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Abstract

Psoriatic arthritis (PsA) is a complex disease where susceptibility is determined by genetic and envir-

onmental risk factors. Clinically, PsA involves inflammation of the joints and the skin, and, if left un-

treated, results in irreversible joint damage. There is currently no cure and the few treatments available

to alleviate symptoms do not work in all patients. Over the past decade, genome-wide association

studies (GWAS) have uncovered a large number of disease-associated loci but translating these find-

ings into functional mechanisms and novel targets for therapeutic use is not straightforward. Most

variants have been predicted to affect primarily long-range regulatory regions such as enhancers.

There is now compelling evidence to support the use of chromatin conformation analysis methods to

discover novel genes that can be affected by disease-associated variants. Here, we will review the

studies published in the field that have given us a novel understanding of gene regulation in the con-

text of functional genomics and how this relates to the study of PsA and its underlying disease

mechanism.
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Introduction

Psoriatic arthritis (PsA) is a chronic autoimmune disease

with a high disease burden [1–4] and major impacts

both to the patients’ quality of life and economic and

social impact to the society. It is characterized by a

combination of psoriasis and arthritis. The disease is

clinically heterogeneous, causing it to be frequently con-

fused with similar diseases such as other forms of arth-

ritis or psoriasis [5, 6]. The biological mechanism behind

the disease is not well understood, but it is known that

PsA has a strong, complex genetic component with a

very high genetic heritability [7, 8]. Family studies have

shown that people with a first degree relative affected
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by PsA have 30–55 times the risk of developing PsA

compared with the general population [9–13].

Genome wide association studies (GWAS) have identi-

fied a significant part of the genetic factors that lead to

the disease [14–19] (Table 1). The main association is

with HLA class I genes, which was already discovered

by earlier family studies [21]. A meta-analysis published

in 2015 subsequently identified the loci that distinguish

PsA from cutaneous psoriasis [14]. For example, PsA

lacked associations with TNFRSF9 and LCE3C/B that

are present in psoriasis and has different HLA-C associ-

ations. Importantly they found that, in the IL23R and

TNFAIP3 loci, PsA had independent signals compared

with psoriasis, suggesting a different mechanism acting

in the same loci. Nevertheless, the majority of the loci

still overlap with psoriasis. In the same year, a larger

study with almost 2000 PsA patients was published [19].

In this study they used the custom genotyping chip

Immunochip, which targeted specific autoimmune-

associated loci with a much higher resolution and identi-

fied many genome-wide significant loci, such as the

5q31 loci that is specific to PsA (Table 1).

Linking variants to function

Despite the success of GWAS studies in identifying the

genetic variants that are linked to PsA, understanding

how the associated genetic variants affect the underly-

ing biological mechanisms is not straightforward. Only a

small proportion of the variants associated with complex

traits identified by GWAS affect coding sequence of pro-

teins. Farh et al. [22] produced an important study in

this field, mapping GWAS signals from 21 autoimmune

diseases and estimating that 90% of them affected non-

coding regulatory regions with the majority (60%) affect-

ing enhancer regions in immune related cells [22]. This

makes understanding the disruptive effect of disease-

associated variants intricate because many of these

regulatory elements can act at long range through chro-

matin interaction mechanisms [23–30]. Other mecha-

nisms are also possible in a minority of the loci, such as

variants affecting long non-coding RNAs (lncRNA) and

microRNAs (miRNA). For example, in rheumatoid arthritis

there have been reports of genetic variants affecting the

miRNA miR-146a [31] and the lncRNA C5T1lncRNA [32].

The simplest method to link variants to functional effect

and their target genes is correlating the genetic makeup of

different individuals with the expression levels of genes in

a specific tissue or cell type (expression quantitative trait

loci or eQTL) (Fig. 1B). The most comprehensive study in

this regard is the Genotype-Tissue Expression (GTEx) pro-

ject, which analysed a large number of tissues from recent-

ly deceased people and correlated RNA expression levels

with their genotype [33]. More specific studies with larger

sample sizes were done with whole blood [34–36] and

other immune cells [37–39], discovering tens of thousands

of genetic variants that regulate gene expression. Although

there are several limitations, such as the need of large

sample sizes to draw statistically significant conclusions

and the high cost, eQTL studies have been fundamental in

describing many principles of gene regulation, including:

. Some eQTLs are stimulation responsive and cell-type
specific [38, 40–44]. For example, Schmiedel et al.
found that 41% of the identified genes showed a strong
cis-association with genotype only in a single cell type
out of the 13 analysed [38], while Fairfax et al. showed
that more than half of the eQTLs identified on primary
monocytes were apparent only after stimulation [44].
This demonstrates that experiments on cells in resting
state will not show all the possible associations.

