
entropy

Article

A Cooperative Coevolutionary Approach to
Discretization-Based Feature Selection for
High-Dimensional Data

Yu Zhou 1, Junhao Kang 1 and Xiao Zhang 2,3,*
1 College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China;

yu.zhou@szu.edu.cn (Y.Z.); 1800271054@email.szu.edu.cn (J.K.)
2 College of Computer Science, South-Central University for Nationalities, Wuhan 430074, China
3 Hubei Provincial Engineering Research Center for Intelligent Management of Manufacturing Enterprises,

Wuhan 430074, China
* Correspondence: xiao.zhang@my.cityu.edu.hk

Received: 28 April 2020; Accepted: 28 May 2020; Published: 1 June 2020
����������
�������

Abstract: Recent discretization-based feature selection methods show great advantages by introducing
the entropy-based cut-points for features to integrate discretization and feature selection into one
stage for high-dimensional data. However, current methods usually consider the individual features
independently, ignoring the interaction between features with cut-points and those without cut-points,
which results in information loss. In this paper, we propose a cooperative coevolutionary algorithm
based on the genetic algorithm (GA) and particle swarm optimization (PSO), which searches for
the feature subsets with and without entropy-based cut-points simultaneously. For the features
with cut-points, a ranking mechanism is used to control the probability of mutation and crossover
in GA. In addition, a binary-coded PSO is applied to update the indices of the selected features
without cut-points. Experimental results on 10 real datasets verify the effectiveness of our algorithm
in classification accuracy compared with several state-of-the-art competitors.

Keywords: feature selection; genetic algorithms; particle swarm optimization; cooperative coevolutionary;
entropy-based cut-points

1. Introduction

Feature selection (FS) is an important task in machine learning, aiming to find an optimal subset
of features to improve the performances of classification [1] or clustering [2,3]. By removing those
redundant and irrelevant features, the model complexity is reduced and the overfitting in the training
process can be avoided. Current FS algorithms can be generally categorized into wrapper and filter
methods [4]. The filter approaches select the feature subset by scoring the features, and set a threshold
to select those features that meet the conditions to form the feature subset. The wrapper methods treat
FS as a search problem, generating different feature subsets and then evaluating the feature subsets
until a certain feature subset reaches the expected standard. In general, the wrapper methods can achieve
better and more robust results than the filter methods, but suffering from heavy computational burden.

For wrapper feature selection, it is essentially a combinatorial optimization problem, where the
search space for data with N features is 2N . For high-dimensional data, the search space rises
exponentially [5]. In the past few decades, it has been empirically demonstrated that evolutionary
algorithms achieved their success in many different applications, for example soft sensors [6] and
compressed sensing [7]. To overcome the shortage of traditional search methods [8,9], evolutionary
algorithms were introduced into FS, among which, particle swarm optimization (PSO) [10–12] and
genetic algorithms (GA) [13,14] are most widely adopted, due to their fast convergence [15] and

Entropy 2020, 22, 613; doi:10.3390/e22060613 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-8020-6142
http://dx.doi.org/10.3390/e22060613
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/6/613?type=check_update&version=2

Entropy 2020, 22, 613 2 of 15

powerful search capabilities [16], respectively. The core task of FS performed by evolutionary
algorithms (EAs) is to identify the indices of selected features, so discretization-based encoding in
evolutionary algorithm is desirable. The most commonly-used strategy is to apply a binary coding that
indicates whether a feature is selected or not (one or zero), such as binary PSO (BPSO) [17]. However,
for high-dimensional data, the search process is easily trapped into local optima. Another approach is
to encode the indices of selected features directly. However, this often suffers from different encoding
lengths and complicated updating rules during the search procedure, which is not very appropriate
for the high-dimensional FS problem.

Recently, discretization-based feature selection algorithms have received much attention due to
their good performance in high-dimensional data classification [18–21]. These algorithms map the
search features into that of cut-points in PSO, which are generated by the univariate discretization
algorithm MDL [22], combining feature discretization and feature selection into one stage. However,
current discretization-based FS methods treat each feature independently without taking into account
feature interaction, where the features without cut-points are not involved in the search process,
leading to information loss and limiting the classification accuracy.

In recent years, the idea of coevolution has been successfully applied in different applications
involving a large number of design variables, such as classification [23], artificial neural networks [24],
function optimization [25], and image processing [26]. Cooperative coevolutionary algorithms
(CCAs) decompose the original problem into subproblems with less decision variables. During the
optimization process, CCAs are usually composed of two or more populations, which evolve
simultaneously by applying different objectives or search methods and allow interaction, trying to
obtain a global solution after combining the respective final solutions together. More related works
along CCA can be found in [27].

Inspired by this methodology, in this paper, we propose a cooperative coevolutionary
discretization-based FS algorithm (CC-DFS), which searches the subset of features with cut-points and
without cut-points simultaneously. In our method, at first, the discretization technique is used to obtain
the features with and without cut-points. Then, GA is applied to search the features with cut-points
where a reset operation is used to jump out of local optima, and an individual scoring mechanism
is introduced to control the probability of crossover and mutation. For features without cut-points,
a binary-coded PSO is applied to update the indices of the selected features without cut-points.
The final selected feature subset is composed of the results obtained by evolving both populations.
Experimental studies on 10 real-world datasets demonstrate the superiority of our proposed approach
in classification accuracy compared with some state-of-the-art discretization-based FS methods.

