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Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful experimental approach to study cellular heterogeneity.

One of the challenges in scRNA-seq data analysis is integrating different types of biological data to consistently recognize

discrete biological functions and regulatory mechanisms of cells, such as transcription factor activities and gene regulatory

networks in distinct cell populations. We have developed an approach to infer transcription factor activities from

scRNA-seq data that leverages existing biological data on transcription factor binding sites. The Bayesian inference tran-

scription factor activity model (BITFAM) integrates ChIP-seq transcription factor binding information into scRNA-seq

data analysis. We show that the inferred transcription factor activities for key cell types identify regulatory transcription

factors that are known to mechanistically control cell function and cell fate. The BITFAM approach not only identifies bio-

logically meaningful transcription factor activities, but also provides valuable insights into underlying transcription factor

regulatory mechanisms.

[Supplemental material is available for this article.]

Single-cell RNA sequencing (scRNA-seq) is a powerful experimen-
tal technique to investigate the transcriptomic heterogeneity of in-
dividual cells within a tissue and uncover novel subpopulations of
cells with distinct biological functions. It has successfully identi-
fied subtypes of mature differentiated cells in distinct tissues
(Tabula Muris et al. 2018) as well as distinct developmental stages
of progenitor subpopulations and the underlying cues regulating
cell fate decisions (Shapiro et al. 2013; Zeisel et al. 2015; Regev
et al. 2017; Zheng et al. 2017; Svensson et al. 2018). The character-
ization of subpopulations within a given tissue is commonly per-
formed by examining the cell-to-cell similarities on their gene
expression profiles. There has been a rapid development of meth-
ods and tools for scRNA-seq data analysis (Zappia et al. 2018).Most
analytical methods use a form of gene expression data transforma-
tion to produce lower dimensional representations of scRNA-seq
data to better capture the distances between cells (Amir el al.
2013; Satija et al. 2015; Žurauskienė and Yau 2016; Duren et al.
2018; Lopez et al. 2018; Wang and Gu 2018; Wu et al. 2018;
Jung et al. 2019; Linderman et al. 2019; Moon et al. 2019).
However, the identification of cell clusters based on the proximity
of individual cells in lower dimensional space does not take into
account the biological context (Kiselev et al. 2019). Therefore,
downstream analyses based on these representations do not neces-
sarily identify subpopulations of cells with defined biological func-
tions. In addition, these methods do not provide an immediate
means to uncover regulatory mechanisms in the identified subpo-
pulation of cells.

We surmised that integrating the vast amount of known bio-
logical data on transcription factor binding sites could be leveraged
to analyze scRNA-seq data. We therefore introduced a Bayesian hi-
erarchical model that uses existing transcription factor ChIP-seq

data for the inference of transcription factor activities in
scRNA-seq data, which in turn can be used for downstream analy-
sis such as identifying cell clusters based on distinct inferred
transcription factor activities as well as generating a weighted hier-
archy of target genes.

Results

Overview of BITFAM

Our Bayesian inference transcription factor activity model
(BITFAM) is based on a fundamental biological principle that the
differences in scRNA-seq profiles of individual cells reflect distinct
underlying transcription factor activity states (Fig. 1). Specifically,
we assemble a set of factors in the model by associating each of
them with a transcription factor’s predicted target gene set that
is obtained from GTRD databases of ChIP-seq data that has more
than 17,485 transcription factor ChIP-seq samples (Yevshin et al.
2019). This information of known ChIP-seq data is used as a prior
probability to guide the factorization of scRNA-seq data in a
Bayesian factor analysis (BFA) model (Bai and Li 2012). BFA is an
inference model that has been applied to capture heterogeneity
in gene expression by considering generic pathways and gene
sets as factors (Leek and Storey 2007; Hand 2013; Buettner et al.
2017). The model seeks to decompose an observed log-trans-
formed normalized gene expression profiles (matrixY) into a prod-
uct of two matrices, W and Z. The rows of Y correspond to genes
(N) and columns correspond to cells (M). The matrix Z is a scheme
to generate alternative profiles of single-cell data. The matrix W
represents factor loadings. Φ is the unobserved stochastic noise
term with zero mean and a finite variance.

To guide the construction of biologically meaningful
matrices W and Z, we embedded a structure in W by using
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the consensus transcription factor ChIP-seq data. Specifically,
each column of W represents a transcription factor, and each
row represents its potential targets, which are determined by
the binding sites of the transcription factors in the ChIP-seq
data. Because the existing ChIP-seq data are not specific to the
cellar context where the single-cell profiles of interest are
generated, we incorporated this information as prior probabilities
on the elements in W and let the Bayesian inference procedure
learn the posterior distributions of W and Z from the observed
single-cell profiles. By doing so, the inferred matrix W deter-
mines the transcription factor targets according to the data of
context.

A column of the matrix Z can be interpreted as the inferred
transcription factor regulatory activities in the corresponding
cell. As the number of transcription factors is much smaller
than the number of the genes profiled, this model achieves di-
mension reduction of single-cell RNA-seq data. The matrix W
can be interpreted as the regulatory weights between the tran-
scription factors and genes. The values in a column of matrix
W can be used to determine the most probable target genes of
one transcription factor in the specific data set, a valuable insight
because aggregate information on all potential transcription fac-
tor target genes does not provide a ranking of target genes. The
matrices Z and W could be applied to several downstream analy-
ses, including (1) the decomposition of the single-cell transcrip-
tomic profile into transcription factor activities, (2) identifying
a ranking of transcription factor target genes for each scRNA-
seq data set, and (3) performing downstream analyses, such as
clustering of cell subpopulations.

We next applied our model to the
following scRNA-seq data sets: the
Tabula Muris data sets that provide
scRNA-seq data on all major organs of
the mouse during adult homeostasis
(Tabula Muris et al. 2018), a blood cell de-
velopment data set that contains two dif-
ferentiation trajectories from common
myeloidprogenitors (CMP) towardmega-
karyocyte–erythroid progenitors (MEP)
and granulocyte-macrophage progeni-
tors (GMP) (Paul et al. 2016), and a
CRISPRi scRNA-seq data with 50 targeted
CRISPR-deletions of transcription factors
(Gengaet al. 2019).Descriptionsof all the
analyzed data sets are provided in the
Supplemental File (Supplemental Fig.
S1). Cells in the first two data sets have
been experimentally labeled by cell type
using either antibodies or gene expres-
sion profiles and therefore can be used
for evaluating the accuracy and function-
al relevance of BITFAM for assessing dis-
tinct cell population phenotypes. The
CRISPRi data set can be used as a biologi-
cal validation or ground truth of our
inferred transcription factor activities
because CRISPR-targeted deletion or
knockdown of a transcription factor
should reduce the corresponding tran-
scription factor activity, even though
the transcription factor activity will not
be reduced to zero because CRISPR does

not have complete deletion efficiency. The transcription factor
ChIP-seq data were chosen fromGTRD, a comprehensive database
of transcription factor binding sites (TFBSs) identified from ChIP-
seq experiments for human and mouse (http://gtrd.biouml.org)
(Yevshin et al. 2019).

Transcription factor activities inferred by BITFAM correspond

to known biological functions

We investigated whether the transcription factor (TF) activities in-
ferred by BITFAM for each cell are biologically meaningful. We
show the results in two data sets as examples: The Tabula Muris
lung data set (Tabula Muris et al. 2018) and the blood cell develop-
ment data set (Paul et al. 2016). They represent two typical scenar-
ios of experimental studies in discrete and continuous biological
situations.

