
Citation: Zhang, Q.; Liao, X.; Liu, S.;

Wang, H.; Zhang, Y.; Zhao, Y. Tuning

Particle Sizes and Active Sites of

Ni/CeO2 Catalysts and Their

Influence on Maleic Anhydride

Hydrogenation. Nanomaterials 2022,

12, 2156. https://doi.org/

10.3390/nano12132156

Academic Editor: Maria

Filipa Ribeiro

Received: 27 May 2022

Accepted: 17 June 2022

Published: 23 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Tuning Particle Sizes and Active Sites of Ni/CeO2 Catalysts
and Their Influence on Maleic Anhydride Hydrogenation
Qiuming Zhang, Xin Liao, Shaobo Liu, Hao Wang *, Yin Zhang * and Yongxiang Zhao *

Engineering Research Center of Ministry of Education for Fine Chemicals,
School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
matthwwe@163.com (Q.Z.); lx2006294034@126.com (X.L.); lovog@163.com (S.L.)
* Correspondence: haowang@sxu.edu.cn (H.W.); sxuzhy@sxu.edu.cn (Y.Z.); yxzhao@sxu.edu.cn (Y.Z.)

Abstract: Supported metal catalysts are widely used in industrial processes, and the particle size
of the active metal plays a key role in determining the catalytic activity. Herein, CeO2-supported
Ni catalysts with different Ni loading and particle size were prepared by the impregnation method,
and the hydrogenation performance of maleic anhydride (MA) over the Ni/CeO2 catalysts was
investigated deeply. It was found that changes in Ni loading causes changes in metal particle size
and active sites, which significantly affected the conversion and selectivity of MAH reaction. The
conversion of MA reached the maximum at about 17.5 Ni loading compared with other contents
of Ni loading because of its proper particle size and active sites. In addition, the effects of Ni
grain size, surface oxygen vacancy, and Ni–CeO2 interaction on MAH were investigated in detail,
and the possible mechanism for MAH over Ni/CeO2 catalysts was deduced. This work greatly
deepens the fundamental understanding of Ni loading and size regimes over Ni/CeO2 catalysts for
the hydrogenation of MA and provides a theoretical and experimental basis for the preparation of
high-activity catalysts for MAH.

Keywords: hydrogenation; particle size; maleic anhydride; Ni loading; CeO2

1. Introduction

Maleic anhydride (MA) is an important C4 fundamental material in the chemical industry
that can be obtained by oxidation of coking benzene, butane, or biomass platform compounds.
MA is a multifunctional and five-membered ring compound composed of one C=C, double
C=O bonds, and one C–O–C functional group. A series of high-value-added fine chemicals
such as succinic anhydride (SA), γ-butyrolactone (GBL), and tetrahydrofuran (THF) can be
synthesized by maleic anhydride hydrogenation (MAH). These solvents and intermediates are
widely used in the military, textile, pharmaceutical, and food industries [1–3]. The hydrogena-
tion of MA involves C=C and C=O hydrogenation, and the investigation of hydrogenation
mechanism for C=C and C=O bonds has been a hot topic. Until now, the catalysts used in
the MAH have mainly been supported Ni-based catalysts, and the supports have mainly
been metal or nonmetal oxides such as Al2O3, SiO2, TiO2, and CeO2 [4–7].

For supported catalysts, the type of active metals, the acid and base properties of
the surface, defect sites, and metal–support interactions have important effects on the
adsorption and activation forms, hydrogenation path, and product selectivity of MAH.
Among these factors, the particle size of the active metal plays a crucial role in the catalytic
performance of catalysts [8–10]. The geometrical structure, electronic structure, and disper-
sion of metal particles change dynamically with changes in particle size, and these changes
lead to variation in the active sites on the catalyst surface, which significantly affects the
catalytic activity of the catalyst [11–14]. Zhao et al. [15] discovered that for the Ni/SiO2
catalytic system, when Ni species were fine clusters, the product GBL was obtained from
the hydrogenation of MA because of the strong interaction between Ni and the support.
However, succinic anhydride (SA) was obtained when the Ni species was in a crystalline
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state and had weak interaction with the support. Li et al. [16] found that the selectivity
of MAH was closely related to the grain size of the active metal, Ni. For a Ni/HY–Al2O3
catalyst, smaller sizes of Ni nanoparticles were favorable for the formation of SA, while as
the Ni loading amount increased, the particle size of Ni and the selectivity of GBL increased.
Meyer et al. [17] observed that NiO had a stronger interaction with the support when the
Ni loading was lower (less than 8 wt%) and that the Ni nanoparticles were conducive to the
generation of SA. However, when the Ni loading was gradually increased, NiO particles
tended to aggregate on the surface of the support, which reduced the interaction between
NiO and the support until more GBL products were finally obtained. Bertone et al. [3]
found that compared with a Ni/SiO2 catalyst, a Ni/SiO2–Al2O3 catalyst had smaller grain
size of Ni on the surface and showed higher GBL selectivity. They speculated that the
Lewis acid on the surface of the SiO2–Al2O3 support promoted the formation of GBL.
Ma et al. [18] prepared Pd/CeO2 catalysts with different Pd particle sizes on a CeO2 carrier
and found that the CeO2-supported Pd single atomic catalyst showed the best activity
for CO oxidation reaction. In addition, in recent works [4,19,20], we synthesized a series
of Ni/CeO2 catalysts under different conditions and investigated deeply the important
role of CeO2 in MA hydrogenation. These works will be very helpful for investigating the
effect of the particle size and active sites of metal on MAH. On the basis of regulating the
particle size and active sites of metal on CeO2 support, they provided a new opportunity
to comprehensively understand the interaction between the active metal and support and
systematically study the change in the active sites of catalysts in heterogeneous catalysis.