2. Background

2.1. Particle Swarm Optimization

PSO [28] is a population-based stochastic algorithm that searches the decision space by simulating
the flight of birds in nature. In PSO, the population maintains a set of particles, each of which represents
a feasible solution in the decision space. A fitness function of these particles is used to guide the search.
The particle with the best fitness value in the population is selected as gbest, and the best individual
fitness value achieved by each particle will be recorded as pbest. Each particle has a position vector
and a velocity parameter, which are randomly initialized. The velocity parameter is updated according
to pbest and gbest in each iteration as follows:

vt+1
id = w× vt

id + c1 × rand× (pt
id − xt

id) + c2 × rand× (gt − xt
id) (1)

xt+1
id = xt

id + vt+1
id (2)

where xt
id and vt

id represent the position and velocity of particle i in dimension d at the tth iteration,
w represents the inertia weight, which indicates the effect of the current velocity on the updated

Entropy 2020, 22, 613 3 of 15

velocity, c1and c2 are acceleration coefficients used to control the effects of pbest and gbest, and rand is
a function used to generate random numbers between zero and one. The velocity is usually limited by
a preset threshold Vmax, which limits the velocity to [−Vmax, Vmax].

2.2. Genetic Algorithm

The genetic algorithm (GA) [29] is a heuristic search algorithm inspired by natural selection and
biological inheritance, which provides a powerful search capability to find near optimal solutions
in complex and large search spaces [16]. GA maintains a set of candidate solutions in a population,
which are used to explore the decision space. Individuals (or chromosomes) in a population represent
a set of feasible solutions to the problem, and next-generation individuals are produced through
operators such as crossover and mutation. In addition, a fitness function is used to evaluate the quality
of the individual, and those individuals with better fitness function values are selected to participate in
the next iteration process. The bit-flip mutation [30] and discrete crossover [31] operations are shown
in Figure 1 and Figure 2, respectively. In bit-flip mutation, a parent with binary encoding randomly
selects a gene to flip it from zero to one, and vice versa. In discrete crossover, two parents are randomly
selected to generate one offspring, and the offspring randomly selects genes from both parents.

Figure 1. Bit-flip mutation. Each gene of an individual has a certain probability to perform the
flip operation.

Figure 2. Discrete crossover. Two individuals X and Y are selected as parents, and genes are selected
from the parents to produce offspring.

2.3. Minimum Description Length Principle

The minimum description length (MDL) [22] is a supervised multivariate discrete algorithm,
which finds the cut-points that satisfy the minimum description length principle (MDLP) to discretize
the data. For each feature A, the features are sorted according to the feature value, and the algorithm
selects the candidate cut-points, the feature value of which lies between instances of different classes.
The formula for calculating the information gain of the cut-point T is as follows:

Gain(T, A; S) = E(S)−|S1|
|S| E(S1)−

|S2|
|S| E(S2) (3)

where E(S) denotes the entropy of dataset S and |S1| and |S2| represent the number of samples of each
part after the dataset S is divided into two sample subsets by the cut-point T.

The algorithm divides the dataset recursively until the cut-point cannot pass the MDLP
criterion. Feature values that satisfy the MDLP criteria are used as our cut-points to discrete datasets.
MDLP criteria are calculated based on Equation (4).

Entropy 2020, 22, 613 4 of 15

Gain(T, A; S) >
log2(|S| − 1)

|S| +
δ(T, A; S)
|S| (4)

δ(T, A; S) is calculated by (5).

δ(T, A; S)= log2(3
ks−2)−[ksE(S)−ks1E(S1)−ks2 E(S2)] (5)

where Ks denotes the number of classes present in S and S1 and S2 represent the two sample subsets
after the sample S is divided.

2.4. Discretization-Based FS Algorithms

In the past few years, discretization-based algorithms have demonstrated great potential to deal
with high-dimensional data, such as EPSO [19] and PPSO [18].

In EPSO, individuals in the population are encoded as real numbers that are within the range of
feature values. As shown in Figure 3, the particle’s position of F1 is −21, falling within its feature value
range, which represents selecting feature F1 and using this value to discretize the corresponding feature.

During the update process, if the value of the particle in a dimension exceeds the upper or lower
limit of the feature, the value is set to the corresponding upper or lower limit. When the value of the
particle in a dimension is equal to the upper or lower limit, the feature is discarded, because when the
feature is discretized with the upper limit or the lower limit of the feature value, the discrete values of
the feature are equal, which means that it cannot contribute to classification.

EPSO directly uses features to evolve the cut-points, which results in a huge search space.
PPSO introduced the MDL algorithm to select the features with cut-points and encode the position
of cut-points in the search space of PSO. Individuals in the population are encoded by the cut-point
table, as shown in Figure 4. The MDL algorithm was initially used to calculate the cut-point table
of features as shown on the left side, where #P represents the number of cut-points for each feature,
and C1, C2, and C3 represent the index of the cut-point for the features. If the value exceeds the range
of the cut-point index during the particle update process, it is set to zero, which means the feature is
not selected. For instance, the value of F3 is two, which indicates that the cut-point C2 for F3 is selected
to discretize the feature; the value for F1 is zero, which means that the feature is discarded.

Figure 3. The particle representation of EPSO.

Figure 4. The particle representation of PPSO.

Entropy 2020, 22, 613 5 of 15

3. Proposed Method

Although discretization-based FS algorithms have achieved good results in high-dimensional
data, the absence of features without cut-points causes information loss, which affects the classification
accuracy negatively. The discretization process treats each feature independently, and some groups or
pairs of weak features may have a greater impact on the classifying performances than one individual
strong feature; therefore, features that do not have cut-points or participate in the discrete process are
likely to contribute to the classification task. In this section, we introduce the details of our proposed
cooperative coevolutionary discretization-based FS (CC-DFS) method, which considers searching the
feature subset from the features with and without cut-points simultaneously. The pseudocode of
CC-DFS is presented in Algorithm 1, and Figure 5 shows a flowchart of our algorithm.

Figure 5. Overview of our proposed method.