The Tabula Muris lung data set has 16 distinct cell types in-
cluding epithelial cells, endothelial cells, lymphocytes, andmacro-
phages visualized in a t-SNE plotwith gene expression profiles (Fig.
2A). The cell types of the distinct subpopulations are labeled based
on the expression of cell type–specific marker genes. The rules of
selecting TFs when applying BITFAM are (1) the transcription fac-
tor is among the most variably expressed genes, (2) there is ChIP-
seq data available for the TF, and (3) the transcription factor has at
least 10 target genes among the most variably expressed genes.
Using these criteria for the Tabula Muris lung data set, BITFAM in-
ferred the activities of 106 transcription factors (Supplemental Fig.
S2). These default criteria for BITFAM can be modified to include
any transcription factor for which ChIP-seq data is available and

Figure 1. Overview of the BITFAMmodel. The input to BITFAM is the log-normalized scRNA-seq data
and a binary matrix with the predicted target genes for each transcription factor obtained from ChIP-seq
data. A Bayesian factor analysis model with regulatory prior knowledge is built to learn matrices of tran-
scription factor activities and transcription factor targets. The log-normalized scRNA-seq data, matrix Y,
are decomposed to matrix W and matrix Z. The ChIP-seq data are incorporated as different prior distri-
butions in matrix W. The posterior distributions of matrix W and matrix Z are inferred by the variational
method (Ghahramani and Matthew 2000; Wainwright and Jordan 2008). The final matrices ofW and Z
used for downstream analysis are constructed by taking themeans of 300 random samples from the pos-
terior distributions. The matrix W is used to identify the target genes of transcription factors in the
specific data set. The matrix Z is used in clustering and trajectory analysis as well as providing insights
into the transcription factor regulatory activities.
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Figure 2. Transcription factor activities inferred by BITFAM correspond to known biological functions. (A) t-SNE plot of the Tabula Muris lung data set in
which cells are colored by biologically defined cell types. The input to t-SNE algorithm is the log-normalized scRNA-seq profile. (B) Heatmap of inferred
activities of specific transcription factors for each cell type in the lung. The columns are the cells and are grouped by cell type. The rows are the inferred
transcription factor activities. (C–E) Inferred activities of TAL1, PAX5, and MAFB in the Tabula Muris lung data, respectively. (F–H) Log-normalized mRNA
expression of Tal1, Pax5, and Mafb in the Tabula Muris lung data. (I) t-SNE plot of blood cell development data colored with cell types. (J–L) Inferred ac-
tivities of GATA1, CEBPA, and STAT5A in the blood cell development data set. (M–O) Log-normalizedmRNA expression levels ofGata1,Cebpa, and Stat5a in
the blood cell development data set.
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users can thus easily add additional transcription factors that they
are interested in into the learning list even if these additional tran-
scription factors are not among the most variably expressed. The
number of transcription factors and the redundancy of transcrip-
tion factors did not significantly impact the inferred transcription
factor activities or downstream analyses such as visualization of
clusters, thus suggesting robustness of the model in the setting
of multiple transcription factors that may have significant propor-
tions of overlapping target genes (Supplemental Figs. S3, S4).

One of the utilities of inferring TF activities for each cell is the
potential to generate profiles of cell type–specific TF activities. For
this purpose, we used a random forest model to identify the in-
ferred TF activities that were associated with specific cell types.
For example, we labeled cells of a given cell type (identified by a bi-
ological label such asmarker genes) as 1 and all other cells as 0. The
random forest model is built using this cell label and the inferred
transcription factor activities from the BITFAM Zmatrix. By apply-
ing the same model to each cell type, we generated a landscape of
inferred TF activities across all cell types. The heatmap of the in-
ferred TF activities in the Tabula Muris lung data set (Fig. 2B)
showed a distinctive pattern of TF activation in biologically de-
fined cell types.We found that TAL1 had a high inferred transcrip-
tion factor activity in endothelial cells, with an inferred activity in
99% (using the 75th percentile of the inferred transcription factor
activities as a cutoff) of lung endothelial cells (Fig. 2C). PAX5 and
EBF1 were the transcription factors with the highest inferred activ-
ities in B cells. MAFB was the transcription factor with the highest
inferred activity in alveolar macrophages (Fig. 2D,E; Supplemental
Fig. S5). However, Tal1 mRNA in the scRNA-seq data was only de-
tected in 25% of endothelial cells (Fig. 2F), and the mRNA of Pax5
and Mafb was even lower in the B cells and macrophages (Fig. 2G,
H), thus suggesting that inferring the transcription factor activities
via BITFAM complements approaches that focus on analyzing
mRNA levels of TFs. The area under receiver operating characteris-
tic curve (AUROC) is used to show how specific inferred transcrip-
tion factor activity is for a cell type that is independently defined
using the established cell identify markers (already provided by
the Tabula Muris Consortium). For example, BITFAM inferred
PAX5 activity for each cell in the data set. For this analysis, the
ground truth was the identity of the cells as categorized by the
Tabula Muris Consortium using cell-specific markers. B cells were
assigned to the positive class, whereas all other cells were assigned
to the negative class. We then associated the PAX5 inferred activ-
ities with the positive andnegative classes, thus allowing us to gen-
erate an AUROC for each inferred transcription factor activity in
each cell population. We found that the inferred activities for
TAL1, PAX5, and MAFB had markedly higher AUROC values
than those which would have solely relied on measures transcrip-
tion factor mRNA levels (Supplemental Fig. S6A–C). By comparing
t-SNE visualization of the BITFAM-inferred transcription factor ac-
tivities with those of transcription factor mRNA expression
(Supplemental Fig. S7), we observed that inferred transcription fac-
tor activities can segregate biologically defined cell subsets, where-
as mRNA levels do not.

For the blood cell development data set (Fig. 2I), GATA1-in-
ferred activity was the highest in megakaryocyte–erythroid pro-
genitors (MEPs) (Fig. 2J), whereas the inferred activities of CEBPA
and STAT5A were the highest in granulocyte-macrophage progen-
itors (GMPs) (Fig. 2K,L). The level of Gata1mRNA expression (Fig.
2M) andCebpamRNA expression (Fig. 2N) corresponded to the in-
ferred activities, but the mRNA levels of Stat5a were not restricted
to GMPs (Fig. 2O). Although the AUROCof the inferred GATA1 ac-

tivities were similar to those of the Gata1 mRNA as a marker of
MEPs (Supplemental Fig. S6D), the AUROC values for the inferred
activities were substantially higher for CEBPA and STAT5A
(Supplemental Fig. S6E,F). These results indicate that the inferred
activities derived from BITFAM do not necessarily correspond to
the mRNA expression levels of the transcription factors. This is es-
pecially important because limited sequencing coverage in scRNA-
seq may inadequately capture the mRNA levels of key regulatory
genes in individual cells.

BITFAM generates a ranking of preferred transcription factor

target genes using scRNA-seq data

We further examined the biological significance of the learned
weight matrix W in the BITFAM model. The GTRD database inte-
grates the ChIP-seq transcription factor binding data obtained
from distinct cell types and biological conditions. In such a com-
prehensive transcription factor target gene list, many transcription
factors have thousands of potential target genes; however, it is very
likely that in any given cell type only a small fraction of these po-
tential target genes is truly being targeted by a transcription factor.
BITFAM learns the weights for potential transcription factor target
gene pairs in every data set. This allows BITFAM to generate a rank-
ing of target genes for any given transcription factor based on the
mean of the posterior distribution of the weights (Fig. 3A).

