 (10 mol %) as a
photocatalyst. g1.1:1 dr. h80% yield on a 1.5 mmol scale.

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.2c00606
JACS Au 2023, 3, 813−822

817

https://pubs.acs.org/doi/10.1021/jacsau.2c00606?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.2c00606?fig=sch2&ref=pdf
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.2c00606?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


accomplished with a range of tri-, tetra-, and pentapeptides
bearing a terminal proline residue (5a−5d), thereby indicating
that the reaction can be used for click-decarboxylative coupling
with alkynes (Scheme 3). Similarly, a fluorescent coumarin

probe was successfully grafted on a styrene−acrylic acid
copolymer (5e), which points to potential applications in
polymer upcycling and development of new advanced
materials.88

To test if azides are formed as intermediates in the
decarboxylative triazolation, the reaction was carried out in
the absence of the alkyne coupling partner (Scheme 4). A
range of azides were produced, which points to azides as
reactive intermediates. Acyclic and cyclic aliphatic and benzylic
acids were readily converted to the corresponding azides (6a−
6l), including those derived from active pharmaceutical
ingredients (6h−6l), thereby indicating that the reaction
affords access to versatile azide analogues that can be used for
further structural diversification.
Experimental and computational studies were carried out to

further clarify the mechanism of the reaction. Experiments with
TEMPO in a reaction of acid 7 and alkyne 8 suppressed
formation of triazole 9, which confirmed the intermediacy of
alkyl radicals in decarboxylative triazolation (Figure 4A).

Furthermore, kinetic measurements pointed to a significant
accumulation of azide intermediate 10 prior to the formation
of triazole product 9, which suggests that the organoazide−
alkyne cycloaddition is inhibited in the early stages of the
triazolation process (Figure 4B) and points to the prevalence
of the CuII species that is an intermediate in the oxidatively
mediated azidation catalysis (vide infra) but is not catalytically
active in the azide alkyne cycloaddition.16−19,37

The two-phase decarboxylative azidation/cycloaddition
process is consistent with the experiments that ruled out an
alternative pathway, that is, formation of a 1H-triazole
intermediate with subsequent decarboxylative N-alkylation
(Figure 4C). 1H-Triazole 11 was not detected in the reaction
mixture under the standard reaction conditions, as the aprotic
medium suppresses the formation of hydrazoic acid because of
the low acidity of carboxylic acids in such solvent systems (cf.,
pKa = 7.9 for HN3 and 12.3 for AcOH).

89 Indeed, formation of
1H-triazole typically requires a polar aqueous medium and
temperatures >100 °C.90,91 In line with this conclusion, no
hydrazoic acid was detected in the reactor headspace under the
reaction conditions of decarboxylative triazolation. Further-
more, a decarboxylative N-alkylation of triazole 11 proceeded
with a very low yield under the triazolation reaction conditions
and produced a mixture of N-alkyl regioisomers (Figure 4C).
Computational studies were further carried out to clarify the

mechanistic roles of an inner sphere radical addition/reductive
elimination pathway and an outer sphere radical polar
crossover mechanism that involves a carbocation intermediate
formed by single-electron transfer from the alkyl radical to CuII
(Figure 4D). Given the differences between the oxidation
potentials of aliphatic and benzylic radicals, calculations were
conducted for both types of systems. Following an exergonic

Scheme 3. Direct Decarboxylative Triazolation of Peptide
and Polymer Substrates

aReaction conditions: alkyne (0.3−0.4 mmol), carboxylic acid (0.2
mmol), potassium azide (0.3 mmol), A1 (10 mol %), Cu-
(MeCN)4BF4 (10−15 mol %), TBPB (0.24 mmol), MeCN/PhCF3
(2−3:1, 1.8−3 mL), LED (400 nm), 45 °C, 16 h. bAlkyne (0.2
mmol), carboxylic acid (0.4 mmol), potassium azide (0.4 mmol), A1
(10 mol %), Cu(MeCN)4BF4 (10−15 mol %), TBPB (0.4 mmol),
MeCN/PhCF3 (2−3:1, 1.8−3 mL), LED (400 nm), 45 °C, 16 h.
c30.4% triazole content. d1.1:1 dr. e1.2:1 dr. f1:1 dr.