Algorithm 1: The pseudocode of the proposed CC-DFS.
Input : Training set
Output : Selected feature subset and the cut-points table
begin

Cut-points table← calculated by MDL;
Initialize the population G and P of GA and PSO, respectively;
while Stopping criteria are not met do

if Meet the reset condition then
if rand < 0.5 then

Set individuals that perform operations and cross operations on G to zero
vectors of equal length.

for Each individual i do
Gi ← Offspring from parent through mutation (15) and crossover.
Pi ← Particle updating by using Equations (1) and (2)

else
Set gbest of P to zero vectors of equal length.
for Each individual i do

Gi ← Offspring from parent through mutation (15) and crossover.
Pi ← Particle updating by using Equations (1) and (2)

else
for each individual i do

Gi ← Offspring from parent through mutation (15) and crossover.
Pi ← Particle updating by using Equations (1) and (2)

Update pbest of G and P.
Select N individuals from G and form a feature subset PG with P.
Update gbest of PG.

Output the selected feature subset and the cut-points table.

Entropy 2020, 22, 613 6 of 15

3.1. Representation of an Individual

CC-DFS was designed to search both the features with and without cut-points, simultaneously.
For simplicity, we denote the features with cut-points by discrete features and the features without
cut-points by continuous features. To achieve this, the whole decision space A is divided into two
parts, where decision space D contains discrete features, while decision space C contains continuous
features. The population is encoded using two different encoding methods where the discrete features
use the encoding way of PPSO and the continuous features use binary encoding. As shown in Figure 6,
for feature F5, one means to select the cut-point with Index 1 in the cut-point table to discretize the
data and for F6; it means selecting the cut-point with Index 2 in the cut-point table. The features with
a value of zero mean not selecting a cut-point to discretize the feature and for continuous features,
and zero means discarding the feature, while one means selecting the feature. At last, these two parts
are combined into one vector to represent a feature subset.

Figure 6. The particle’s representation of our algorithm.

3.2. Fitness Function

The fitness function plays a vital role in the population update process. It is used to evaluate
and guide the population update. In the FS problem, we want to use fewer features to maintain a
better or competitive classification accuracy than all the features. Considering the above issues, we use
the distance [32] and balanced−error to guide individual updates. These two objective functions use
weight aggregation [33–35] as the fitness function as shown in (6), where the smaller the fitness value,
the better the individual’s performance.

f itness = (β× balanced−error + (1− β)× distance) (6)

where β is a weight coefficient to combine the balanced−error and distance. balanced−error and distance
are calculated by (7) and (8), respectively.

balanced−error =
1
n

n

∑
i=1

FPi
|Si|

(7)

distance =
1

1 + exp−5(DW−DB)
(8)

DB =
1
|N|

|N|

∑
i=1

min
{j|j 6=i,class(Vi) 6=class(Vj)}

Dis(Vi, Vj) (9)

DW =
1
|N|

|N|

∑
i=1

max
{j|j 6=i,class(Vi)=class(Vj)}

Dis(Vi, Vj) (10)

where n denotes the number of the classes, FPi represents the number of misclassified samples in class
i, |Si|means the number of samples in each class, |N| denotes the number of samples, DB represents

Entropy 2020, 22, 613 7 of 15

the distance between each sample in the data and its nearest sample of different classes, and DW
represents the distance between each sample in the data and its farthest sample of the same class.

In CC-DFS, since two different encoding methods for FS are performed for two different decision
spaces, the calculation of Dis(Vi, Vj) is also different from each other. As Dis(Vi, Vj) represents the
distance between two feature subset vectors Vi and Vj, for discrete features, the Hamming distance
is applied for discrete features, while the Euclidean distance is calculated for continuous features.
In addition, the historically optimal positions of discrete and continuous feature subset individuals
are recorded as pbest. The population optimal record of the feature subset of discrete and continuous
feature combinations is gbest, where its discrete feature part is called dbest as the pbest of discrete
individuals and the continuous part cbest as the pbest of continuous feature individuals.

3.3. Updating Strategy

For discrete features and continuous features, due to the easy implementation and fast convergence,
GA and PSO are employed to search their feature subset, respectively.

3.3.1. Search in Discrete Features

Different from the traditional GA algorithm, we propose a novel mutation and crossover operation.
In our method, each individual in the population is scored using a ranking function, where individual
scores are used to control their probability of mutation and crossover. Inspired by the ranking function
in [36], considering that the population’s variability becomes lower with the increase of iterations,
an adaptive scoring mechanism is introduced, which aims to reduce the mutation and crossover
probability of each dimension in the later stage shown as follows:

Pci = Lmin + Lmax× exp
10(r−1)

S−1 −1
exp10−1

(11)

Lmax = Lmax− t
It
× Lmax (12)

where Lmin and Lmax control the upper and lower limits of the score, S represents the number of
populations, r is the individual’s ranking, t is the number of current iterations, and It is the maximum
number of iterations. In this paper, the lower the fitness value is, the higher the individual ranks.
Each dimension of individuals in the population takes its ranking as a probability to decide whether to
perform mutation and crossover operations. It is guaranteed that individuals with high rankings have
a lower probability of performing mutation and crossover in each dimension, and individuals with
low rankings perform a higher probability of mutation and crossover.

The particle encoding range of discrete features is an integer between [0, # C]; therefore, for the
mutation operation, traditional bit-flip mutation is not suitable. For each dimension of the individual,
we randomly select two other individuals in the population, and the one with the better fitness value
performs the mutation operation with the current individual. The mutation operation is similar to the
update operation in [37]. The formula is as follows:

cht+1
id =

{
N (µ, σ)

pat
id

rand < 0.5
otherwise

(13)

where cht+1
id represents the value of the individual i in dimension d after t iterations, pat

id represents
the value of parent i in dimension d at the tth iteration, and the mean of the two values performing
the mutation operation as µ; the absolute value of the gap as σ, rand is to generate a random number
between [0,1], which represents a 50% probability that each dimension of the individual chooses to
use the Gaussian function, and there is a 50% probability that the value of the offspring is directly set
to the value of the parent at the current position. In the cross operation, we use the ranking function

Entropy 2020, 22, 613 8 of 15

of each individual of the population as the cross probability of the individual. When each gene of
the individual performs the cross operation, two other individuals are randomly selected, and then,
the highest ranked individual and the current individual perform a crossover operation. In this way,
for higher ranking individuals, the crossover probability is lower; while for lower ranking individuals,
the crossover probability is higher.