We selected the transcription factors that were inferred to be
specifically activated in alveolar macrophages, B cells, and endo-
thelial cells, and examined the top-weighted target genes learned
by BITFAM in the Tabula Muris lung data set (Fig. 3B). We per-
formed a Gene Ontology (GO) enrichment analysis on the top
100 genes with the highest positive weights and compared this
to the GO analysis on all variably expressed ChIP-seq target genes.
For example, the overall TAL1 ChIP-seq target genes were enriched
for generic biological processes such as nucleic acid metabolism
and protein modification (Fig. 3C). On the other hand, the TAL1
top-weighted target genes identified by BITFAM, were enriched
for cell type–specific processes such as vasculature development
and angiogenesis (Fig. 3D). The top 20 weighted genes of TAL1
(Fig. 3E) include genes such as Clec14a, which is a recently identi-
fied key regulator of blood vessel development and vascular func-
tion (Lee et al. 2017), consistent with the biologically established
role of TAL1 in vascular development (Lazrak et al. 2004). The tran-
scription factor PAX5, on the other hand, is known to be highly ac-
tive in B cells (Nutt et al. 1999), but thiswas not readily determined
when analyzing all PAX5 ChIP-seq target genes, which were again
enriched for general biological processes such as nucleic acid me-
tabolism, macromolecule modification, and protein modification
(Fig. 3F). However, when we analyzed the top PAX5 learned target
genes using BITFAM, we found that these target genes were en-
riched for B cell activation and B cell–associated immune respons-
es (Fig. 3G), thus providing important insights into the biological
function of PAX5, which had been independently and experimen-
tally determined by Pax5 deletion studies (Liu et al. 2014). The top
20weighted genes of PAX5 shown in Figure 3H againhighlight key
genes involved in B cell identity. We also conducted the same en-
richment analysis on randomly sampled 100ChIP-seq target genes
or themost expressed ChIP-seq target genes. The enrichment anal-
ysis identified pathways involved in general cellular function but
did not identify B cell–specific pathways, thus suggesting that
the BITFAM learned preferred target genesmay providemore func-
tional insights about a cell population’s function than a mere ran-
dom choice of possible ChIP-seq target genes (Supplemental Fig.
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Figure 3. BITFAM generates a ranking of preferred transcription factor target genes using scRNA-seq data. (A) The weights between the transcription
factors and target genes inferred by BITFAM are based on ChIP-seq data and scRNA-seq data and identify preferred target genes in the specific data
set. (B) Heatmap of five top-weighted target genes of transcription factors learned from Tabula Muris lung data. For each cell type, we depict TFs that
were identified by BITFAM to be highly active in a given cell type. We list the top-weighted target genes based on the weights in the W matrix learned
from the model and which are rescaled to [0,1] within each TF to generate the heatmap. (C) The top 10 significant GO terms of TAL1 ChIP-seq target
genes in the Tabula Muris lung data. (D) The top 10 significant GO terms of TAL1 top 100 positive weighted genes learned from the Tabula Muris lung
data. (E) The top 20 weighted target genes of TAL1. (F) The top 10 significant GO terms of PAX5 ChIP-seq target genes in the Tabula Muris lung data.
(G) The top 10 significant GO terms of PAX5 top 100 positive weighted genes learned from the Tabula Muris lung data. (H) The top 20 weighted target
genes of PAX5.
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S8). We next investigated whether the negatively weighted genes
identified by BITFAM were indeed ChIP-seq target genes and
what their functional relevance could be for PAX5 andMAFB as il-
lustrative examples. As shown in Supplemental Figure S9, the neg-
atively weighted genes for the B cell development TF PAX5 are
enriched in genes from the GO term related to T cell activation,
consistent with the notion that PAX5 could suppress T cell activa-
tion and differentiation while promoting B cell development.
Geneswith themost negativeweights for PAX5 andMAFBwere in-
deed ChIP-seq target genes.

These results showed BITFAM’s ability to learn target genes of
the transcription factors specific to their biological function and
would allow for the inference of preferred target genes and func-
tions of transcription factors.

The learned transcription factor activity profiles can be used

for downstream analysis

Wenext explored how inferred transcription factor activities could
be used for downstream analyses and whether activity patterns
would reflect distinct functions of cell subpopulations.We applied
Louvain’s algorithm on the inferred transcription factor activities
(Methods) to assess cell–cell inferred transcription factor activity
distances and identify cell clusters, which were visualized by t-
SNE. In the Tabula Muris heart data, we identified six cell clusters
(Fig. 4A) and compared them to biologically defined cell subpopu-
lations such as cardiac muscle cells, endocardial cells, fibroblasts,
and endothelial cells (Fig. 4B). We found that biologically defined
cell subpopulations clustered together in the inferred transcription
factor activity space, indicating that clustering the inferred tran-
scription factor activity indeed reflects distinct biological func-
tions of cell subpopulations. By identifying the most active
transcription factors for each cluster, we further annotated the bi-
ological function of each cluster by the function of the top active
transcription factors based on the importance scores. TAL1 was
one of the most active transcription factors in clusters 3 and 5
(Fig. 4A; Supplemental Fig. S10A), whereas IRF8 was one of the
most active transcription factors specific to cluster 6 (Fig. 4A;
Supplemental Fig. S10B). These results were consistent with the bi-
ological cell labels (defined in the original data set), indicating that
cells in cluster 3 were endothelial cells, cells in cluster 5 were endo-
cardial cells, and cells in cluster 6 were leukocytes.

We performed the same analysis on the Tabula Muris brain
data set. We identified eight clusters (Fig. 4C) and compared
them to the biologically defined cell labels (Fig. 4D). The cells
from the same biological cell type again clustered together in the
inferred transcription factor activity analysis. NEUROD1 was
among the most active transcription factors specific to cluster 2
(Fig. 4C; Supplemental Fig. S10C), whereas ASCL1 was one of
the most active transcription factors specific to cluster 3 (Fig. 4C;
Supplemental Fig. S10D). These results corresponded nicely to
the biological cell labels, indicating that cells in cluster 2 were neu-
rons and cells in cluster 3 were astrocytes (Fig. 4C,D). These find-
ings indicate that BITFAM generates biologically significant
profiles for individual cells and identifies cell clusters based on dis-
tinct inferred transcription factor activities.

To test whether the inferred transcription factor activities
could be used for visualization and trajectory building of continu-
ous cell populations, we analyzed the inferred transcription factor
activities learned from the scRNA-seq analysis of hematopoietic
differentiation. When visualizing the inferred transcription
factor activities using UMAP, differentiation trajectories of com-

mon myeloid progenitors (CMPs) toward either megakaryocyte–
erythroid progenitors (MEPs) or granulocyte-macrophage progen-
itors (GMPs) became apparent (Fig. 4E). We also applied the stan-
dard diffusion pseudo-time (DPT) approach (Haghverdi et al. 2015;
Angerer et al. 2016) to the inferred transcription factor activities to
generate a pseudo-time order and build a differentiation trajectory.
When setting the common myeloid progenitors (CMPs) as start
points, the BITFAM-DPT approach assigned the cells to two direc-
tions (Fig. 4F), underscoring the utility of BITFAM in building tem-
poral trajectories.