Based on the above discussion, in this paper, Ni-supported catalysts with different
Ni loading were prepared by the impregnation method using CeO2 as support, and the
hydrogenation performance of the catalysts was investigated carefully. It was found that
changes in Ni loading caused changes in the metal particle size and active sites, which
significantly affected the conversion and selectivity of MAH reaction. In this work, the
effects of Ni grain size, dispersion, surface oxygen vacancy, and Ni–CeO2 interaction on
the hydrogenation of MA were investigated in detail, and the synthesis process of metal-
supported catalysts was optimized. This paper provides a theoretical and experimental
basis for the preparation of MAH catalysts with higher activity and selectivity.

2. Experimental Section
2.1. Catalysts Preparation

The chemicals, including Ce(NO3)3·6H2O, Ni(NO3)2·6H2O, and NaOH, were pur-
chased from the Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China) and used
without any purification. A CeO2 support was prepared by the sol–gel method. First,
5.00 g Ce(NO3)3·6H2O was dissolved into 20 mL distilled water, and then, 6.56 g citric
acid (CA) was added and stirred. After the cerium salt and citric acid were completely
dissolved, the solution was heated in a water bath at 80 ◦C until the dry sol was formed.
After drying at 120 ◦C for 8 h in the oven, the dry sol formed a spongy material. It was
then moved to a muffle oven and calcined at 500 ◦C for 3 h to finally obtain the CeO2
support. xNi/CeO2 (x: mass content of Ni) catalysts with different loading contents were
prepared by citric acid assisted over-volume impregnation method. For the 5Ni/CeO2
catalyst, 0.505 g Ni(NO3)2·6H2O was dissolved in a mixture of 10 mL ethanol and deionized
water (volume ratio 1:1), followed by 2.00 g solid CeO2 and 0.139 g citric acid (mole ratio
1:1). After stirring at room temperature for 30 min, the mixture was placed in a water
bath at 80 ◦C to volatilize the solvent. After the solvent was completely volatilized, the
sample was transferred to a drying oven at 120 ◦C for 8 h. The obtained samples were
calcinated at 450 ◦C for 3 h (heating rate of 3 ◦C/min) and then reduced for 3 h at 350 ◦C
with H2 at a flow rate of 50 mL/min to prepare the catalyst, which was used for subsequent
characterization and evaluation. According to different content of Ni, the catalysts were
labeled as 5Ni/CeO2, 10Ni/CeO2, 15Ni/CeO2, 17.5Ni/CeO2, 20Ni/CeO2, and 30Ni/CeO2.
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2.2. Catalyst Characterizations and Tests

X-ray diffraction (XRD) was performed using a Bruker D8 Advanced X-ray diffrac-
tometer (Billerica, MA, USA). The instrument used Cu Kα1 radiation (λ = 0.15418 nm)
as an X-ray source and was supplied with a Ni filter and Vantec detector. The scanning
range was 10~80◦, and the scanning rate was 30◦/min. The average crystallite size
was calculated by the Scherrer formula, D = Kλ/βcosθ, where K is Scherrer’s constant
(0.89). The characterizations of H2-TPR (hydrogen temperature programed reduction)
and H2-TPD (hydrogen temperature programmed desorption) were determined using
a Micromeritics AutoChem II 2950 chemisorption apparatus. Raman spectroscopy
(Raman) was performed on a Raman spectrometer with a laser wavelength of 532 nm
(HORIBA, Tokyo, Japan). X-ray photoelectron spectroscopy (XPS) was recorded using
a SCIENTIFIC ESCALAB 250 X-ray photoelectron spectrometer (Thermo Company,
Waltham, MA, USA) with a standard Al-Kα (h = 1486.6 eV). The spectra were calibrated
according to standard C 1s (284.6 eV).