3.3.2. Search in Continuous Features

For continuous feature search, we use binary coding and then use BPSO to search for the continuous
feature subset. The difference between BPSO and traditional PSO is that the position update of the
particles no longer depends on the position of the previous moment, but the sigmoid function is
used to map the velocity to the probability to determine the value of the particle’s current dimension.
The formula is as follows:

St
id =

1

1 + e−vt
id

(14)

xt
id =

{
1
0

rand <St
id

otherwise
(15)

where xt
id and vt

id represent the velocity of particle i in dimension d at the tth iteration. St
id represents

the probability of the ith feature being selected, and rand is used to generate random numbers between
zero and one.

3.3.3. Combination of Continuous and Discrete Features

For discrete features, 2N individuals are generated by crossover and mutation of N individuals,
and N individuals of continuous features are still N individuals after updating. Therefore, we need
to select N individuals in the GA population to form a new feature subset with continuous features.
For these discrete features, we use a distance function to measure the quality of these individuals.
The first N individuals with better distance measures are selected, and these individuals and continuous
feature individuals form a new feature subset.

3.3.4. Reset Operation

When the optimal fitness value of the population has not been improved after three consecutive
updates, we consider that the population has fallen into a local optimum. The reset operation is
introduced, and in the next update, GA and PSO will randomly choose one to perform the reset
operations. If GA is selected, for each individual in the population, the individual who performs
mutation and crossover operations with it will be a zero vector of equal length. If PSO is selected,
gbest will be set to zero in the next update. Moreover, if the particle’s optimal fitness value has not
been improved after 11 updates, the iterative process will stop to reduce the program’s running time.

4. Experimental Results and Analysis

This section introduces the details of the experiment and parameters in the algorithm. Besides,
the baseline methods for comparison with our method are introduced.

4.1. Datasets

Ten real genetic data were used to test the performances of different algorithms, which can be
downloaded from https://github.com/primekangkang/Genedata. Table 1 shows the number of
features, samples, classes, and the proportion of the smallest class and largest class. It can be observed
that most of the data were small samples and high-dimensional, and there were class imbalances.
Data were normalized before input.

https://github.com/primekangkang/Genedata

Entropy 2020, 22, 613 9 of 15

Table 1. Datasets.

Dataset # 1 of Features # of S 2 # of C 3 # of Small # of Big

SRBCT 2308 83 4 13 35
DLBCL 5469 77 2 25 75
9Tumor 5726 60 9 3 15

Leukemia 1 5327 72 3 13 53
Leukemia 2 11,225 72 3 28 39

Brain Tumor1 5920 90 5 4 67
Brain Tumor2 10,367 50 4 14 30

Prostate 10,509 102 2 49 51
Lung Cancer 12,600 203 5 3 68

11Tumor 12,533 174 11 4 16
1 # means; 2 S means the number of samples; 3 C means the number classes.

4.2. Parameter Settings and Comparison Method

The parameters of our algorithm are shown in Table 2.

Table 2. Parameter setting.

Parameter Setting

Population No. of features/20 (Limited to 300 and no less than 100)
Maximum iteration 100

c1 and c2 1.49445
β 0.5

Lmin 0.25
Lmax 0.5

Stopping criterion The fitness value of gbest not improved for 11 iterations

To test the performance of the algorithm, we used the K-NN algorithm with K = 1 as the
classifier. The feature subsets selected by the algorithm were input into the classifier to obtain the
average classification accuracy on the test set. In the experiment, we conducted a two layer 10-fold
cross-validation. At first, the whole dataset was divided into ten portions where one portion was used
for testing. Then, the other nine were divided into ten portions again, nine for training and one for
validation to calculate the training accuracy. The average testing accuracy was recorded after running
the algorithms 30 times.

The classification result of all feature input KNNwas used for comparison with our algorithm.
EPSO, deep multilayer perceptron (DMLP), PPSO, and PSO-FS [18] were used to compare with
our algorithm, and the parameters of the algorithms used for comparison were the parameters
recommended in [18]. For DMLP, the number of neurons in the input layer was set to the number of
features, and the number of neurons in the output layer was fixed at 128 as the number of selected
features. In addition, the cooperative coevolutionary using bare-bone PSO instead of GA, called
CCB-DFS, was also used for comparison, and the parameter setting was the same as CC-DFS.

4.3. Results and Analysis

In this section, we compare and analyze the results of our algorithm with respect to other
algorithms. The results are shown in Table 3, where Full means we used all feature input KNN
for classification and S represents the result of the statistical Wilcoxon significance test with a 5%
significance level, and the result of the statistical Wilcoxon significance test was a comparison of
our method with other methods, where “+” indicates that our algorithm results were better than
the compared algorithms, “−” indicates that our algorithm results were worse than the compared
algorithms, and “=” indicates that the results of the two algorithms were not significantly different.

Entropy 2020, 22, 613 10 of 15

Table 3. Experimental results. DMLP, deep multilayer perceptron; FS, feature selection; CCB-DFS,
coevolutionary discretization-based using bare-bone PSO FS. (Bold indicates the best value).