Comparing distinct transcription factor target genes

as the input data for BITFAM

To benchmark the performance of BITFAMusing biological valida-
tion of a real-world scRNA-seqdata, we used a scRNA-seqdata set of
CRISPRi studies in which 50 TFs were targeted for CRISPR-mediat-
ed deletion or knockdown (Genga et al. 2019). This data set is well-
suited for assessing BITFAM performance because the depletion of
TFs by CRISPR should result in lower TF activities. We applied
BITFAMon the CRISPRi data set and used the AUROC basedmeth-
od to evaluate the performance (for details, see Methods). BITFAM
infers transcription factor activities by incorporating prior knowl-
edge of target genes that are predicted by ChIP-seq. To ascertain
the importance of the ChIP-seq input data, we replaced ChIP-seq
predicted target genes with randomly selected input genes and ap-
plied BITFAM to the CRISPRi and Tabula Muris lung data sets. We
found that in the CRISPRi data, the AUROC for randomly selected
transcription factor target genes drops down from 0.575 to 0.482
(Fig. 5A) and thus shows the necessity for selecting appropriate
ChIP-seq-derived target genes. In the Tabula Muris lung data sets,
the inferred activity of PAX5 in the original BITFAM model aligns
nicely with the known B cell–specific function of PAX5; upon ran-
dom shuffling of the target genes, the inferred activity of PAX5 is
no longer specific to B cells, again highlighting the importance of
the target genes (Fig. 5B,C).

We then examined the impact of how transcription factor tar-
get genes are predicted when using BITFAM. In addition to the
ChIP-seq derived transcription factor target gene prior data, one
could also use alternate approaches to predicting transcription fac-
tor target genes such as coexpression of TFs and genes, detecting
transcription factor binding motifs in the promoter of genes, or
combining ChIP-seq data with motif information such as ChIP-
eat (Gheorghe et al. 2019) to generate TF-target gene sets. We
benchmarked thesemethodsof identifying transcription factor tar-
gets using the CRISPRi data set in the BITFAM framework and
found that the default BITFAM ChIP-seq data prediction of target
geneshad the best performance (AUROC0.575 forChIP-seq target,
AUROC 0.563 for ChIP-eat identified genes, AUROC 0.511 for
coexpression genes, AUROC 0.496 for genes with binding motifs)
(Fig. 5D). As distal regions identified by ChIP-seq can act as regula-
tory enhancers, we also evaluated the performance using distal
ChIP-seq signals by extending the potential regulatory regions to
thewhole chromosome.TheAUROConCRISPRi datawith this set-
ting was 0.504 which was lower than the AUROC in the [−2000,
+200] region (AUROC of 0.575) (Supplemental Fig. S11).

We then evaluated how the source of the ChIP-seq data could
influence the results. BITFAM uses GTRD as the default database
but there are also other ChIP-seq databases available such as
ReMAP (Cheneby et al. 2020). Our evaluation showed that using
a GTRD ChIP-seq-based approach performed better than when
BITFAMwas used with targets generated from the ReMAP database
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(Supplemental Fig. S12). We next asked the question whether the
cell type from which the ChIP-seq data were generated was rele-
vant for accurately inferring TF activities in various cell types.
We therefore selectively removed ChIP-seq targets derived from
certain cell types and assessed how the inferred TF activities were
impacted. We specifically focused on selectively removing ChIP-

seq data sets that may be of relevance to a given cell type
(Supplemental Fig. S13). We found that for a transcription factor
such as CEBPA, for which a large number of ChIP-seq data sets ex-
ist, BITFAM inference results of CEBPA activity match known bio-
logical functions of CEBPA in a hematopoietic development data
set even when we used nonhematopoietic ChIP-seq data sets as
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Figure 4. Clustering of cell subpopulations by inferred transcription factor activities. (A) t-SNE plot of the Tabula Muris heart data set in which cells are
colored by BITFAM clusters. (B) t-SNE plot of the TabulaMuris heart data set in which cells are colored by biologically defined cell types. (C) t-SNE plot of the
Tabula Muris brain data set in which cells are colored by BITFAM clusters. (D) t-SNE plot of the Tabula Muris brain data set in which cells are colored by
biologically defined cell types. (E) UMAP plot of the inferred transcription factor activities in the blood cell development data set with cells colored by bio-
logically defined cell types. (F) UMAP plot of the inferred transcription factor activities colored by the pseudo-time values calculated by the standard DPT
workflow.
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prior knowledge (Supplemental Fig. S13A,B). However, when we
removed non-B cell ChIP-seq data sets for the transcription factor
PAX5, which is known to be highly active in B cells, we found that
BITFAMwas no longer able to accurately assign high PAX5 activity
in B cells (Supplemental Fig. S13C,D). For the TF NEUROD1, there
are currently 19 ChIP-seq data sets available, which have been de-
rived from embryonic stem cells, pancreas beta cell, and the pitu-
itary AtT-20 tumor cell line. None of these data sets include
primary brain neurons; nevertheless, BITFAM inferred increased
activity of NEUROD1 in brain neurons. However, when we re-
moved the ChIP-seq data from the pituitary tumor line, which is
arguably the closest to primary brain neurons, the BITFAM infer-
ence of increased NEUROD1 activity in selected populations was
no longer associated with these cell types (Supplemental Fig.
S13E,F). These data suggest that for certain TFs with increased ac-
tivity in specific cell types, ChIP-seq data derived from those or re-
lated cell types may improve the inference of the TF activities.

When identifying the transcription factor targets from ChIP-
seq data, the range of a gene promoter region could also conceiv-
ably influence the BITFAM output. The default approach for
BITFAM is setting the promotor region as 2 kb upstream and 200
bp downstream from the transcription start site (TSS) of each
gene. We then varied the promoter region length by comparing
the BITFAM performance with the default setting to changing
the regions as follows: (1) 500 bp upstream of TSS to 50 bp down-
stream fromTSS [−500, +50], (2) 1000 bp upstreamof TSS to 100 bp
downstream from TSS [−1000, +100], (3) 5000 bp upstream of TSS
to 5000 bp downstream fromTSS [−5000, +5000], and (4) 10 kb up-
stream of TSS to 10 kb downstream from TSS [−10 kb, +10 kb]. We
identified the ChIP-seq target genes on each of these different de-

fined promoter regions and applied BITFAM using the CRISPRi
data set. We found that setting the promoter region to [−1000,
+100] and [−2000, +200] had the best performance (AUROC
0.581 for [−1000, +100], AUROC 0.575 for [−2000, +200],
AUROC 0.536 for [−5000, +5000], AUROC 0.501 for [−500, +50],
AUROC 0.512 for [−10 kb, +10 kb]) (Fig. 5E).

Comparison of BITFAM with other methods to determine cell

subpopulations and transcription factor activities

We compared the clustering quality based on the inferred transcrip-
tion factor activity profiles learned by BITFAM and SCENIC (Aibar
et al. 2017) to the clustering results using other commonly used ap-
proaches such as Seurat (Butler et al. 2018), SIMLR (Wang et al.
2018), and SC3 (Kiselev et al. 2017). Cells were clustered using the
inferred transcription factor activity profiles followed by applying
Louvain’s clustering algorithm (Blondel et al. 2008). The clustering
quality was evaluated based on three metrics: adjusted Rand index
(ARI), Rand index (RI), and normalized mutual information
(NMI). In the Tabula Muris lung, heart, and brain data sets, the
BITFAM-based clustering approach displayed improvements in
terms of ARI, NMI, and RI when compared to other methods (Fig.
6A), thus highlighting the value of inferred transcription factor ac-
tivity in the determinationof cell subpopulations. The fact that clus-
tering on inferred transcription factor activities segregates cells into
previously established subpopulations with known distinct pheno-
types and functions suggests that the BITFAM-inferred transcription
factor activities have relevance for ascertaining cell function.