. eQTLs do not always link the nearest gene to the
single-nucleotide polymorphism (SNP), so it is not ac-
curate to assign the disease-associated variants to the
nearest gene [35, 42, 43].

Many studies have tried to link disease-associated

variants to genes in specific cell types, especially for

TABLE 1 Currently known genome-wide significant (P-value < 5� 10�8) GWAS loci for PsA outside the HLA locus [14, 19]

Loci Lead SNP Putative candidate gene

chr1: 24192153 [14] rs7552167 IFNLR1

chr1: 67135003-67193271 [19] rs12044149 IL23R
chr1: 113834946 [20] rs2476601 PTPN22
chr5: 132083255-132220510 [19] rs715285 P4HA2

chr5: 151085340-151093041 [19] rs76956521 TNIP1
chr5: 159337169-159339014 [19] rs4921482 IL12B

chr6: 31317371 [14] rs12191877 RPL3P2, WASF5P
chr6: 111259358-111587679 [19] rs33980500 TRAF3IP2
chr12: 56116134-56360038 [19] rs2020854 STAT2, IL23A

chr14: 34756277-35418710 [14] rs8016947 NFKBIA
chr19: 10349293-10366391 [19] rs34725611 TYK2

Multiple associations are present in HLA-A, B and C, which are also the strongest associations. The putative candidate
genes were mostly determined by mapping the closest or overlapping gene, which might be inaccurate. Coordinates in

hg38 genome build. Many loci such as rs9321623 (TNFAIP3) had a P-value of 6�10�8 so they have been omitted from
this table.
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FIG. 1 Using functional genomics to describe GWAS loci

(A) A typical GWAS loci usually consists of many variants in high linkage disequilibrium and frequently far away from

any genes, which can make the interpretation of the association challenging. (B) It is possible to use a combination of

functional genomics techniques to study these loci, such as: chromatin activity to identify which SNPs are functionally

relevant and in which cell types; eQTLs to correlate genotype with changes in gene expression; and chromatin con-

formation to identify regulatory domains that determine which genes can be affected. (C) These methods combined

with others allow us to identify the functional importance of GWAS associations in the disease.
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autoimmune diseases. Because eQTLs are context spe-

cific, some studies have used cells derived from patients

to discover specific links with disease associated loci.

For example, Thalayasingam et al. mapped eQTLs in

CD4þ T cells and B cells from 344 patients with untreat-

ed RA identifying a number of candidate genes linked to

variants associated with RA [45]. In PsA, Bowes et al.

mapped their novel disease associated loci using cell-

type specific eQTLs from CD4þ and CD8þ primary T

cells [19]. Another study mapped eQTLs in skin tissues

from psoriasis patients and looked at overlap with psor-

iasis GWAS results, finding significant enrichment of

psoriasis GWAS SNPs in their eQTL dataset, with

effects on the expression of genes such as FUT2,

RPS26 and ERAP2 [46]. Immune cells are of a particular

interest in autoimmune diseases and a large number of

disease-associated variants have been found to overlap

eQTLs in these cells [38, 47]. A summary of eQTLs over-

lapping disease associated variants in PsA is reported in

Table 2.

However, eQTL studies have failed to capture all

GWAS loci and, although GWAS SNPs are significantly

enriched in eQTLs [34, 38, 44, 48], only 20–50% of

GWAS SNPs overlap with an eQTL. Moreover, a major

drawback of eQTLs is that they only prove correlation

and not causation and are also biased towards large ef-

fect sizes.

Variations of QTL analysis methods have been pro-

posed that correlate genotype with other factors such

as histone modification levels (hQTL) [49, 50] and chro-

matin accessibility (caQTL) [51–53], and, as expected,

many eQTL were also hQTLs and caQTLs. More inter-

estingly, Alasoo et al. showed that 60% of stimulus-

specific eQTLs were caQTLs in naı̈ve cells, suggesting

that they could perturb enhancer priming [40].

An alternative to eQTL analysis is to functionally de-

scribe the mechanisms by which variants can affect

genes; for example, using chromatin conformation

techniques.