The catalytic performance of the catalyst was evaluated in a 100 mL stainless steel
autoclave. First, 0.1 g catalyst was added together with 4.9 g MA and 40 mL THF into
the reactor. The N2 was passed through to replace the air in the reactor 5 times, and then
H2 was passed through 5 times to replace N2. Then, the reaction system was heated to
210 ◦C with stirring at 500 rpm, and the pressure was kept at 5.0 MPa. The product was
analyzed using an Agilent 7890A gas chromatograph. To verify precise separation of each
component in the products, the programmed temperature was selected. The primary
temperature of the oven was increased to 120 ◦C from 100 ◦C at a ramp of 5 ◦C min−1, and
the temperatures of the detector and injector were 190 ◦C and 260 ◦C, respectively. The
conversion and selectivity of MA to the product were calculated according to the following
equations [20]:

XMA (%) =
CGBL + CSA

CGBL + CSA + CMA
× 100%

SSA (%) =
CSA

CSA + CGBL
× 100%

where CMA, CSA, and CGBL represent the percent content of the reactant and the two
products in the reaction, respectively, and XMA and SSA represent the conversion of MA
and selectivity of SA.

3. Results and Discussion
3.1. Catalyst Characterization

Figure 1 shows the XRD patterns of xNiO/CeO2 samples with different Ni contents.
As shown in Figure 1A, after metal Ni loading, the CeO2 support still maintained the crystal
structure of fluorite cubic phase (JCPDS File 34-0394), similarly to pure CeO2 [21]. The
enlarged pattern (shown in Figure 1B) revealed that the diffraction peaks of the CeO2 (111)
crystal plane in xNiO/CeO2 samples moved to a higher angle, indicating that the crystal
cell parameters of CeO2 shrank after Ni loading. This may have been due to the Ni2+, with
its smaller ionic radius (R = 0.72 nm), replacing Ce4+ (R = 0.81 nm) in the CeO2 lattice,
which resulted in reductions in the cell parameters of CeO2 [22]. The average crystal sizes
of NiO and CeO2 in the xNiO/CeO2 samples were calculated by the Scherrer formula, and
the results are listed in Table 1. Compared with pure CeO2 support, the grain size of CeO2
increased after Ni loading, which may have been caused by sintering during the thermal
calcination or the lattice distortion of CeO2 caused by Ni species [23].
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Figure 1. (A) XRD patterns of calcined xNiO/CeO2 samples; (B) the enlarged pattern at the
range of 26–31◦.

Table 1. The surface areas (SBET), Ni loading, and average crystallite sizes of CeO2, NiO, and metallic
Ni in the reduced catalysts.

Sample D(CeO2)
(nm)

Surface Area
(m2/g)

Ni Loading
(wt%) D(NiO) (nm) D(Ni) (nm)

CeO2 11.6 35.6 - - -

5Ni/CeO2 13.4 35.8 4.8 10.1 -

10Ni/CeO2 13.8 37.5 10.2 21.6 10.7

15Ni/CeO2 13.3 34.2 15.3 24.7 15.2

17.5Ni/CeO2 13.8 32.1 17.2 28.2 17.5

20Ni/CeO2 13.7 28.4 20.5 30.5 18.9

30Ni/CeO2 13.1 22.2 29.1 35.1 36.6

As shown in Figure 1A, the XRD diffraction peaks at 37.0◦, 43.0◦, and 62.9◦ corre-
sponded to the characteristic diffraction peaks of NiO’s (111), (200), and (220) crystal planes
(JCPDS 47-1049), respectively. As Ni loading increased, the intensity of the NiO diffraction
peak gradually increased, indicating that NiO particles aggregated on the surface of the
catalyst and the grain size gradually grew. The particle sizes of NiO are also listed in
Table 1, revealing that as Ni loading increased, the particle size of NiO increased from
about 10.1 nm to 35.1 nm. The change in NiO grain size led to a change in the interaction
between NiO and CeO2, which may have affected the reduction behavior of NiO and the
structural difference of the catalyst surface.

Figure 2 shows the XRD patterns of xNi/CeO2 catalysts after reduction at 350 ◦C. As
shown in Figure 2, the CeO2 support maintained a fluorite cubic structure after reduction,
and the characteristic peak of NiO disappeared, while the characteristic diffraction peak of
the Ni (111) plane appeared at 44.6◦ (JCPDS 01-1258), indicating that NiO was reduced to
metallic Ni. However, for the 5Ni/CeO2 catalyst, the diffraction peak of the metal Ni was
not observed, which may have been due to the high dispersion of amorphous Ni species
on the catalyst surface or the smaller particle size of Ni (<4 nm). The crystal sizes of Ni in
xNi/CeO2 catalysts with different loading content were calculated by the Scherrer formula
and are listed in Table 1. As the Ni loading content increased, the metal Ni aggregates on
the surface of the catalyst increased, and the average grain size increased gradually from
about 10.7 nm to 36.6 nm.
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Figure 3. H2-TPR profiles of xNiO/CeO2 precursors. 

Figure 2. The XRD patterns of reduced xNi/CeO2 catalysts.