We next compared the overlap between transcription factor
target genes identified by SCENIC and by BITFAM by focusing
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Figure 5. Performance of BITFAM when prior knowledge is varied. (A) The AUROC of transcription factor activities by shuffling ChIP-seq data. (B) The
inferred activities of PAX5 in TabulaMuris lung data by ChIP-seq target genes. (C ) The inferred activities of PAX5 in TabulaMuris lung data by shuffled target
genes. (D) AUROC of transcription factor targets identification methods on CRISPRi data set. (E) AUROC of promoter region on CRISPRi data set.
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on the top-weighted genes using the same number of genes for a
particular transcription factor. We found limited overlap between
these two methods using the Jaccard index (Jaccard index>0.1)
(Supplemental Fig. S14; Supplemental Table S1), whereas
SCENIC and BITFAM showed some overlap in the inferred tran-
scription factor activities (Supplemental Fig. S15). We next also
performed a GO enrichment analysis on the top 100 genes with
the highest positive weights and compared this to the GO analysis
on target genes identified from SCENIC. We found that BITFAM
predicted target genes were more relevant to the known biological
function of transcription factors. For example, RELB is an impor-
tant transcription factor mediating inflammatory responses and
cell survival (Baker et al. 2011). RELB target genes predicted by
SCENIC were enriched for RNA or DNA metabolic processing
(Supplemental Fig. S16A). On the other hand, the top-weighted
target genes for RELB identified by BITFAM were enriched for pro-
cesses such as immune cell activation, apoptosis, and proliferation

(Supplemental Fig. S16B). There is a limited overlap of the tran-
scription factor targets and pathways identified between the two
methods, but the two methods also identify distinct target genes
and pathways. The RELB ChIP-seq target genes were enriched for
blood cell differentiation (Supplemental Fig. S17).

To directly compare the performance of BITFAM and
SCENIC, we applied BITFAM and SCENIC on the CRISPRi data
set. The AUROC of SCENIC in this data set using only motifs
with 10 kb centered on the TSS ([−10 kb, +10 kb]) was 0.537.
The AUROC of SCENIC using motifs and ChIP-seq data with 10
kb centered on TSS ([−10 kb, +10 kb]) was 0.557. These AUROCs
were lower than the AUROCs of BITFAM using the optimal pro-
moter regions we established for BITFAM (AUROC for BITFAM
with region [−2000, +200] was 0.575; AUROC for BITFAMwith re-
gion [−1000, +100] was 0.581). SCENIC-ChIP-seq performs better
than BITFAM in the 5–10 kb regions (Fig. 6B; Supplemental Fig.
S18). Even though the AUROC is widely used for the purpose of

B

A

C

Figure 6. Comparison of BITFAMwith other methods. (A) Clustering performance comparison between BITFAM+Louvain, SCENIC+ Louvain, and three
traditional clustering methods applied to the Tabula Muris lung, heart, and brain data sets. The clustering quality was evaluated based on three metrics:
adjusted Rand index (ARI), Rand index (RI), and normalizedmutual information (NMI). (B) Performance of BITFAM and SCENIC in the CRISPRi data. (C) The
running time of BITFAM and SCENIC on the Tabula Muris lung data set and the CRISPRi data set.
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benchmarking, we also used a Precision-Recall AUC (PRAUC),
which is more appropriate for unbalanced data sets such as the
CRISPRi data in which only a small fraction of cells undergo TF
deletion. Using the PRAUC, we again found that BITFAM per-
formed slightly better than SCENIC when using the optimized re-
gions for both methods (Supplemental Fig. S19). The run time of
BITFAM on the Tabula Muris lung data set and CRISPRi data set
was 2.81 h and 2.54 h, respectively, which was significantly lower
than the corresponding run times of SCENIC using the same data
sets (10.23 h and 11.78 h) and the same computer (AMD 3900XT
12-core CPU) (Fig. 6C).

We next compared the results of BITFAM to the CSHMM-TF
model (Lin et al. 2020), which combines transcription factor activ-
ity inference with the generation of developmental trajectories
based on a continuous state hidden Markov model. We applied
the CSHMM-TF and BITFAM models in a lung development data
set (Treutlein et al. 2014) and found that the inferred TFs activities
fromBITFAMoverlappedwith the results from the CSHMM-TF ap-
proach (Lin et al. 2020). For example, both BITFAM and CSHMM-
TF inferred increased GATA6 activity in AT2 cells and increased
SOX4/SOX5 activity in lung development (Supplemental Fig.
S20), consistent with what is known about the mechanistic roles
of these TFs in the respective cell types (Poncy et al. 2015; Flodby
et al. 2017; Lin et al. 2020). However, the CSHMM-TF model also
generates developmental trajectories, whereas BITFAM does not.

Discussion

We have developed a model (BITFAM) for the inference of tran-
scription factor activities in individual cells by analyzing scRNA-
seq data and leveraging known transcription factor ChIP-seq
data based on a Bayesian factor analysis. In contrast to many cur-
rent methods developed for scRNA-seq data analysis that are pri-
marily by the observed data itself, our approach of dimension
reduction of individual cell gene expression profiles is guided by
the integration of prior biological knowledge (ChIP-seq) with the
observed data to infer transcription factor activities of the most
variably expressed genes.

Our analysis showed that BITFAM can infer biologically
meaningful transcription factor activities underlying distinct cell
subpopulations. For example, TAL1 is an important factor for en-
dothelial gene activation in vivo (Lazrak et al. 2004). It activates
several endothelial-specific gene enhancers through essential E-
box binding elements (De Val and Black 2009). BITFAM learned
the high activity of TAL1 in endothelial cells, as shown in the anal-
ysis of the Tabula Muris lung data (Fig. 2). Similarly, our model in-
ferred high PAX5 and EBF1 activity in B cells (Fig. 2; Supplemental
Fig. S5) and high MAFB activity in macrophages (Fig. 2). In this
context, it is important to note that Pax5 encodes the paired box
5 protein (human ortholog also known as BSAP), which is a specif-
ic regulator of the B lymphoid lineage (Nutt et al. 1999), whereas
MAFB is an essential regulator of macrophages (Wu et al. 2016).
In terms of the roles of inferred transcription factor activities in
the setting of development and differentiation, GATA1 is a key fac-
tor in erythroid cell development (Takahashi et al. 1998), whereas
CEBPA and STAT5A play important roles in granulocyte-macro-
phage progenitor development (Suh et al. 2006; Kimura et al.
2009). BITFAM inferred the activities of these transcription factors
from the blood cell differentiation scRNA-seq data, which have
been independently and experimentally proven to serve as key
transcription factors of hematopoiesis. The regulatory roles of
TFs in maintaining cell identity and cell function are highly com-

plex, likely involving a network of TFs.We focused on selected TFs
to illustrate that BITFAM can accurately infer the activities of se-
lected well-established TFs in known biological functions of cer-
tain cell types. A more exciting application of BITFAM will be
the future exploratory inference of transcription factor activities
that have not yet been established in a given cell type, because it
will generate novel testable hypotheses regarding putative regula-
tory roles of TFs in cell subpopulations. Such biological experi-
ments in which individual TFs are deleted will also be necessary
to test whether the negatively weighted genes identified by
BITFAM indeed indicate putative repressive functions of the TFs.