Using chromatin conformation methods
to map target genes

As stated previously, the majority of disease-associated

variants are predicted to affect regulatory regions such

as enhancers [22]. Enhancers are regulatory elements

that are bound by transcription factors and have long

been known to regulate genes by long-range effects [29,

54–56]. These elements were initially identified from viral

sequences and were found to ‘enhance’ transcription of

nearby elements [57]. Identifying enhancers is challeng-

ing due to the lack of accurate computational prediction

methods, and due to the fact that they are very context

and cell-type specific [40, 41, 58]. Identification of

enhancers is frequently done by probing the presence

of histone tail modifications or the presence of bound

transcription factors [58, 59]. Tools such as

RegulomeDB [60] and HaploReg [61] have annotated all

known SNPs with known functional elements in a variety

of cell lineages and produce a score based on the likeli-

hood that a particular SNP affects a functional element.

Nevertheless, identifying the targets of enhancers has

been challenging. Although it was established very early

on that enhancers regulate genes at a distance, it

wasn’t immediately clear how this activity was mediated.

With the development of chromatin conformation techni-

ques, it was demonstrated that enhancers interact phys-

ically with their target promoters and that these

interactions were cell-type specific. A summary of chro-

matin conformation techniques is presented in Table 3.

With the development of more advanced techniques

and higher resolution Hi-C data, it was shown that the

contact domains and loops are highly variable and cell-

type specific [68–70]. Other studies have shown that it is

possible to reconstruct the lineage of primary blood cell

types by interactions alone, and that these interactions

are highly cell-type specific [23] and change with differ-

entiation [71, 72] and activation [73]. Moreover, they

found that the number or intensity of interactions with

TABLE 2 Currently known immune and skin eQTL signals overlapping PsA associated variants

Variant Genes

rs12044149 IL23R [35], MIER1 [35]

rs715285 SLC22A5 [33, 35, 36, 38], DC42SE2 [35], P4HA2 [35, 39], IRF1 [35], AC116366.6 [33, 35], SHROOM1
[35], LYRM7 [35], RAD50 [35], KIF3A [35], PDLIM4 [33]

rs76956521 TNIP1 [35, 39], SLC36A1 [35]
rs4921482 RNF145 [35]

rs33980500 KIAA1919 [35], C6orf3 [33, 35], REV3L [35], TRAF3IP2 [39]
rs2020854 SPRYD4 [35, 36, 39], STAT2 [35, 36], CNPY2 [35, 36, 39], RBMS2 [35, 36], PAN2 [35], SUOX [35],

MYL6B [35], COQ10A [35], STAT6 [35], CDK2 [35], RPS26 [35], CS [39]
rs8016947 KIAA0391 [35, 36], SRP54 [35], PPP2R3C [35, 39]

rs34725611 TYK2 [35, 39], ICAM3 [35], CDC37 [35], TMED1 [35], SLC44A2 [35], PDE4A [35], KEAP1 [35], MRPL4
[35], AP1M2 [35], PDE4A [38], CTC-215O4.4 [38]

rs7552167 IFNLR1 [33, 35, 38], IL28A [36]
rs12191877 MICB [36, 38], HCG27 [38], HLA-S [33], PSORS1C1 [33], HLA-B [33], ZBTB12 [33], CDSN [33]

Data was collected from the following relevant databases: eQTLgen [35], DICE [38], GTeX v7 [33], Westra 2013 [36] and
Lappalainen 2013 [39].
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active enhancers correlated with expression levels of

genes [23, 73, 74]. We now know that multiple

enhancers can interact simultaneously with a single pro-

moter [75] and that a single enhancer can regulate mul-

tiple genes at the same time within the same chromatin

domain [76]. Live imaging studies have also shown that

interactions are highly dynamic and transient [76, 77].

Recent evidence gathered using ChIP-Seq and RNA-

Seq data from a large set of genotyped cell-lines has

shown that regulatory activity is highly associated within

well-delimited cis-regulatory domains. These domains

respect many features found in chromatin conformation,

such as topologically associating domains (TADs), inter-

action intensity and compartments [78]. Moreover, they

find that the activity and structure of these cis-

regulatory domains are partly determined by the genetic

makeup of individuals [78]. Similarly, a study has shown

that genetic variants are associated with differences in

chromatin conformation [79].

These studies have also begun to link disease-

associated variants to specific interacting genes and

have shown that it is possible to use this information to

prioritize genetic targets from non-coding GWAS SNPs.