Figure 3 shows the H2-TPR spectrum of xNiO/CeO2 samples. The peaks of H2
consumption, named α, β, γ, and δ, were well fitted through a Gauss-type function for these
samples. The α peak showed lower intensity and a broader shape at about 150 ◦C, which
was attributed to the reduction of oxygen species adsorbed on the surface of CeO2 [24,25].
It has been reported that parts of Ni2+ species could enter the CeO2 lattice to replace Ce4+,
which resulted in the distortion of CeO2 lattice and produced oxygen vacancies to balance
charges [24]. Raman results also confirmed that the loaded NiO species promoted the
formation of oxygen vacancies on the CeO2 surface (Figure 4A). These oxygen vacancies
could adsorb some small oxygen-containing molecules and generate reactive oxygen
species, which can easily react with hydrogen [25]. The sharp β peak of H2 consumption
at about 200 ◦C could be attributed to the H2 depletion caused by the dissociation and
adsorption of H2 onto the oxygen vacancies or the Ni–Ce interface and the formation of
OH groups on the surface. A similar result was found in Ni–Ce solid solution [26]. As
shown in Figure 3, as Ni loading increased, the β peak gradually moves towards higher
temperatures, and the peak intensity decreased, indicating that the increase in Ni content
inhibited the dissociation and adsorption of H2 on the oxygen vacancies or the Ni–Ce
interface, which may have been caused by the excessive Ni species masking the oxygen
vacancies on the surface.
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In general, the reduction of NiO species occurs in the temperature range of 200–300 ◦C.
The asymmetric reduction peaks of NiO were deconvolved into two peaks for H2 consump-
tion, which are labeled γ and δ, respectively. The γ peak at 240 ◦C was attributed to the
reduction of highly dispersed NiO species closely linked to the CeO2 support. The stronger
metal–support interaction promoted the reduction of NiO at lower temperatures [21]. The δ

peak at high temperature (about 275 ◦C) was ascribed to the reduction of bulk NiO species
aggregated on the CeO2 surface. From Figure 3, the reduction temperature of NiO species
on the CeO2 surface was lower than that of bulk NiO. This was mainly because loaded
NiO, with smaller size and larger surface area, could more easily contact with H2, which
resulted in the lower reduction temperature. Moreover, oxygen vacancies and preferential
reduced Ni species on the surface of CeO2 support (at 240 ◦C) promoted the dissociation
and activation of H2, and the overflow of H atoms to NiO with large particle size was
favorable to the reduction of NiO at low temperature. It should be noted that as Ni loading
increased, the δ peak moved towards high temperatures. A possible reason for this is that
the activation and migration of H2 may have been inhibited because of the increase in NiO
particle size and the decrease in oxygen vacancy, thus retarding the reduction of NiO at
low temperatures.

In order to study the effect of Ni loading on the surface structure of CeO2, Raman
characterizations for xNiO/CeO2 samples were conducted, and the results are shown in
Figure 4. The Raman peak intensity of CeO2 in the figure was 0.6 times that of the original
peak intensity in order to facilitate comparison of results. For CeO2 support, a strong
Raman vibration peak was observed at 466 cm−1, corresponding to the F2g vibration mode
for the Ce–O bond in the cubic fluorite structure of CeO2 [27]. After the loading of NiO on
the surface of CeO2, the F2g peak intensity of CeO2 decreased, the peak shape widened,
and the peak position moved towards low wavelengths. This was because the strong
interaction between NiO and CeO2 led to lattice distortion of CeO2, which reduced the
symmetry of the Ce–O bond [25]. Besides the F2g vibration peak, the Raman vibration peak
at 600 cm−1 was attributed to the vibration (D band) caused by defect sites on the CeO2
surface [25]. Compared with that of the pure CeO2 support, the peak intensity of the D
band of the xNiO/CeO2 sample increased significantly, indicating that the existence of NiO
promoted the formation of oxygen vacancies on the CeO2 surface. However, the vibration
peak of NiO at 520 cm−1 could not be observed and may be covered by the F2g vibration
peak of CeO2 [26]. Raman spectrum results for the xNiO/CeO2 catalyst after reduction
are shown in Figure 4B. Similarly to the xNiO/CeO2 precursor, two Raman characteristic
peaks were observed at 466 cm−1 and 600 cm−1, corresponding to the F2g vibration of
Ce–O bond for cubic fluorite CeO2 and the D-band vibration induced by surface defects,
respectively [25].
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Figure 5 shows the variation trend of the ID/IF2g ratio with Ni content before and after
reduction, which reflects the influence of Ni loading on the oxygen vacancy concentration
on the catalyst surface [20]. As shown in Figure 5, the oxygen vacancy concentrations of all
xNiO/CeO2 samples loaded with Ni were higher than that of the CeO2 support without
Ni, which indicates that the addition of Ni was beneficial to the formation of oxygen
vacancies on the surface of CeO2. Among these NiO/CeO2 samples, the ID/IF2g ratio
of the 5NiO/CeO2 sample is the highest, and then the ID/IF2g ratio decreased gradually
as the Ni content increased, which means that the oxygen vacancy decreased as the Ni
content increased. A possible reason for this is that the aggregation of NiO and the growth
in particle size on the surface of CeO2 weakened the interaction of NiO and CeO2 and
covered part of the oxygen vacancies on the surface, which resulted in a decrease in
oxygen vacancies.
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As shown in Figure 5, compared with the xNiO/CeO2 samples, the ID/IF2g ratios for
the xNi/CeO2 catalysts increased significantly after reduction, indicating that the oxygen
vacancy concentrations on the surface of the xNi/CeO2 catalysts increased obviously
after H2 reduction. The oxygen vacancy increments of 5Ni/CeO2 and 10Ni/CeO2 were
significantly larger than those of other catalysts with higher Ni loading, which suggests that
lower Ni content was beneficial to the formation of oxygen vacancies on the surface of the
catalyst. When the loaded content of Ni was low, Ni species and CeO2 were in close contact
and interacted strongly each other, which could have promoted the reduction of the CeO2
surface and facilitated the formation of oxygen vacancies on the surface. However, as Ni
loading increased, the active Ni species began to aggregate and cover the surface of CeO2,
which weakened the Ni–CeO2 interaction and inhibited the reduction of CeO2 surface.