Dataset Method # of Features Best (%) Avg (std) S

SRBCT

Full 2308.0 87.08 +
DMLP 128 100.00 97.72 (1.67) +
PSO-FS 150.0 97.50 91.31 (2.71) +
EPSO 137.3 100.00 96.89 (1.64) +
PPSO 108.5 100.00 95.78 (1.96) +

CCB-DFS 168.1 100.00 99.26 (0.89) =
CC-DFS 220.6 100.00 98.90 (1.05)

DLBCL

Full 5469.0 83.00 +
DMLP 128 97.92 93.26 (3.35) −
PSO-FS 101.8 96.67 80.03 (6.13) +
EPSO 42.8 94.17 85.18 (5.46) +
PPSO 44.0 94.17 86.22 (3.58) +

CCB-DFS 85.6 96.67 90.28 (3.29) =
CC-DFS 77.6 96.67 90.37 (3.37)

9Tumor

Full 5726.0 36.67 +
DMLP 128 55.97 48.48 (5.61) +
PSO-FS 955.0 55.00 45.95 (4.93) +
EPSO 138.5 65.00 58.22 (3.12) −
PPSO 118.1 65.00 59.28 (2.08) −

CCB-DFS 314.2 58.20 52.66 (3.64) =
CC-DFS 278.0 61.48 53.78 (3.59)

Leukemia1

Full 5327.0 72.08 +
DMLP 128 97.92 91.64 (3.99) +
PSO-FS 150.0 92.22 81.60 (4.72) +
EPSO 135.9 95.56 93.37 (1.83) =
PPSO 80.4 95.42 94.37 (1.36) =

CCB-DFS 126.8 96.67 94.14 (1.35) =
CC-DFS 166.4 97.50 94.02 (1.45)

Leukemia2

Full 11,225.0 89.44 +
DMLP 128 96.94 93.48 (1.75) +
PSO-FS 150.0 93.89 86.11 (3.97) +
EPSO 139.9 94.44 89.93 (2.79) +
PPSO 86.7 100.00 96.74 (1.64) =

CCB-DFS 346.8 100.00 95.17 (2.00) =
CC-DFS 131.7 100.00 95.57 (2.09)

Brain Tumor1

Full 5920.0 72.08 +
DMLP 128 82.57 73.76 (3.69) +
PSO-FS 317.3 78.75 71.00 (3.06) +
EPSO 150.7 79.17 72.79 (3.48) +
PPSO 73.4 82.08 74.40 (3.67) +

CCB-DFS 189.5 80.58 75.90 (2.49) =
CC-DFS 187.4 83.08 76.57 (3.47)

Brain Tumor2

Full 10,367.0 62.50 +
DMLP 128 81.81 73.93 (3.25) =
PSO-FS 417.9 82.08 69.11 (5.89) +
EPSO 152.8 83.75 70.76 (5.30) +
PPSO 66.7 74.58 68.75 (4.24) +

CCB-DFS 298.6 89.17 75.75 (4.61) −
CC-DFS 138.7 83.75 72.22 (5.01)

Prostate

Full 10,509.0 85.33 +
DMLP 128 83.40 74.25 (3.21) +
PSO-FS 777.4 90.33 85.20 (2.35) +
EPSO 54.9 90.33 83.74 (3.55) +
PPSO 65.6 95.17 91.82 (1.77) −

CCB-DFS 129.8 92.50 89.06 (2.08) =
CC-DFS 180.6 92.17 88.52 (1.63)

11Tumor

Full 12,533.0 71.42 +
DMLP 128 79.36 73.69 (3.19) +
PSO-FS 1638.8 86.07 82.62 (1.70) +
EPSO 149.9 83.68 79.29 (2.11) +
PPSO 167.0 83.20 76.83 (2.91) +

CCB-DFS 1422.4 89.09 85.27 (1.92) =
CC-DFS 1890.2 87.77 84.84 (2.47)

Lung Cancer

Full 12,600.0 78.05 +
DMLP 128 81.21 73.78 (3.73) +
PSO-FS 686.2 85.73 81.72 (2.08) =
EPSO 150.8 85.58 80.60 (2.42) =
PPSO 203.0 84.11 79.38 (3.26) +

CCB-DFS 433.9 86.92 82.88 (2.13) =
CC-DFS 155.6 89.71 81.40 (3.10)

Entropy 2020, 22, 613 11 of 15

4.3.1. CC-DFS VS Full

As can be seen from Table 3, our algorithm selected fewer features, and the classification performance
was higher than using all the features on all datasets. For SRBCT, CC-DFS selected 9.5% of all features,
with the average classification accuracy of 98.9%, which was an 11.1% improvement over Full, and
the best classification accuracy reached 100%. For Leukemia1, three-point-one percent of the features
were selected, and the average classification accuracy was 94.02%. Compared with Full, the average
classification accuracy was improved by 21.94%, and the best classification accuracy was 97.50%.
For 11Tumor, the average classification accuracy increased by 13.42%, and the best classification
accuracy increased by 16.35%.

In general, CC-DFS obtained ten “+” compared to Full, which meant that the classification performance
was better than Full on all datasets.

4.3.2. CC-DFS vs. DMLP

Compared with DMLP, on eight datasets, our algorithm’s performance was better than DMLP in
average classification accuracy. For Prostate, Compared with DMLP, the number of features increased
by 52.6, but the average classification accuracy and the best classification accuracy were improved by
14.27 % and 8.77 %, respectively. For Leukemia1, although the best classification accuracy of DMLP was
improved by 0.42% compared to CC-DFS, the average classification accuracy was reduced by 2.38%.
For Brain2, although the average classification accuracy of DMLP was reduced by 1.71% compared
to CC-DFS, the best classification accuracy was improved by 1.94%. Compared with DMLP, CC-DFS
obtained eight “+”, one “=”, and one “−”.

4.3.3. CC-DFS vs. PSO-FS

Compared with PSO-FS, for seven datasets, our algorithm selected fewer features, and the
classification performance was higher. For the remaining three datasets, although the feature size
obtained by our algorithm was slightly higher, there was a significant improvement in classification
performance. For DLBCL, CC-DFS selected 1.4% of all features, with the average classification accuracy
of 90.37%, which was an 10.34% improvement over PSO-FS. Although the algorithm achieved the same
best classification accuracy, our algorithm reduced the number of features by 24.2. For Leukemia1,
three-point-one percent of the features were selected, and the average classification accuracy was
94.02%. Compared with PSO-FS, the average classification accuracy was improved by 12.42%, and the
best classification accuracy was was improved by 5.28%. For Lung Cancer, the average classification
accuracy was 81.40%, which was slightly lower than PSO-FS. but the best classification accuracy
increased by 3.98%. Compared with PSO-FS, CC-DFS obtained nine “+” and one “=”, without
any “−”.