It is important to point out that the mRNA expression levels
of these transcription factors did not always match the known
mechanistic roles of these factors in the cell lineage specification,
and that BITFAM-inferred high activity of the selected transcrip-
tion factors in cell subpopulations even when the measured
mRNA expression levels of the transcription factors were minimal
in the same cells (Fig. 2D,G; Supplemental Fig. S7). This could be
because transcription factor activity is often regulated at the
posttranslational level and does not require continuous de
novo synthesis of mRNA (Zhao et al. 2018). These findings un-
derscore the importance of integrating functional data into
scRNA-seq data analysis to increase its functional and mechanis-
tic significance.

Several methods have been developed to infer the transcrip-
tion factor activities and build gene regulatory networks (GRN)
from scRNA-seq data. The coexpression network is commonly
used among these methods. The relationships of a transcription
factor and its target genes are established by Pearson’s correlation
(Specht and Li 2017), mutual information (Chan et al. 2017), or
machine learning models, such as random forest (Huynh-Thu
et al. 2010; Aibar et al. 2017;Moerman et al. 2019) and deep neural
network (Yuan and Bar-Joseph 2019) models. The transcription
factor activities are then inferred from the coexpression network
(Aibar et al. 2017). However, thesemodels rely on the coexpression
of the mRNA encoding for transcription factors, which can be a
challenge because the activity of transcription factors is often reg-
ulated at a posttranslational level and key changes in activity may
not be detected at the mRNA level. In addition, coexpression does
not necessarily reflect a biologically meaningful relationship
because it may be significantly influenced by noise in scRNA se-
quencing data (Freytag et al. 2015; Lähnemann et al. 2020).

We also compared BITFAM to SCENIC (Aibar et al. 2017), an-
other recently developed transcription factor activity inference
tool. SCENIC determines the target genes of a transcription factor
based on gene coexpression coupled to a binding motif analysis,
using a random forest model. SCENIC then combines feature im-
portance with analysis of binding motifs, thus learning the in-
ferred target genes of the analyzed transcription factors and
corresponding inferred activity score for each transcription factor,
in the data. Its key advantage is that it does not require prior ChIP-
seq data and can thus be used for any transcription factor, especial-
ly those that have been recently identified and lack such prior
knowledge. We found that SCENIC and BITFAM showed some
overlap in the inferred transcription factor activities (Supplemen-
tal Fig. S15), but BITFAM outperforms SCENIC slightly in the
CRISPRi validation data set when assessing transcription factors
for which ChIP-seq data is available in the optimal searching re-
gions (Fig. 5B; Supplemental Fig. S18). For our current performance
comparisons, we used the AUROC approach that is commonly
used in similar studies (Garcia-Alonso et al. 2019; Keenan et al.
2019; Nguyen et al. 2019; Holland et al. 2020). This method is
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based on the logFC of CRISPRi target TFs inferred activities be-
tween control cells and perturbed cells. It integrates all TFs togeth-
er to generate one AUROC value that is reflective of overall
performance.

One of the key challenges in the benchmarking of such TF in-
ference algorithms is the limited availability of “ground truth”
data sets. The CRISPRi data set was among the best we could find
in terms of comprehensiveness, but one key limitation is that
even if cells are transfected or transduced with guide RNAs to
delete TFs, their deletion efficacy can vary and this can impact
the validity of the comparison. For example, as shown in
Supplemental Figure S18, when filtering for cells that expressed
more than two copies of the guide RNA, we found an increase of
the AUROC, thus suggesting that the overall low AUROC of both
BITFAM and SCENIC may in part be related to that lack of defini-
tive “ground truth data sets.” Our hope is that soon there will be
more data sets available in which systematic deletions of multiple
TFs are coupled to scRNA-seq, thus providing more opportunities
for comparisons and development of algorithms with even greater
accuracy of TF activity inference. That will also allow for more de-
finitive conclusions regarding the comparative performance infer-
ence algorithms such as SCENIC and BITFAM, as well as newer
algorithms developed in the future. One of the key advantages of
BITFAM was its substantially lower run time (∼60%–70% lower
run time than SCENIC) (Fig. 6C).

One possible application of BITFAM would be the discovery
of novel heterogeneous subpopulations that cannot be identified
using standard clustering approaches because inferred transcrip-
tion factor activities may identify more subtle phenotype differ-
ences owing to the regulatory function of transcription factors
than only clustering on global gene expression. Our goal in the
current study was to establish the value of combining ChIP-seq
data and Bayesian analysis for inferring transcription factor activ-
ities using known transcription factors in known cell types. We
used clustering and comparisons to the identity of biologically es-
tablished cell subpopulations (which are likely distinct in their
transcription factor activity profiles) merely as an approach to val-
idate BITFAM. Establishing additional novel downstream ap-
proaches for transcription factor–based trajectory building or
identifying transcription factor activity–based subclusters would
be an exciting future application of BITFAM. BITFAM can be read-
ily combined with multiple clustering or trajectory building
approaches. The CSHMM-TF (Lin et al. 2020) combines transcrip-
tion factor activity inference with the generation of developmen-
tal trajectories based on a continuous state hidden Markov
model. Although the CSHMM-TF approach is ideally suited for
temporal or developmental trajectories involving state transitions,
BITFAMcan infer transcription factor activities for data sets that do
not contain temporal trajectories and state transitions, thus com-
plementing CSHMM-TF.

Another important consideration for using BITFAM is the
choice of the input ChIP-seq data. We found that casting a wider
net of potential regulatory ChIP-seq targets by choosing a larger
promoter region did not improve the performance of BITFAM
(Fig. 5E; Supplemental Fig. S12). We acknowledge that limiting
the promoter region to [−2000, +200] bp around the TSS may ex-
clude important distal enhancer and regulatory regions. A recent
study with scATAC-seq data has shown that a large proportion of
accessible chromatin regions can be more than 10 kb distant
from the nearest TSS (Domcke et al. 2020), thus underscoring
the potential role of distant regulatory regions. Matching distant
regulatory regions to the putative target genes remains an active

area of research. One possible approach could be the future inte-
gration of bulk and single-cell Hi-C data that could provide addi-
tional information on the most relevant distant regulatory
regions. Growing consensus on identifying putative distal regula-
tory regions could allow for this information to be incorporated
into BITFAM or analogous Bayesian models in the future.