In order to further study the effect of Ni content on the surface species of Ni/CeO2,
five samples of CeO2, 5Ni/CeO2, 10Ni/CeO2, 17.5Ni/CeO2, and 30Ni/CeO2 were char-
acterized by the XPS technique. Figure 6A shows the Ce 3d XPS spectra of the catalyst.
The peak of Ce is deconvolved into five groups of characteristic peaks according to the
literature [28,29]. The three characteristic peaks labeled u and v, u” and v”, and u”’ and
v”’ belong to the XPS peaks of 3d1/2 and 3d5/2 of Ce4+ 3d, while the two characteristic
peaks of u’ and v’ and u0 and v0 belong to the 3d1/2 and 3d5/2 of Ce3+ 3d. Compared with
pure CeO2, the XPS peak of Ce4+ in the 5Ni/CeO2 catalyst moved slightly towards the
high-energy direction, indicating that the strong interaction between Ni and CeO2 changed
the electronic configuration of Ce on the surface. Similar phenomena were observed in
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Pt/CeO2 and Cu/CeO2 catalysts, and the peak shift of Ce4+ should be caused by electron
transfer from metal to CeO2 [30,31]. According to the XPS peaks of Ce3+ and Ce4+, the
concentration of Ce3+ on the catalyst surface was estimated, and the results are listed in
Table 2. Per Table 2, the amount of Ce3+ on the surface of the 5Ni/CeO2 catalyst was the
highest among these samples. As the Ni loading amount increased, the amount of Ce3+ on
the surface gradually decreased and was even lower than that of pure CeO2 after reduction
for 17.5Ni/CeO2 and 30Ni/CeO2. This may have been caused by excessive Ni covering the
Ce3+ on the surface of the catalyst.
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Table 2. The quantitative analysis of XPS for reduced xNi/CeO2 catalysts.

Sample Ce3+/(Ce3+ + Ce4+) OIII/(OI + OII + OIII) Ni0:Ni2+:Ni3+

CeO2 0.162 0.2066 -

5Ni/CeO2 0.178 0.414 0.18:0.57:0.25

10Ni/CeO2 0.164 0.374 0.25:0.56:0.19

17.5Ni/CeO2 0.146 0.364 0.34:0.45:0.20

30Ni/CeO2 0.139 0.334 0.43:0.39:0.18

Figure 6B shows the O 1s XPS spectra of the reduced xNi/CeO2 catalysts. After
deconvolution, three groups of XPS peaks of O were observed, representing three types
of O species. OI and OII represented O species with different coordination in the CeO2
lattice, and OIII represented oxygen species adsorbed at defect sites on the catalyst surface.
The OI peak at 528.8 eV was the oxygen species coordinated with Ce3+ in the CeO2 lattice,
while the OII peak with slightly higher binding energy (529.4 eV) represented the oxygen
species coordinated with Ce4+ [32]. The concentration of oxygen vacancies on the surface
of the catalyst can be estimated by the ratio OIII/(OI + OII + OIII), and the results are
listed in Table 2. Per Table 2, as the Ni content increased, the concentration of oxygen
vacancies gradually decreased but was higher than that of the pure CeO2, indicating that
the introduction of Ni promotes the formation of oxygen vacancies on CeO2 surface, which
was consistent with the Raman results.