4.3.4. CC-DFS vs. EPSO

Compared with EPSO, in terms of classification performance, CC-DFS obtained seven “+”,
one “−”, and two “=”. The lowest average classification accuracy improvement was 0.65%, appearing
on Leukemia1, and the highest improvement was 5.64%, appearing on Leukemia2. The maximum
classification accuracy improvement was 5.56%, appearing on Leukemia2. For Brain Tumor1, in terms
of average classification accuracy, three-point-seven-eight percent improvement was obtained, and the
best classification accuracy increased by 3.91%. Except Leukemia2, on the other datasets, the selected
feature subset length was higher than EPSO. In summary, compared with EPSO, at the cost of a small
number of features, a good improvement in classification performance was achieved.

4.3.5. CC-DFS vs. PPSO

For eight datasets, CC-DFS achieved better or similar best classification accuracy compared to
PPSO. For six datasets, the average classification accuracy of CC-DFS was higher than PPSO. For Lung

Entropy 2020, 22, 613 12 of 15

Cancer, an average of 155.6 features was selected, which was 47.4 fewer than PPSO, while the average
classification accuracy was improved by 2.02%, and the best classification accuracy was increased
by 5.6%.

4.3.6. CC-DFS vs. CCB-DFS

Compared with CCB-DFS, similar classification performance was achieved on nine datasets.
On six datasets, CC-DFS selected fewer features than CCB-DFS. For 9Tumor, in terms of average
classification accuracy, one-point-one-two percent improvement was obtained, and the best
classification accuracy increased by 3.28%, but the number of selected features dropped by 36.2.

In summary, for 50 comparisons, CC-DFS obtained 31 “+”, 5 “−”, and 14 “=”, which meant that
among 45 comparisons, CC-DFS obtained better or similar classification performance, and only five
times, the classification performance was lower than the compared algorithm.

4.4. Effectiveness of Reset Operation

To verify the performance of the reset operation, in this section, the algorithm with (denoted by W)
and without the reset operation (denoted by W/R) were compared on ten datasets. Figure 7 shows the
change in the algorithm’s fitness value during the iteration during the update process. Table 4 shows
the running time of the algorithm.As shown in Table 4, the running time of the algorithm using the
reset operation was much smaller than the running time of the algorithm without the reset algorithm
on the 10 datasets. This result was because the reset operation stopped the iteration in advance when
the fitness value of gbest was not updated for 11 consecutive times. It can also be seen in Figure 7 that
the gbest fitness value of the algorithm using the reset operation was better than the value without
the reset algorithm when the iteration was stopped, and because of the early termination mechanism,
the number of iterations was also much smaller than W/R. In addition, with fewer iterations, a better
fitness value was obtained.

Table 4. Running time (s). W, with the reset operation; W/R, without the reset operation.

Dataset Time (W) Time (W/R)

SRBCT 157.1 352.2
DLBCL 397.1 782.3
9Tumor 260.4 637.9

Leukemia1 475.1 778.9
Leukemia2 1465.4 2283.8

Brain Tumor1 909.8 1445.1
Brain Tumor2 1591.6 2041.4

Prostate 884.4 1334.8
11Tumor 2062.2 4885.1

Lung Cancer 4756.9 12,075.0

4.5. Computational Time

In this section, we measure the time of feature selection algorithms in Figure 8, since all these
approaches were based on evolutionary algorithms and an offline cut-point table.

From Figure 8, we can see that PSO-FS had a shorter running time on most datasets. This was
mainly because PSO-FS only discretized the data once before searching while the remaining algorithms
needed to discretize the data during the search process. Although the running time of CC-DFS
was much higher than that of EPSO and PPSO, its classification accuracy was superior to these two
algorithms. As can be seen from Figure 8, the greater the feature size, the greater the gap between
the running time of CC-DFS and the running time of EPSO and PPSO. We considered continuous
features and selected more features, which in turn led to a much higher running time required by the
fitness evaluation process. The reason CC-DFS spent more time than CCB-DFS was that the mutation
and crossover operations of the GA consumed more runtime than PSO, but CC-DFS improved the

Entropy 2020, 22, 613 13 of 15

best classification accuracy compared to CCB-DFS. Despite the long running time of our algorithm,
considering continuous features significantly improved the classification accuracy.

0 20 40 60 80 100

0.25

0.26

0.27

0.28
SRBCT

W

W/R

0 20 40 60 80 100

0.28

0.29

0.3

0.31

0.32

DLBCL

W

W/R

0 20 40 60 80 100

0.28

0.3

0.32

0.34
9Tumor

W

W/R

0 20 40 60 80 100

0.28

0.3

0.32

0.34

0.36

0.38
Brain1

W

W/R

0 20 40 60 80 100

0.28

0.3

0.32

0.34
Brain2

W

W/R

0 20 40 60 80 100

0.22

0.24

0.26

0.28
Leukemia1

W

W/R

0 20 40 60 80 100

0.28

0.3

0.32

0.34
Leukemia2

W

W/R

0 20 40 60 80 100

0.34

0.36

0.38

0.4

0.42
Prostate

W

W/R

0 20 40 60 80 100

0.28

0.285

0.29

0.295

0.3

11Tumor

W

W/R

0 20 40 60 80 100

0.32

0.34

0.36

0.38

0.4
Lung

W

W/R

Figure 7. With reset operation and without reset operation.

SR
B
C
T

D
LB

C
L

9T
um

or

Leu
k1

Leu
k2

B
ra

in
1

B
ra

in
2

PR
O

Lung

11
Tum

or
0

1000

2000

3000

4000

5000

R
u

n
n

in
g

 T
im

e
(s

)

PSO-FS

EPSO

PPSO

CCB-DFS

CC-DFS

Figure 8. Comparison of the running time.