Importantly, this list of variant-gene interactions redis-

covers 25% of previously reported eQTLs [23]. Because

the 3 D chromatin conformation and enhancer-promoter

interactome is highly context specific, with many

enhancers regulating different genes in different tissues,

many studies have interrogated the enhancer-promoter

interactome on disease specific tissues such as cardio-

myocytes [80, 81] for cardiovascular diseases and pan-

creatic islets [82, 83] for diabetes, and have shown that

disease-associated loci are significantly enriched in

regulatory regions active in those tissues. In their recent

publication, Montefiori et al. linked 1999 cardiovascular

disease-associated SNPs to 347 target genes in human-

induced pluripotent stem cell derived cardio-myocytes,

remarkably showing that 90% of variants did not target

the nearest gene [80]. More recently, a group has shown

that genetic variants associated with Type 1 Diabetes

alter the chromatin conformation at disease-associated

loci in a mouse model [84].

Other studies used region CHi-C [24, 25, 28, 65, 85,

86], targeting specific disease-associated loci to better

identify causal genes that interacted with non-coding

regulatory elements that could be disrupted by the var-

iants. To date, only one study has investigated PsA-

associated loci [24]; in two cell lines (B and T cells) 116

regions associated with autoimmune diseases including

PsA were found to interact with at least one gene pro-

moter. For example, the locus 6q23, which contains var-

iants linked to PsA, RA, SLE, celiac disease, T1D, IBD

and Ps, was previously assigned to TNFAIP3. In their

work, McGovern et al. showed that this region also

interacts with IL20RA, as well as showing a significant

eQTL effect [25]. Another variant associated with PsA

within the DENND1B gene was linked to PTPRC, a gene

previously shown to be involved in RA [24]. A summary

of the results from this paper for PsA-associated loci is

available in Table 4. Although previous studies have

shown strong evidence for the use of disease-relevant

tissues, no study to date has used tissues derived from

PsA patients.

Experimental confirmation is required to confirm the

effect of the putative enhancers on the identified genes.

Currently available methods include eQTL analysis,

measuring the effect that deletions of the enhancers can

have on the expression of interacting target genes, and

other gene editing (CRISPR) derived methods that use

fusion proteins to specifically activate or repress

enhancers [41, 87, 88]. In a recent study, Mumbach

et al. used a deactivated Cas9 protein (dCas9) fused

with a KRAB domain that functions as a repressor

(CRISPRi) to target three enhancers and show that it

caused a reduction of transcription from interacting

genes [27].

Another limitation that is often present in chromatin

conformation studies is the separation of functional

TABLE 3 Summary of the techniques used to analyse chromatin conformation

Technique Description Type

3C [62] First technique developed on which future techniques were based. The chromatin
is first digested with enzymes and then re-ligated such that interacting regions
are re-ligated together. The resulting products are analysed by quantitative
polymerase chain reaction (qPCR) to quantify the frequency of interactions

One to one

4C [63] Same as 3C, but resulting products are analysed by microarray to test the inter-
actions originating from one region with the rest of the genome.

One to all

Hi-C [64] Same as 3C, but the resulting products are fragmented and sequenced. This pro-
duces the most comprehensive analysis genome wide, but requires significant
sequencing efforts to map all possible interactions across the whole genome.

All to all

Capture Hi-C [65] Same as Hi-C, but the library is first enriched for specific regions to focus the
sequencing efforts to regions of interest such as promoters or disease-associ-
ated loci.

Many to all

ChIA-PET and
HiChIP [26, 27, 66, 67]

Same as Hi-C, but the library is enriched using a chromatin immunoprecipitation
step; for example, markers of active regions of the genome. HiChIP is similar to
ChIA-PET but provides significant improvements over it.

Many to many/all
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annotation and chromatin conformation analysis. Most

use publicly available annotation [58, 59] to annotate

results and the majority use either cell lines or primary

cells from healthy donors instead of patient samples.

This can lead to missing important regulatory elements

that could be disease specific.

Nevertheless, combining different forms of functional

genomics studies has the potential to translate the

results from GWAS studies into understanding of the

mechanisms of disease (Fig. 1).

Impact on drug discovery

Treatment options for PsA and other autoimmune dis-

eases are limited and often not effective for all patients.

In particular, most current treatment options are com-

posed of broad-spectrum anti-inflammatory drugs or

target very few pathways (Table 5). This is a result of

the poor understanding of the mechanisms and path-

ways involved in the disease and the high failure rate in

drug development. Right now, only 10% of drugs that

start clinical trials reach patients, with >50% failing at

late stages [90, 91], primarily due to inadequate efficacy

[90]. This has led to extremely high cost of drug devel-

opment and stagnation of new development due to the

high economic risk.

Recently, a new wave of optimism has been brought

thanks to the genetic dissection of complex diseases.

