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LETTER TO TH E EDITOR

Matrisomal genes in squamous cell carcinoma of head and
neck influence tumor cell motility and response to
cetuximab treatment

Dear Editor,
Head and neck squamous cell carcinoma (HNSCC) is

the sixth most common cancer globally [1, 2]. Despite
the improvement in treatment modalities, up to 50% of
HNSCC patients still develop recurrent/metastatic (R/M)
disease [3], and platinum-based chemotherapy with cetux-
imab and/or pembrolizumab has become the standard of
care [4]. However, R/MHNSCC is challenging to treat, the
prognosis is poor, and there is an unmet need for new ther-
apeutic targets.
The extracellular matrix (ECM) has emerged as a favor-

able target for cancer therapy [5]. The ECM proteins are
dysregulated and derived from cancer cells to promote
tumor growth and expansion [6]. We previously reported
a 29-gene tumor matrisome index (TMI) that impacts
prognosis and predicts the clinical outcomes of 11 can-
cer types [7, 8]. The 29 genes comprised of collagens,
glycoproteins, proteoglycans, matrix metalloproteinases
(MMP), secreted factors, and ECM-affiliated proteins. This
TMI has not been explored in HNSCC, and how indi-
vidual components contribute to tumor development is
not well-understood in HNSCC. In this work, we exam-
ined the prognostic application of TMI in HNSCC and
the influence of matrisome components MMP1 (intersti-
tial collagenase) andMMP12 (macrophage elastase) on the
metastatic potential of HNSCC lines and the response to
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platinum and cetuximab therapy. The experimental details
are provided in the SupplementaryMaterials andMethods,
including the characteristics of patient-derived HNSCC
cell lines (Supplementary Table S1) and primer sequences
used for expression quantification in quantitative real-
time-polymerase chain reaction (qRT-PCR) experiments
(Supplementary Table S2).
Using the expression array data for a cohort of cases

with squamous cell carcinoma of the tongue [9], we found
that tumor tissues had a higher TMI than normal tissues
(Figure 1A), consistent with prior reported data in other
cancers [7]. Using the receiver operating characteristics
(ROC) curve, TMI could distinguish cancers from nor-
mal tissues with an area under the curve (AUC) of 0.970
(Figure 1B), demonstrating promising diagnostic utility.
Distinct TMI values were observed across different sub-
populations of HNSCC, including HNSCC1 (a mixture of
locally advanced and earlier stage), HNSCC2 (metastatic),
and HNSCC3 (locally advanced) (Figure 1C). Importantly,
the TMI stratified tongue carcinoma patients into low- and
high-risk groups based on the risk of relapse (Figure 1D),
potentially allowing closer follow-up of patients at high
risk. The performance of TMI across diagnosis and stage
was further validated in The Cancer Genome Atlas-
Head and Neck Squamous Cell Carcinoma (TCGA-HNSC)
dataset corroborating the significance of TMI in patient
stratification (Supplementary Figure S1A-D).
The TMI maintained an excellent diagnostic perfor-