Figure 7 shows the XPS peaks of Ni 2p3/2 for all catalysts. In addition to the satellite
shake-up peak of Ni at about 861.0 eV, three fitting peaks represented three kinds of
Ni species with different chemical states, namely α, β, and γ, which were assigned to
Ni0 (~852.4 eV), Ni2+ (~854.7 eV), and Ni3+ (~856.8 eV), respectively. Three kinds of
Ni species coexisted on the surface of the Ni/CeO2 catalysts. According to previous
research [30,33,34], highly dispersed Ni clusters can interact with CeO2 support to generate
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the Ni–O–Ce structure, in which case the outer electrons of Ni would transfer to the 4f
orbital of Ce through the Ni–O–Ce bond, which would result in the formation of Ni2+ or
Niδ+. Ni3+ ions should come from Ni species that enter into the CeO2 lattice and form
a NixCe1−xO2−y solid solution with CeO2 [35]. According to the peak area of different
Ni species, the proportionate relationship among different Ni species was estimated, and
the results are listed in Table 2. From Table 2, as Ni loading increased, the content of Ni0

gradually increased, while the content of Ni2+ gradually decreased. This was due to the
fact that when the content of loaded Ni was low, the Ni particles with smaller size were
highly dispersed on the surface of the catalyst and had stronger interaction with CeO2
support, which made the outer electrons of Ni easily transfer to CeO2, thus forming more
Ni2+. However, the increase in Ni loading led to the growth of the Ni particle size, which
weakened the electron induction effect of CeO2 on Ni and led to the decrease in Ni2+ content.
In addition, the relative content of Ni3+ was relatively low for all xNi/CeO2 catalysts, which
means that only a small amount of Ni formed a NixCe1−xO2−y solid solution with the CeO2
support because of the limitation of the loading method (the impregnation method).
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The H2-TPD characterization results of the CeO2 support and each catalyst are listed
in Figure 8. As shown in Figure 8A, the CeO2 support had the ability to activate and adsorb
H2 before and after reduction at 350 ◦C, and the oxygen vacancies had a great influence on
the form of existence for the adsorption of H2 [36]. In order to further study the hydrogen
species on CeO2 surface, H2-TPD combined with a mass spectrometer (MS) was used to
detect the desorbed H2 species. Figure 9A shows that H2 was desorbed in the form of H2O
in the range of 150–400 ◦C on the surface of unreduced CeO2 (labelled CeO2), indicating
that the adsorption of H2 on the surface was irreversible, and OH groups were generated
on the surface of the support. In contrast, as shown in Figure 9B, on the surface of reduced
CeO2 (labelled CeO2-350), the adsorbed atomic H was desorbed from the CeO2 surface
in the form of H2 at about 80 ◦C, meaning that the oxygen vacancies on the surface of
reduced CeO2 were favorable for the reversible adsorption of H2, which was consistent
with literature reports [37].
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Figure 9. H2-TPD-MS profiles of (A) unreduced CeO2 (CeO2) and (B) reduced CeO2 (CeO2-350) 

samples. 

As shown in Figure 8B, xNi/CeO2 catalysts with different Ni loadings had similar 

H2-TPD spectra. The desorption peak was fitted into three desorption peaks by the 
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(CeO2-350) samples.

As shown in Figure 8B, xNi/CeO2 catalysts with different Ni loadings had similar H2-
TPD spectra. The desorption peak was fitted into three desorption peaks by the Gaussian
method. The desorption peak (α peak) at about 80 ◦C was similar to the H2 desorption peak
of CeO2 after reduction and was attributed to the desorption of H2 from the support surface.
The desorption peaks β and γ were attributed to the desorption of H2 adsorbed on different
Ni species. The β peak could be assigned to the H2 desorption of Ni species at the Ni–CeO2
interface. The strong interaction between Ni and CeO2 support weakened the binding
ability of Ni species to H2 and then lowered the energy barrier of H2 desorption. The
desorption peak γ (at 178 ◦C) was assigned to the desorption of hydrogen species adsorbed
on the surface of Ni in bulk phase, which was similar to the H2 desorption on the Ni surface
in Ni/Al2O3 and Ni/SiO2 systems and indicated that the support had little influence on
the H2 adsorption capacity on Ni species here [38]. It can be concluded that different Ni
species on the xNi/CeO2 surface had different adsorption and activation abilities for H2.

Based on H2-TPD results, H2 adsorption volumes at different active sites were esti-
mated and correlated with Ni loading. Figure 10A shows that compared with reduced
CeO2, the H2 adsorption capacity of xNi/CeO2 catalysts greatly increased, confirming that
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Ni was the center of adsorption and activation of H2. For all xNi/CeO2 catalysts, as the
Ni loading increased, the amount of adsorbed H2 on the catalyst first increased and then
decreased gradually. A possible reason for this is that as the Ni loading increased, the
Ni particles aggregated on the surface of CeO2, and the grain size became larger, which
may have reduced the number of active sites for H2 adsorption. Figure 10B shows that
the peak area of α desorption for 5Ni/CeO2 was the largest among the samples. The
peak area of the other samples decreased as the Ni loading increased, which indicates that
the 5Ni/CeO2 catalyst possessed the highest concentration of oxygen vacancies for H2
adsorption. According to Raman and XPS results, excessive Ni was not conducive to the
formation of oxygen vacancies on the surface and inhibited the ability of oxygen vacancies
to activate hydrogen [39]. In addition, as the Ni loading increased, the peak areas of β and
γ increased gradually in the beginning and then decreased obviously after 17.5Ni/CeO2.
The results showed that a proper amount of Ni loading was helpful to increase the number
of active sites on the support surface, while an excessive amount of Ni loading may have
led to the aggregation and growth of Ni species, which could reduce the surface area of Ni
particles and the number of active sites on the surface.
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Figure 10. The total (A) and site-defined (B) hydrogen uptake on the xNi/CeO2 catalyst.