5. Conclusions

In this paper, a new cooperative coevolutionary discretization-based FS method, CC-DFS,
was proposed, where both discrete and continuous features were searched to reduce the information
loss by only considering the discrete features. During the update process, GA and PSO were applied
to search for discrete and continuous feature subsets, respectively. Average classification error and
distance measures were used as individual evaluation indicators. The ranking mechanism was
introduced to control the mutation and crossover probability of individuals in GA, each dimension of
which allowed the mutation and crossover operation with different individuals. Through the distance
measure, we selected N individuals from discrete features to form a feature subset with continuous
features. In addition, a reset operation was used to jump out of the local optimum. Experimental
results showed that our method was able to improve the classification accuracy on the benchmark
datasets. Compared with using all features, the feature subset selected by CC-DFS could achieve
higher classification accuracy. Compared with some state-of-the-art discretization-based methods,
it demonstrated the advantages of considering both discrete and continuous features in FS.

Entropy 2020, 22, 613 14 of 15

Author Contributions: Conceptualization, Y.Z. and J.K.; Formal analysis, Y.Z., J.K. and X.Z.; Funding acquisition,
Y.Z. and X.Z.; Investigation, Y.Z. and X.Z.; Methodology, Y.Z. and J.K.; Project administration, Y.Z. and X.Z.;
Resources, Y.Z.; Software, J.K.; Supervision, Y.Z. and X.Z.; Validation, Y.Z., J.K. and X.Z.; Writing—original draft,
J.K.; Writing—review and editing, Y.Z. and X.Z. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China (NSFC) under
grants 61702336 and 61902437, the Natural Science Foundation of SZU (Grant No. 2018068), the Fundamental
Research Funds for the Central Universities, South-Central University for Nationalities under grants CZT19010
and CZT20027, and the Research Start-up Funds of South-Central University for Nationalities under grant
YZZ18006.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Blum, A.L.; Langley, P. Selection of relevant features and examples in machine learning. Artif. Intell. 1997,
97, 245–271. [CrossRef]

2. Dash, M.; Choi, K.; Scheuermann, P.; Liu, H. Feature Selection for Clustering—A Filter Solution. In Proceedings
of the 2002 IEEE International Conference on Data Mining, Maebashi City, Japan, 9–12 December 2002.

3. Alelyani, S.; Tang, J.; Liu, H. Feature Selection for Clustering: A Review. In Data Clustering: Algorithms and
Applications; CRC Press: New York, NY, USA, 2013.

4. Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003,
3, 1157–1182.

5. Dash, M.; Liu, H. Feature Selection for Classification. Intell. Data Anal. 1997, 1, 131–156. [CrossRef]
6. Souza, F.; Araujo, R.; Mendes, J. Review of soft sensor methods for regression applications. Chemom. Intell.

Lab. Syst. 2016, 152, 69–79. [CrossRef]
7. Zhou, Y.; Kwong, S.; Guo, H.; Zhang, X.; Zhang, Q. A Two-Phase Evolutionary Approach for Compressive

Sensing Reconstruction. IEEE Trans. Cybern. 2017, 47, 2651–2663. [CrossRef]
8. Guan, S.U.; Liu, J.; Qi, Y. An incremental approach to contribution-based feature selection. J. Intell. Syst.

2004, 13, 15–42. [CrossRef]
9. Reunanen, J. Overfitting in making comparisons between variable selection methods. J. Mach. Learn. Res.

2003, 3, 1371–1382.
10. Inbarani, H.H.; Azar, A.T.; Jothi, G. Supervised hybrid feature selection based on PSO and rough sets for

medical diagnosis. Comput. Methods Programs Biomed. 2014, 113, 175–185. [CrossRef]
11. Wang, X.; Yang, J.; Teng, X.; Xia, W.; Jensen, R. Feature selection based on rough sets and particle swarm

optimization. Pattern Recognit. Lett. 2007, 28, 459–471. [CrossRef]
12. Samraj, A.; Inbarani, H.H.; Banu, N. Unsupervised hybrid PSO-Quick reduct approach for feature reduction.

In Proceedings of the 2012 International Conference on Recent Trends in Information Technology, Tamil Nadu,
India, 19–21 April 2012.

13. Dong, H.; Li, T.; Ding, R.; Sun, J. A novel hybrid genetic algorithm with granular information for feature
selection and optimization. Appl. Soft Comput. 2018, 65, 33–46. [CrossRef]

14. Nakariyakul, S.; Casasent, D. An improvement on floating search algorithms for feature subset selection.
Pattern Recognit. 2009, 42, 1932–1940. [CrossRef]

15. Engelbrecht, A.P. Computational Intelligence: An Introduction, 2nd ed.; John Wiley & Sons: Chichester, UK, 2007.
16. Mendes, J.; Araujo, R.; Matias, T.; Seco, R.; Belchior, C. Automatic extraction of the fuzzy control system by a

hierarchical genetic algorithm. Eng. Appl. Artif. Intell. 2014, 29, 70–78. [CrossRef]
17. Kennedy, J.; Eberhart, R.C. A discrete binary version of the particle swarm algorithm. In Proceedings of

the 1997 IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and
Simulation, Orlando, FL, USA, 12–15 October 1997.

18. Tran, B.; Xue, B.; Zhang, M. A New Representation in PSO for Discretization-Based Feature Selection.
IEEE Trans. Cybern. 2018, 48, 1733–1746. doi:10.1109/TCYB.2017.2714145. [CrossRef] [PubMed]

19. Tran, B.; Xue, B.; Zhang, M. Bare-Bone Particle Swarm Optimisation for Simultaneously Discretising and
Selecting Features for High-Dimensional Classification. In Proceedings of the European Conference on the
Applications of Evolutionary Computation, Porto, Portugal, 30 March–1 April 2016; pp. 701–718.

http://dx.doi.org/10.1016/S0004-3702(97)00063-5
http://dx.doi.org/10.3233/IDA-1997-1302
http://dx.doi.org/10.1016/j.chemolab.2015.12.011
http://dx.doi.org/10.1109/TCYB.2017.2679705
http://dx.doi.org/10.1515/JISYS.2004.13.1.15
http://dx.doi.org/10.1016/j.cmpb.2013.10.007
http://dx.doi.org/10.1016/j.patrec.2006.09.003
http://dx.doi.org/10.1016/j.asoc.2017.12.048
http://dx.doi.org/10.1016/j.patcog.2008.11.018
http://dx.doi.org/10.1016/j.engappai.2013.12.012
http://dx.doi.org/10.1109/TCYB.2017.2714145
http://www.ncbi.nlm.nih.gov/pubmed/28650835

Entropy 2020, 22, 613 15 of 15

20. Huang, X.; Chi, Y.; Zhou, Y. Feature Selection of High Dimensional Data by Adaptive Potential Particle
Swarm Optimization. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC),
Wellington, New Zealand, 10–13 June 2019; pp. 1052–1059.