In regard to the quality and extent of the ChIP-seq data that is
required to establish the prior knowledge in a Bayesian inference
model, one finds a wide variety in the number of ChIP-seq data
sets for any individual transcription factor (usually a function of
how many groups are studying the transcription factor). Further-
more, existing ChIP-seq data are generated from bulk cells or tis-
sues, and it is unclear whether the ChIP-seq data derived from
one cell type is as relevant for a scRNA-seq experiment as one
that is derived from another cell or tissue type. We found that
for certain transcription factors such as NEUROD1 and PAX5 for
which BITFAM inferred increased activities in neurons (NEU-
ROD1) and B Cells (PAX5), the presence of ChIP-seq data sets de-
rived from related cell types was required to allow for these
specific inferences in the analyzed scRNA-seq data. However, for
transcription factors such as CEBPA, removal of selected ChIP-
seq data sets did not significantly impact the inferred activities.
This could indicate the importance of having a larger number of
input data sets (such as the case for CEBPA) to create a robust prior
knowledge required for a successful Bayesian prediction model or
it could also reflect that some transcription factors such as CEBPA
may have similar ChIP-seq targets across tissues and cells, whereas
other transcription factors such as NEUROD1 and PAX5may be as-
sociated with cell type–specific targets. These limitations of apply-
ing bulk ChIP-seq data derived from several cell types to a given
scRNA-seq data set derived from a different group of cell types
may in part be overcome in the future with the emerging availabil-
ity of context-specific single-cell chromatin accessibility data as
seen in studies of the transcription factor targets and regulatory
mechanism by scATAC-seq (Buenrostro et al. 2015; Cusanovich
et al. 2018; Duren et al. 2018; Jia et al. 2018). In the future as
more andmore scATAC-seq analyses are performed concomitantly
with scRNA-seq analyses, we may improve BITFAM by incorporat-
ing the scATAC-seq data into the Bayesian hierarchical model to
havemore accurate and specific results. BITFAM allows users to fil-
ter TF ChIP-seq target genes based on the accessibility data provid-
ed by ATAC-seq data, but there are also opportunities for future
iterations of BITFAMor related Bayesian approaches to incorporate
scATAC-seq data into the Bayesian hierarchical model itself, thus
narrowing down the potential ChIP-seq targets by intersecting
themwith the open chromatin regions in a cell type–specificman-
ner and thus improving the quality of the inference.

The idea of integrating prior biological knowledge with RNA-
seq data to infer gene regulatory network has also been explored in
several previous approaches (James et al. 2010; Arrieta-Ortiz et al.
2015; Ji et al. 2019; Miraldi et al. 2019; Jackson et al. 2020).
These methods were developed for specific cell types and treated
the prior knowledge as a fixed network, thus only learning the in-
teractions within this network. Such approaches could be very
helpful when there are established specific TF–gene relationships
in a given cell type. In contrast, BITFAM assigns a probability to
the TF–gene interaction without requiring cell-specific prior
knowledge and provides a generalized approach to identify novel
target genes for transcription factors in the specific data set.

TF activities inferred by BITFAM can be used to identify puta-
tive cell type–specific TFs.We chose a random forest model to gen-
erate such cell type–specific TF profiles but othermethods can also
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be applied for such an analysis. For example, a linear model could
be used to identify differentally activated transcription factors
across cell types. We posited that the ranked feature list in the ran-
dom forest model allows for the evaluation of the activity of each
TF in the presence of other TFs and their potential nonlinear rela-
tionships, whereas ranking based on the scale of mean Z-values,
whichwould only provide a univariate analysis. However, users re-
tain the flexibility to choose the downstream analysismethod that
may be best suited for establishing cell type–specific TFs based on
BITFAM-inferred activities.

In summary, we have developed a Bayesian factor analysis
model to infer transcription factor activity in individual cells,
and we use this approach to develop key biological hypotheses
regarding the regulatory transcription factors in each cell as well
as derive insights into the biological functions of cell
subpopulations.

Methods

The Bayesian inference transcription factor activity model

(BITFAM)

BITFAM is a model of Bayesian factor analysis (Lopes and West
2004) that aims at the decomposition of scRNA-seq profiles Y: Y
=WZ+Φ. BITFAM assumes a linear relationship between the
scRNA-seq data and the inferred transcription factor activities
specified byZ and the transcription factor–specific gene regulation
patterns specified by W. Here, we describe the structure and rela-
tion of Y, W, and Z, and we define the probability distributions
for the matrix elements.

Matrix W is theweightmatrix that represents the evidence of
transcription factors and their target genes obtained from the tran-
scription factor ChIP-seq data. We assign normal prior distribu-
tions on elements of matrix W with two different variances as
follows.

We assume that the weight of a transcription factor k on gene
n follows normal distribution that is modeled with the prior distri-
bution for Wnk:

Wnk � N Wnk|0, 1/dk
( )

if gene n is targeted by transcription factor k
N(Wnk|0, 0.001) otherwise

{

for gene n=1, …, N and transcription factor k=1, …, K. We
use automatic relevance determination (ARD) tomodel the param-
eter δk, i.e.,

dk � Gamma(1× 10−3, 1× 10−3).

In the target gene list determinedby theChIP-seq data, someof the
genes may not be the targets of the transcription factors in a given
scRNA-seq data set because the same transcription factormay have
different targets in distinct cell subtypes. It is therefore necessary to
develop amethod to automatically infer which target genes are rel-
evant and switch the other genes off. The automatic relevance de-
termination (ARD) (MacKay 1996) is used for this purpose.

Matrix Z is facilitated as the transcription factor activities for
each cell in ourmodel.We assign a Beta prior to the activity of tran-
scription factor k in mth cell (m=1, …, M), that is,

Zkm � Beta(0.5, 0.5).

The residual noise ϕnm is modeled by a normal distribution
with variance ε. fnm � N(0, 1); 1 � Gamma(1, 1) for gene n.

The likelihood of our BITFAM is

Y|(W, Z, F) � Normal(WZ, F).

The examples of posterior distribution of 1/σk and weights
can be found in Supplemental Figure S21.

Parameter inference

To achieve scalability to large numbers of cells and genes, we use
approximate Bayesian inference based on variational methods
(Ghahramani and Matthew 2000; Wainwright and Jordan 2008).
The variational method is to infer the posterior distributions
over all unobserved variables using a factorized form. The final
weight matrix W and the inferred transcription factor activities
matrix Z are constructed by taking the means of the samples
from the posterior distributions. The sample size is 300.

We implemented the inference of BITFAM with R (R Core
Team 2020) package Rstan (Version 2.18.2). Rstan implements
an automatic variational inference algorithm, called Automatic
Differentiation Variational Inference (ADVI) (Kucukelbir et al.
2017). ADVI uses Monte Carlo integration to approximate the var-
iational objective function, the ELBO (evidence lower bound).
Stochastic gradient ascent is used to optimize the ELBO in the
real-coordinate space. The algorithm stops when themean change
of ELBO is below 0.01.

Processing and analysis of the scRNA-seq data sets

The Tabula Muris lung, heart, and brain data were generated from
Smart-seq2 (5447, 4321, and 6315 cells in each organ) and pro-
cessed. The Seurat R objects with raw counts are downloaded
from figshare (https://figshare.com/projects/Tabula_Muris_Trans
criptomic_characterization_of_20_organs_and_tissues_from_Mus
_musculus_at_single_cell_resolution/27733). The cell types were
labeled in each organ by the expression of well-known marker
genes (Tabula Muris et al. 2018). The blood cell development ex-
pression data generated on the MARS-seq platform (10,368
cells in total) were obtained from NCBI Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) (accession
GSE72857). Using FACS, 2729 myeloid progenitor cells (CMP,
GMP, and MEP) were identified.

We used the NormalizeData function from R package Seurat
(Butler et al. 2018) to normalize the gene expression in each cell.
We chose the normalizationmethod “LogNormalize,”which nor-
malizes the feature expression measurements for each cell by the
total expression, multiplied by a scale factor (10,000 by default).
The normalized data were log-transformed.

We identified the most variably expressed genes using the
function FindVariableGenes in Seurat. It calculates the average ex-
pression and dispersion for each gene, places these genes into bins,
and then calculates a Z-score for dispersionwithin each bin (Butler
et al. 2018).We defined themost variable expressed geneswith the
following cutoff: the mean log-transformed expression of genes
across all cells should be higher than 0.1, and the variance to
mean ratio should be larger than 1. The summary of model input
of each data set is provided in the Supplemental Files (Supplemen-
tal Fig. S1).