3.2. Catalytic Performance

Figure 11 shows the conversion curves of maleic anhydride (MA) over xNi/CeO2
catalysts and reduced CeO2 support at 210 ◦C and 5 MPa. After a reaction time of 1 h, the
conversion of MA for all xNi/CeO2 catalysts was close to 100%, and the main product was
succinic anhydride (SA), indicating that all xNi/CeO2 catalysts showed high hydrogenation
activity for the C=C bond. It is noteworthy that the reduced CeO2 carrier also had a certain
ability of MAH and that the conversion of MA was about 30% after 1 h under the same
conditions. When Ni species were loaded on the surface of CeO2, the activity of MA
hydrogenation increased sharply, indicating that Ni was the main active site for the MAH
reaction. For all xNi/CeO2 catalysts, in the initial time, the catalytic activity for MAH
increased gradually as Ni content increased until 17.5 wt%, and then the conversion of MA
decreased slightly until 1 h.
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Figure 12. Effect of Ovac (A) and surface Ni species (B) on the TOFMA→SA over the xNi/CeO2 cata-
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Figure 13A shows the trend of SA selectivity with reaction time on different cata-
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Figure 11. The conversion of MA on reduced the xNi/CeO2 catalysts.

In order to further investigate the C=C hydrogenation performance of xNi/CeO2
catalysts, the turnover frequency values for MA to SA (TOFMA→SA) over the active Ni were
calculated and correlated with the oxygen vacancies, Ni species, and Ni loading content. As
shown in Figure 12, the TOFMA→SA of the xNi/CeO2 catalysts decreased as the Ni content
increased, which was consistent with the change trend of oxygen vacancies on the surface,
indicating that the oxygen vacancies of the catalyst also played an important role in the
C=C hydrogenation of MA. According to H2-TPR and H2-TPD results, oxygen vacancies
not only improved the dissociation and adsorption capacity of H2 on the catalyst but
promoted the diffusion of active H on the catalyst surface, providing more active H species
for the hydrogenation reaction [37]. Moreover, according to theoretical calculations, oxygen
vacancies with rich electron structure can provide electrons to the active metal and enhance
the electron-giving ability of the active metal, thus improving the C=C hydrogenation
performance of the metal [40]. For the xNi/CeO2 catalytic system, it can be speculated that
the synergistic effect between active metal Ni and oxygen vacancies (Ovac) could have
improved the C=C hydrogenation performance of Ni.
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Figure 13A shows the trend of SA selectivity with reaction time on different catalysts.
From Figure 13A and B, the selectivity of SA for all xNi/CeO2 catalysts was around 100%
at the initial reaction time of 40 min and then decreased gradually while the selectivity of
γ-butyrolactone (GBL) increased gradually. The selectivity of GBL on the 17.5Ni/CeO2
catalyst was the highest (about 35.7%) after 8 h compared with the other xNi/CeO2 catalysts.
In addition, the selectivity of SA on the CeO2 support remained at 100% within 8 h of
the reaction, indicating that the CeO2 support had almost no hydrogenation activity for
the C=O bond. The above results identify that the metal Ni was the active center for the
hydrogenation of SA to GBL and that the content of Ni loading significantly affected the
C=O hydrogenation over the catalyst. As for the stability of the xNi/CeO2 catalysts, it
should be noted that all samples showed good stability in the hydrogenation process. After
a reaction time of 1 h, the conversion of MA for all xNi/CeO2 catalysts was close to 100%,
and the catalysts kept their high catalytic performance. Furthermore, after five cycles of use,
all the catalysts kept their high activity and selectivity, and there was no obvious decrease
in either. In addition, the stability of the 17.5Ni/CeO2 catalyst had no obvious change
compared with other catalysts in the MAH process.
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It has been reported that the metal Ni with certain grain size is the active center of
hydrogenation of SA to GBL. Meyer et al. [17] studied the effect of Ni loading on the
hydrogenation of MA and found that Ni/SiO2–Al2O3 catalyst had hydrogenation activity
for C=O only when Ni loading was more than 8 wt%. They concluded that a certain size
of Ni grain was the active center for the hydrogenation of SA to GBL. In this work, the
selectivity of GBL also showed a strong dependence on the particle size of Ni. However,
when the particle size of Ni exceeded a certain amount (17.5 nm), the hydrogenation
activity of C=O started to decrease. For example, though the average sizes of Ni particles
on the 20Ni/CeO2 (18.9 nm) and 30Ni/CeO2 catalysts (36.6 nm) were larger than that
of the 17.5Ni/CeO2 catalyst (17.5 nm), the selectivities of GBL were lower than that of
17.5Ni/CeO2 (as shown in Figure 13B).