21. Lin, J.; Zhou, Y.; Kang, J. An Improved Discretization-Based Feature Selection via Particle Swarm
Optimization. In Knowledge Science, Engineering and Management; Douligeris, C., Karagiannis, D.,
Apostolou, D., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 298–310.

22. Fayyad, U.; Irani, K.B. Multi-Interval Discretization of Continuous-Valued Attributes for Classification
Learning. Mach. Learn. 1993, 2, 1022–1027. Available online: http://hdl.handle.net/2014/35171 (accessed on
27 May 2020).

23. Li, M.; Wang, Z. A hybrid coevolutionary algorithm for designing fuzzy classifiers. Inf. Sci. 2009,
179, 1970–1983. [CrossRef]

24. Garcia-Pedrajas, N.; Hervas-Martinez, C.; Ortiz-Boyer, D. Cooperative coevolution of artificial neural
network ensembles for pattern classification. IEEE Trans. Evol. Comput. 2005, 9, 271–302. [CrossRef]

25. Yang, Z.; Tang, K.; Yao, X. Large scale evolutionary optimization using cooperative coevolution. Inf. Sci.
2008, 178, 2985–2999. [CrossRef]

26. Gong, M.; Li, H.; Luo, E.; Liu, J.; Liu, J. A Multiobjective Cooperative Coevolutionary Algorithm for
Hyperspectral Sparse Unmixing. IEEE Trans. Evol. Comput. 2017, 21, 234–248. [CrossRef]

27. Ma, X.; Li, X.; Zhang, Q.; Tang, K.; Liang, Z.; Xie, W.; Zhu, Z. A Survey on Cooperative Co-Evolutionary
Algorithms. IEEE Trans. Evol. Comput. 2019, 23, 421–441. [CrossRef]

28. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International
Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995.

29. Holland, J.H. Bibliography. In Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992; pp. 203–205.

30. Chicano, F.; Sutton, A.M.; Whitley, L.D.; Alba, E. Fitness probability distribution of bit-flip mutation.
Evol. Comput. 2015, 23, 217–248. [CrossRef]

31. Umbarkar, A.J.; Sheth, P.D. Crossover Operators in Genetic Algorithms:A Review. ICTACT J. Soft Comput.
2015, 6, 1083–1092.

32. Al-Sahaf, H.; Zhang, M.; Johnston, M.; Verma, B. Image descriptor: A genetic programming approach to
multiclass texture classification. In Proceedings of the 2015 IEEE Congress on Evolutionary Computation
(CEC), Sendai, Japan, 25–28 May 2015; pp. 2460–2467.

33. Tran, B.Q.; Zhang, M.; Xue, B. A PSO based hybrid feature selection algorithm for high-dimensional
classification. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver,
BC, Canada, 24–29 July 2016; pp. 3801–3808.

34. Martino, A.; Giuliani, A.; Rizzi, A. (Hyper)Graph Embedding and Classification via Simplicial Complexes.
Algorithms 2019, 12, 223. [CrossRef]

35. Martino, A.; Giuliani, A.; Todde, V.; Bizzarri, M.; Rizzi, A. Metabolic networks classification and knowledge
discovery by information granulation. Comput. Biol. Chem. 2020, 84, 107187. [CrossRef] [PubMed]

36. Liang, J.J.; Qin, A.K.; Suganthan, P.N.; Baskar, S. Comprehensive learning particle swarm optimizer for
global optimization of multimodal functions. IEEE Trans. Evol. Comput. 2006, 10, 281–295. [CrossRef]

37. Kennedy, J. Bare bones particle swarms. In Proceedings of the 2003 IEEE Swarm Intelligence Symposium,
Indianapolis, IN, USA, 26–26 April 2003.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://hdl.handle.net/2014/35171
http://dx.doi.org/10.1016/j.ins.2009.01.045
http://dx.doi.org/10.1109/TEVC.2005.844158
http://dx.doi.org/10.1016/j.ins.2008.02.017
http://dx.doi.org/10.1109/TEVC.2016.2598858
http://dx.doi.org/10.1109/TEVC.2018.2868770
http://dx.doi.org/10.1162/EVCO_a_00130
http://dx.doi.org/10.3390/a12110223
http://dx.doi.org/10.1016/j.compbiolchem.2019.107187
http://www.ncbi.nlm.nih.gov/pubmed/31923821
http://dx.doi.org/10.1109/TEVC.2005.857610
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Particle Swarm Optimization
	Genetic Algorithm
	Minimum Description Length Principle
	Discretization-Based FS Algorithms

	Proposed Method
	Representation of an Individual
	Fitness Function
	Updating Strategy
	Search in Discrete Features
	Search in Continuous Features
	Combination of Continuous and Discrete Features
	Reset Operation

	Experimental Results and Analysis
	Datasets
	Parameter Settings and Comparison Method
	Results and Analysis
	CC-DFS VS Full
	CC-DFS vs. DMLP
	CC-DFS vs. PSO-FS
	CC-DFS vs. EPSO
	CC-DFS vs. PPSO
	CC-DFS vs. CCB-DFS

	Effectiveness of Reset Operation
	Computational Time

	Conclusions
	References