The identification of transcription factor target genes

The ChIP-seq data were obtained from the Gene Transcription
Regulation Database (GTRD v19.04) (Yevshin et al. 2019), which
is a database of transcription factor binding sites for human and
mouse obtained from the uniformly processed ChIP-seq data.
We downloaded the meta clusters intervals that have been inte-
grated from the ChIP-seq data peak intervals from different pro-
jects and peak calling tools. For each transcription factor, we
defined its target genes by overlapping the ChIP-seq peak intervals
in the promotor region of the genes.We set the promotor region as
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2 kb upstream and 200 bp downstream from the transcription
starting site (TSS) of each gene. The information of the TSS was
downloaded from the UCSC Table Browser (Karolchik et al. 2004).

For each data set, we selected the expressed transcription fac-
tors as input to our model. The transcription factor prior target
genes are the intersection between ChIP-seq-based regulatory tar-
get genes and themost variably expressed genes in each scRNA-seq
data set.We excluded transcription factorswith less than 10 (prior)
target genes.

Random forest model to identify the marker transcription factors

for specific cell types

For each cell type in a data set, we label the cells for a given cell type
as 1 and the other cells as 0. The inferred transcription factors ac-
tivities (Z matrix) are the features as input. We train the random
forest model with the R package randomForest (version 4.6).
Then for each type, we identify the most significant transcription
factors by the feature importance score.

Louvain’s algorithm

Louvain’s algorithm detects communities in a graph by maximiz-
ing a modularity score for each community, where the modularity
is the density of nodes within that community (Blondel et al.
2008). Louvain’s algorithm can also be used for clustering. To con-
struct a graph suitable for Louvain’s algorithm,we built a fully con-
nected graph of all cells based on the inferred transcription factor
activities in cells. The edge weights between nodes (cells) are diffu-
sion distances and computed using the R package destiny (Angerer
et al. 2016). The top 20% smallest weight edges, that is, the 20%
closest distances between cells were used to form a new graph
andwe applied Louvain’s algorithm.We used the R package igraph
(Version 1.2.4.1) to build the graph and implemented Louvain’s
algorithm.

Clustering quality metrics

Rand index (RI) and adjusted Rand index (ARI)

Given a set of elements and two classifications of these elements,
the RI is defined as

RI = a+ b
n
2

( )

where a refers to the number of times a pair of elements belongs to
the same cluster across the two classifications, and b refers to the
number of times a pair of elements are in different clusters across
the two classifications (Hubert and Arabie 1985). The RI represents
the frequency of occurrence of agreements over the total pairs, and
ranges between 0 and 1. When the two classifications are agreed
perfectly, the Rand index is 1.

The overlap between the two classifications can be presented
by a contingency table, in which each entry denotes the number
of objects shared between the two classifications. The ARI is de-
fined as
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where nij is the value in the contingency table; ai is the sum of the
ith row of the contingency table; and bj is the sum of the jth col-

umn of the contingency table. The ARI corrects the RI for chance
(Hubert and Arabie 1985).

Normalized mutual information (NMI)

Given a set of n elements and a classification X of these elements,
and a clustering result Y, the Normalized Mutual Information
(NMI) is defined as

NMI = 2× I(X; Y)
[H(X)+H(Y)]

whereH(.) is the entropy of class labels;H(.) = ∑
i (−pi)log( pi); pi is

the probability of an element belonging to cluster i; and I(X;Y) is
the mutual information defined as I(X;Y) =H(X)−H(X|Y).

Jaccard index

Jaccard index is a statistic used for quantifying the similarity be-

tween two sets. It is defined as J(A, B) = |A> B|
|A< B|, where A and B

are sets.

Diffusion pseudo time (DPT)

Diffusion pseudo time (DPT) was calculated using diffusion dis-
tances between each cell based on the profiles of reduced dimen-
sions (PCA or BITFAM). One CMP cell served as the starting
point, whereas GMP and MEP cells were the end points of each
branch. Pseudo time toward MEP and GMP branches was scaled
between [0, 1] and [0, −1] to show the branching more distinctly.
The R package destiny (Version 2.14.0) was used to compute the
Diffusion pseudo time (DPT) (Angerer et al. 2016).

Other clustering approaches

Seurat (Version 3.0), SIMLR (Version 1.10.0), and SC3 (Version
1.12.0) were downloaded from Bioconductor (Version 3.9).
Seurat was run with default parameters and set 20 as the number
of principal components used for clustering. SIMLR was run with
default parameters and the number of clusters was detected by
the function SMLR::SIMLR_Estimate_Number_of_Clusters. SC3
was run with default parameters and the number of clusters was
detected by the function SC3::sc3_estimate_k.

Gene Ontology enrichment analysis

The Gene Ontology enrichment analysis of the top inferred
weighted genes for transcription factors was conducted using
The Database for Annotation, Visualization and Integrated
Discovery (DAVID) v6.8 (Huang et al. 2009) (adjusted P-value<
0.005). We used the level 5 Biological Process (BP) as the annota-
tion of sets to annotate the function of the selected genes.

Benchmarking with AUROC on CRISPRi data

The CRISPRi data include 141 perturbation experiments with
CRISPR-targeting of 50 transcription factors. It is available on
NCBI GEO (accession GSE127202). For each CRISPRi perturbation
experiment, we calculated the logFC of all transcription factor in-
ferred activities comparing perturbed cells and control cells. For ex-
ample, for CRISPR-targeting of TFX, we calculated the logFCof the
inferred activities of all TFs in cells inwhichXwas perturbed versus
the inferred activities of the TFs in cells in which X was not per-
turbed. The positive class (perturbed cells) and negative class (non-
perturbed cells) represent the biological ground truth that is
determined by the CRISPRi experiment. So, a thresholding of
logFC of inferredX activity fromBITFAM in all cells will determine
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whether a cell will be inferred as X deletion (lower logFC). When
this threshold varies, then an AUROC can be computed. For every
TF, we used the same approach, thus allowing us to calculate an
overall AUROC for all TFs. This AUROC indicates how accurately
inferred TF activitieswere associatedwith the positive andnegative
classes.

We performed the AUROC analysis with the R package yard-
stick (version 0.0.3).

Other transcription factor activity inference approaches using

CRISPRi data

The genes with the top 500 highest (absolute value) correlations
(P-value<0.05) were defined as coexpressed genes of the transcrip-
tion factor. For transcription factor binding motifs on promoters,
we chose the region from 2000 bp upstream of the transcription
starting site (TSS) to 200 bp downstream fromTSS as the promoter.
Then we used a motif scanning tool, FIMO (Grant et al. 2011), to
search the transcription factor motifs from HOCOMOCO
(Kulakovskiy et al. 2018) and JASPAR (Fornes et al. 2020) on the
gene promoters. The genes with binding motifs (P-value<
0.0001)were identified as the targets of TFs. For theChIP-eatmeth-
od, it combines computational transcription factor binding mod-
els and ChIP-seq peaks to automatically predict direct TF–DNA
interactions. We downloaded the Individual BED files for specific
TFs on the UniBind website (https://unibind.uio.no).

Software availability

The BITFAM (version 1.2.0) is implemented in R (R Core Team
2020), and the source code is available at Supplemental Code.
BITFAM (version 1.2.0) can be freely downloaded from GitHub
(https://github.com/jaleesr/BITFAM).
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