Contrary to traditional methods of target identification,

which use phenotypic data that are subject to confound-

ing and environmental effects, genetic susceptibility

factors are stable biomarkers that can provide clues to

causality as well as providing information about path-

ways that are perturbed in disease and therefore could

be targets for therapy. Moreover, GWAS studies have

been designed from the ground up to obtain high statis-

tical confidence thanks to factors such as adequate cor-

rection for multiple testing and appropriate sample

sizes. This resulted in high reproducibility of results [92],

which is in contrast to the current medical research

trend [93, 94].

About 22% of the protein-coding genes are druggable

by conventional drugs [95], and the percentage could

become even higher as methods based on RNA inhib-

ition are developed. Moreover, repurposing of available

drugs can significantly speed the path to patient benefit

because they have already been safety tested and

chemically characterized.

Different studies have begun to exploit GWAS results to

produce a new list of possible drug targets for coronary

artery disease (CAD) [96], Parkinson’s disease [97] and

RA [98], often rediscovering most of the drugs currently in

use for treating these disorders. Promising results have

been already obtained with a number of diseases. In PsA,

for example, the identification of genetic associations in

the IL-23 pathway provided genetic evidence for the repo-

sitioning of biologic drugs targeting components of this

pathway in PsA [99]. Another inhibitor of IL-17A originally

developed for Ps, RA and uveitis has been repurposed for

use in ankylosing spondylitis [100].

Most studies to date have not used functional genom-

ics to link variants to candidate genes, relying often on

TABLE 4 Genes linked to PsA-associated loci via region capture Hi-C

Lead SNP Interacting genes

rs2020854 COQ10A, BAZ2A, ANKRD52, NABP2, ORMDL2, ZC3H10, SMARCC2, RP11, SLC39A5, CS, RNF41,
PAN2, PA2G4, RN7SL770P, ESYT1, GLS2, MIP, TIMELESS, SPRYD4, SARNP

rs33980500 RP11, REV3L, KIAA1919, TUBE1

rs4921482 ADRA1B, GAPDHP40
rs76956521 ANXA6

Data from CD4 T cells and B cells obtained from Martin et al. [24].

TABLE 5 Currently available drugs for PsA [89]

Drug Mechanism

Nonsteroidal anti-inflammatory drugs (NSAIDs) Anti-inflammatory
Corticosteroids Anti-cortisol / Anti-inflammatory

Methotrexate Inhibition of purine metabolism – inhibition of T-cell activation
Sulfasalazine Immunosuppressive
Cyclosporine T-cell suppressant / calcineurin–phosphatase pathway inhibition

Leflunomide pyrimidine synthesis inhibitor / slows rapidly replicating lymphocytes
Etanercept, adalimumab, golimumab, infliximab and

certolizumab
TNF alpha inhibitors

Abatacept B7 protein inhibitor(antagonist) / blocks activation of T-cells

Ustekinumab IL-12 and IL-23 inhibitor
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empirical methods such as choosing the closest or over-

lapping genes. As explained previously, this can often

lead to incorrect conclusions about the functional gene

and, more frequently, missing out genes that could have

been potentially targeted. This is starting to change with

the development of new methods that utilize functional

annotation and chromatin conformation to discover

genes and pathways that can be targeted disease. A re-

cent publication from Martin et al. has used CHi-C data

to identify potential drug targets in RA, JIA and PsA

[101]. Using their approach, they have rediscovered 48

known drug targets and 87 potential new drugs for PsA.

Another recent publication has developed a new way to

prioritize target genes using a network connectivity met-

ric [102] and, by analysing genetic and functional data

from 30 other immune traits, rediscovered many known

targets and predicted activity in high-throughput

screens.

Conclusion

Over the last decade, genetic studies have identified a

significant number of loci associated with PsA that have

greatly improved our understanding of the disease

mechanism. However, PsA has a low prevalence and is

clinically heterogeneous and difficult to distinguish from

psoriasis. For this reason, it has been understudied

compared with other diseases such as RA, T2D and IBD

for which there have been a great number of new loci

identified and many more potential drug targets identified.

Moreover, there are still many obstacles to overcome

to accomplish the full potential of functional genomics,

such as limitation in current techniques and analysis

methods, but recent discoveries, especially in the field

of basic biology (such as chromatin conformation regu-

lation), will surely provide a new wave of functional tar-

gets (or discoveries) for complex diseases.

Thanks to these we will have a better understanding

of the underlying mechanism of the diseases, the cell

types actively involved in disease progression and dis-

cover novel drug targets that can expand our repertoire of

tools to combat PsA. A better understanding of the dis-

ease and its genetics will also aid in the stratification of

patients for existing therapies, which is going to be par-

ticularly important in a disease that is as varied as PsA.
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