Scheme 4. Direct Decarboxylative Azidationa

aReaction conditions: carboxylic acid (0.2 mmol), A2 (10 mol %),
Cu(MeCN)4BF4 or Cu(hfac)2 (10 mol %), KN3 (0.3 mmol), TBPB
(0.24 mmol), MeCN/PhCF3 (3:1), LED (400 nm), 25−27 °C, 16−
24 h.
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formation of CuI intermediate 12 from precursor 13,92

oxidation with TBPB produces CuII species 14 along with
tert-butoxy radical that regenerates the acridine photocatalyst
from acridinyl radical HA (Figure 5). Subsequent barrierless
capture of the alkyl radical by CuII intermediate 14 was
exergonic for the ethyl radical (15) but endergonic for a
secondary benzylic radical (16). Conversely, the reductive
elimination occurred over a lower barrier from benzylic
intermediate 16 (TSA, ΔG‡ = 6.3 kcal/mol), while the barrier

was somewhat higher but also readily accessible for ethyl
intermediate 15 (ΔG‡ = 9.6 kcal/mol), which resulted in a
highly exergonic formation of alkyl azide products 17 and 18
and CuI species 19. By contrast, the dissociative single electron
transfer (DET) pathways proceeded with prohibitively high
barriers (e.g., ΔG‡ = 36.2 kcal/mol for ethyl and 20.0 kcal/mol
for 1-phenylethyl radical) and resulted in an exergonic
generation of the corresponding carbocations, thereby pointing
to the kinetically more favorable radical inner sphere pathway
for the azide formation.
Taken together, the experimental and computational studies

indicate that the acridine-photocatalyzed decarboxylative
triazolation generates an alkyl radical that is subsequently
converted to the organoazide intermediate by a radical copper-
catalyzed pathway (Figure 5), thereby resulting in the
regeneration of the acridine photocatalyst via a hydrogen
transfer by tert-butoxy radical. The ensuing uptake of the
intermediate organoazide into the third catalytic cycle in a
reaction with copper acetylide15−17 (e.g., generated in a
reaction of basic benzoate 19 with the alkyne93) results in the
formation of the triazole product.

■ CONCLUSION
In conclusion, we have developed a decarboxylative
triazolation reaction that enables a previously inaccessible
direct conversion of carboxylic acids to triazoles by a
tricomponent coupling with alkynes and a simple azide
reagent. The scope of the reaction encompasses a wide range
of alkynes and carboxylic acids, including polymer and peptide

Figure 4. Kinetic and computational studies of direct decarboxylative triazolation. (A) Radical trapping experiments with TEMPO. (B) Kinetic
profile of the decarboxylative triazolation reaction of acid 7 and alkyne 8. (C) Decarboxylative coupling with triazole 11. (D) Computed Gibbs free
energy profile of the decarboxylative azidation process (ΔG, kcal/mol).

Figure 5. Catalytic system for the direct decarboxylative triazolation.
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substrates, while a data-driven inquiry of the triazolation-
accessible chemical space suggests that further development of
the direct transformation may lead to an expansion of the
structural diversity and molecular complexity of the accessible
triazole chemical space. Mechanistic studies point to a triple
catalytic process that entails an acridine photocatalysis-driven
decarboxylative radical generation, followed by a sequence of
two mutually incompatible copper catalytic cycles, that is, an
oxidatively mediated azidation and an oxidant-intolerant
cycloaddition whose merger is facilitated by a two-phase
process. The reaction can be readily adapted for the
construction of versatile yet synthetically challenging organo-
azides without the need for preactivation and specialized azide
reagents, thereby opening new directions to further develop-
ment of multicatalytic functional group interconversions of
carboxylic acids.

■ METHODS

General Procedure for the Direct Decarboxylate
Triazolation
Potassium azide (0.3 mmol) was added to a solution of carboxylic
acid (0.2 mmol), the acridine photocatalyst (0.02 mmol, 10 mol %),
Cu(MeCN)4BF4 (0.02 mmol, 10 mol %), alkyne (0.3−0.5 mmol),
and tert-butyl peroxybenzoate (78 mg, 0.24 mmol) in acetonitrile/
trifluorotoluene (3:1 v/v, 1.8−3 mL) (0.3 mmol) in an 8 mL test tube
equipped with a stir bar. The reaction mixture was degassed by briefly
passing argon on the solution surface. The test tube was capped, and
the reaction mixture was irradiated with LED light (λ = 400 nm)
while stirring at 45 °C for 16−36 h. The reaction mixture was then
cooled to rt, and a saturated solution of EDTA disodium salt adjusted
to pH 7.5 with sodium hydroxide (1.5 mL) was added, followed by
ethyl acetate (10 mL). After extraction with ethyl acetate (3 × 10
mL), the organic phases were combined, dried over anhydrous
sodium sulfate, concentrated under reduced pressure, and the
remaining material was purified by column chromatography on silica
gel to give the triazole product.
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