mance, irrespective of transcriptomics profiling platforms.
Five machine learning models were trained using the
microarray-derived expression profile of TMI-comprising
genes from the tongue carcinoma dataset and tested on
the RNA-seq-derived TCGA-HNSC dataset (Supplemen-
tary Figure S1E-G, Supplementary Table S3). The logistic
regressionmodel achieved the highest AUC of 0.965 in dif-
ferentiating HNSC from normal tissues, while the remain-
ing models had AUC ranging from 0.747 (support vector
machine) to 0.909 (random forest).
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F IGURE 1 Effect of matrisomal genes on prognosis, tumor metastasis and drug response in HNSCC. (A-D) Diagnostic performance of
TMI and patient stratification using patient-derived tongue carcinoma data. P-values were assessed by the Mann-Whitney-Wilcoxon test and
the number of samples (n) are stated. (A) TMI of normal and tumor tissues. (B) The area under the ROC curve (AUC) of the TMI. The AUC
value and the optimal cut-off are stated. (C) TMI of normal and subpopulations of tumor tissues. HNSCC1 (a mixture of locally advanced and
earlier stage), HNSCC2 (metastatic), HNSCC3 (locally advanced). (D) Distribution of TMI and patient stratification. The optimal cut-off of
TMI is stated. (E) Heatmap representing mRNA expression of TMI-comprising genes in six patient-derived HNSCC lines and a normal
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To validate the in silico observations, the expression of
29 TMI-comprising genes (obtained from 2 previous stud-
ies[7, 8]) in six patient-derived HNSCC lines (NCC-HN1,
NCC-HN19, NCC-HN26, NCC-HN43, NCC-HN64, NCC-
HN90) relative to a normal squamous epithelial cell line
(Het1A) was examined. Using qRT-PCR, 17 genes had
detectablemRNAexpression in all patient-derivedHNSCC
cell lines, and they were all differentially expressed in at
least one HNSCC line (Figure 1E). In particular, MMP1
and MMP12 upregulation were most robust, with a >10-
fold increase in multiple HNSCC lines (Supplementary
Table S4). Immunohistochemistry staining of HNSCC tis-
sues including the tongue, floor of the mouth, hypophar-
ynx and larynx confirmed thatMMP1 andMMP12 proteins
were overexpressed in tumor tissues, compared to paired
adjacent normal tissues (Figure 1F, Supplementary Figure
S2).
To understand how MMP1 and MMP12 promote tumor

progression in HNSCC, MMP1 and MMP12 expression
were depleted by siRNA, and the effects on migration,
invasion and proliferation were examined. Using in vitro
transwellmigration, wound healing,matrigel invasion and
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium
bromide (MTT) assays, MMP1 knockdown showed no
obvious effects on the migration, invasion and prolifer-
ation of NCC-HN26 cells, despite NCC-HN26 exhibiting
high endogenous MMP1 expression (Supplementary
Figure S3), leading us to hypothesize that MMP1 could be
functioning redundantly with another MMPx (possibly
other collagenases). In the absence of MMP1, other MMPs
that digest similar substrates (e.g., MMP13) or work in
the same process could still compensate for the function
of MMP1 to promote tumor growth and progression. In
contrast, MMP12 knockdown significantly reduced the
migration and invasion of NCC-HN26 cells relative to the
control (Figure 1G, Supplementary Figure S4A-C), but
had no obvious effect on the proliferation of NCC-HN26
(Supplementary Figure S4D). To confirm knockdown
efficiency and ensure these observations were not cell-
line-specific, we repeated the experiments in NCC-HN1
and NCC-HN19 cells and found that the results were
consistent (Supplementary Figure S4E-N). We further

performed a double knockdown of MMP1 and MMP12 to
test for synergistic effects on tumor cell migration, inva-
sion and proliferation. However, the double knockdown
did not cause further reduction in migration, invasion
and proliferation of NCC-HN26 cells compared toMMP12
single knockdown (Supplementary Figure S5). Together,
these results suggest that MMP12 may promote tumor
progression in HNSCC.
We next examined whether MMP1 or MMP12 depletion

affected the sensitivity of HNSCC lines to cisplatin and
cetuximab. MMP1 knockdown had no obvious effects on
response to cisplatin and cetuximab in most HNSCC lines
(Supplementary Table S5, Supplementary Figure S6). In
contrast, MMP12 knockdown significantly improved the
response of the five HNSCC cell lines (NCC-HN26, NCC-
HN1, NCC-HN43, NCC-HN64, NCC-HN90) to cetuximab
while no obvious effect on cisplatin response was observed
(Figure 1H-L, Supplementary Figure S6). To confirm that
MMP12 inhibition improves the sensitivity of HNSCC cells
to cetuximab, we carried out a combinatorial drug treat-
ment using MMP408 (specific MMP12 inhibitor) at four
concentrations (0-0.01mmol/L) and cetuximab at 11 con-
centrations (0-0.02mmol/L).We found a significant reduc-
tion in the IC50 (half-maximal inhibitory concentration)
values of cetuximab at higher concentration of MMP408
across several HNSCC lines (Supplementary Table S6, Sup-
plementary Figure S7).
We also examined the prognostic significance ofMMP12