In order to understand deeply the influence of catalysts on the hydrogenation activity
of C=O, the values of TOFSA→GBL over different catalysts were calculated. As shown
in Figure 14, as the Ni loading increased, the value of TOFSA→GBL gradually increased.
When the content of Ni was 17.5 wt%, the value of TOFSA→GBL reached the maximum.
It then rapidly decreased as the Ni loading increased further. At the same time, the H2
concentration adsorbed on Ovac decreased monotonously as the Ni loading increased. The
volcanic curve for TOFSA→GBL showed that the hydrogenation of SA to GBL was structure
sensitive, which is quite different from the trend of TOFMA→SA in Figure 12A.
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xNi/CeO2 catalysts.

According to previous research [41–43], for reducible supports, such as TiO2 and
CeO2, the metal–support interface is considered to be the active site of C=O adsorption
activation. It was found that the C=O functional groups could be adsorbed and polarized
at the interfaces of Pt–TiOx and Ni–TiOx and that the catalytic activity of hydrogenation
for crotonaldehyde to crotonyl alcohol was significantly improved [41]. Because of strong
interaction with the carrier, the electronic configuration for most of the metal particles at the
interface was in an ionic state (such as Ni2+ at the interface of Ni–TiO2). These ionic metal
particles could play the role of a Lewis acid and participate in the adsorption and activation
of C=O functional groups [42]. In addition, in the hydrogenation reaction of citral, a small
amount of Ni2+ at the Ni–TiO2 interface promoted the adsorption and activation of C=O in
the citral molecule and finally improved the selectivity of the hydrogenation of citral to
citric alcohol [41,43].

As shown in Figure 14B, the change trend of TOFSA→GBL was consistent with the
change in the total amount of H2 adsorbed on the active sites of interface Ni and bulk Ni,
which indicates that both the interfacial Ni and bulk Ni0 could catalyze the hydrogenation
reaction of the C=O bond. According to the characterization results of H2-TPR, H2-TPD,
and XPS, the Ni species at the interface showed a valence state of Niδ+ because of the
strong interaction with the CeO2 support [34]. Therefore, it can be inferred that Niδ+ at the
interface could also promote the adsorption of C=O on the catalyst surface as the Lewis acid
site. Based on the catalytic effect of metal Ni on the adsorption and activation of C atoms in
C=O and subsequent C–O bond breaking [33], we propose the possible mechanism of the
Niδ+–Ni0 synergistic effect on the hydrogenation reaction of C=O. As shown in Figure 15,
first, the metal Ni0 adsorbs and activates C atoms in the C=O functional group, and Niδ+ at
the interface acts as a Lewis acid to synergistically activate O atoms. Second, the synergistic
effect of Niδ+ and Ni0 promotes the adsorption and activation of C=O, and the activated
C=O group reacts with highly active hydrogen atoms on the surface of metal Ni, which
results in the C=O bond hydrogenation and subsequent C–O fracture. According to this
mechanism, if the particle size of Ni becomes larger, the distance between the top Ni0 and
the bottom Niδ+ increases, which weakens the synergistic activation for C=O by Niδ+–Ni0.
This constitutes a good explanation for the phenomenon in which the selectivity of GBL
decreased as the average particle size of Ni increased beyond 17.5 nm.
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Figure 15. The synergy of Niδ+–Ni0 in C=O hydrogenolysis over Ni/CeO2 catalyst.

4. Conclusions

In this work, Ni/CeO2 catalysts were synthesized by the impregnation method, and a
series of xNi/CeO2 catalysts with different particle sizes and active sites were successfully
prepared by changing the Ni loading. The effects of particle size and active sites of Ni/CeO2
on the hydrogenation of MA were systematically studied. It was found that the catalytic
activity of the xNi/CeO2 catalysts was size dependent for MAH and that the metal Ni
was the active center for the catalytic hydrogenation of C=C from MA to SA and of C=O
from SA to GBL. In the beginning of the reaction, the hydrogenation activity of the catalyst
increased as the Ni loading increased until 17.5Ni/CeO2 and then decreased gradually
as the Ni loading increased further. The oxygen vacancies on the surface of Ni/CeO2
could promote the adsorption and activation of H2, and the synergistic effect of active
metal Ni and oxygen vacancies could improve the hydrogenation of the C=C bond. The
synergistic effect of Niδ+ species obtained from the strong electronic attraction of the CeO2
support and Ni0 promoted the adsorption and activation of C=O in MAH. The current
results confirmed that the particle size and catalytic ability of Ni/CeO2 catalysts could
be modulated through changing the Ni loading on the CeO2 support. This work not
only provides a deep understanding of MA hydrogenation over Ni/CeO2 catalysts but
highlights the potential of size-dependent catalysts in heterogeneous catalysis.
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