expression in the TCGA-HNSC cohort (n = 520). We
stratified the patients into two risk groups, MMP12low
and MMP12high (Supplementary Figure S8A), using Cut-
offFinder as previously described [7, 8]. The two groups
had significantly different disease-free interval (DFI; HR
(Hazard Ratio) = 3.02; log-rank P = 0.058; Supplemen-
tary Figure S8B). We further performed multivariate Cox
regression survival analyses to adjust for other clinical
variables such as clinical stage, targeted treatment, and
subsite (Supplementary Table S7-S8). As the multivari-
ate analyses involving all the above-mentioned factors
returned infinite coefficients, we performed survival anal-
yses independently adjusting for different sets of covari-
ates and found thatMMP12 expression could be a potential

squamous epithelial line Het1A. The mRNA expression was normalized to beta-actin and the log2 fold change was calculated relative to
Het1A.MMP1 andMMP12 were robustly upregulated across all HNSCC lines. (F) Immunohistochemistry staining of MMP1 and MMP12 in
paired tongue tumor and normal tongue tissue. MMP1 and MMP12 were overexpressed in the tongue tumor. Scale bar represents 50μm. (G)
siRNA againstMMP12 significantly reduced the migration, invasion and wound healing ability relative to control in NCC-HN26 cells. (H-L)
IC50 values in response to cetuximab.MMP12 knockdown improved the sensitivity of HNSCC cells to cetuximab. Error bars represent
standard error mean (SEM). The asterisks represent statistical significance (***: P ≤ 0.001, **: P ≤ 0.01, *: P ≤ 0.05, ns: P > 0.05).
Abbreviations: HNSCC, head and neck squamous cell carcinoma; TMI, tumor matrisome index; ROC, receiver operating characteristic; AUC,
area under the curve; mRNA, messenger ribonucleic acid; siRNA, small interfering ribonucleic acid; IC50, half-maximal inhibitory
concentration; SEM, standard error mean
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independent indicator of prognosis (log-rank P = 0.08 and
0.05, respectively). Of the 520TCGA-HNSCcases analyzed,
there were only 18 cetuximab-treated cases with available
DFI survival data, with one patient having experienced the
event (i.e. death), resulting in the infinite regression coeffi-
cients. Using the disease-specific survival (DSS) endpoint,
we found that the probability of survival inMMP12high and
MMP12low cetuximab-treated group (cutoff = 8.4) was 0.72
and 0.82 respectively, demonstrating a 10% survival dif-
ference between the two risk groups stratified by MMP12
(Supplementary Table S9). We performed Cox regression
survival analyses to examine the prognostic performance
of HNSC subsite andHPV (Human Papillomavirus) status.
Due to limited data, however, it was not possible to observe
any significant difference in cetuximab-treated patients
(Supplementary Table S10).
Consistent with our current study, a previous report has

also implicated MMPs in conferring resistance to cetux-
imab in HNSCC [10]. Johansson et al. [10] showed that
HNSCC cells treated with cancer-associated fibroblasts
(CAF) conditioned media promoted resistance to cetux-
imab treatment. The addition of a general MMP inhibitor
to CAF conditioned media partially abolished the resis-
tance to cetuximab in HNSCC cells, indicating that MMPs
mediated this resistance [10]. However, the conditioned
media collected from CAFs treated with MMP1 siRNAs
failed to improve the response of HNSCC to cetuximab,
suggesting that otherMMPs could bemediating cetuximab
resistance [10]. Our results suggest that MMP12 may influ-
ence resistance to cetuximab.
In conclusion, MMP12 may promote tumor migration

and invasion of HNSCC. Inhibition of MMP12 enhanced
the sensitivity of HNSCC cells to cetuximab. These results
suggest that MMP12 overexpression may flag more aggres-
sive disease that cannot be improved by cetuximab treat-
ment alone, and that inhibition of MMP12 in addition to
the EGFR axis may improve clinical outcomes of HNSCC
patients.
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