
metabolites

H

OH

OH

Article

GC-MS Based Metabolite Profiling to Monitor
Ripening-Specific Metabolites in Pineapple
(Ananas comosus)

Muhammad Maulana Malikul Ikram 1 , Sobir Ridwani 2, Sastia Prama Putri 1,* and
Eiichiro Fukusaki 1

1 Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita,
Osaka 565-0871, Japan; malikul_ikram@bio.eng.osaka-u.ac.jp (M.M.M.I.);
fukusaki@bio.eng.osaka-u.ac.jp (E.F.)

2 Center for Tropical Horticulture Studies, IPB University, Jl. Baranangsiang, Bogor 16144, Indonesia;
ridwanisobir@gmail.com

* Correspondence: sastia_putri@bio.eng.osaka-u.ac.jp; Tel.: +81-6-6879-7416

Received: 10 February 2020; Accepted: 25 March 2020; Published: 31 March 2020
����������
�������

Abstract: Pineapple is one of the most cultivated tropical, non-climacteric fruits in the world due to
its high market value and production volume. Since non-climacteric fruits do not ripen after harvest,
the ripening stage at the time of harvest is an important factor that determines sensory quality and
shelf life. The objective of this research was to investigate metabolite changes in the pineapple ripening
process by metabolite profiling approach. Pineapple (Queen variety) samples from Indonesia were
subjected to GC-MS analysis. A total of 56, 47, and 54 metabolites were annotated from the crown,
flesh, and peel parts, respectively. From the principal component analysis (PCA) plot, separation
of samples based on ripening stages from C0–C2 (early ripening stages) and C3–C4 (late ripening
stages) was observed for flesh and peel parts, whereas no clear separation was seen for the crown part.
Furthermore, orthogonal projection to latent structures (OPLS) analysis suggested metabolites that
were associated with the ripening stages in flesh and peel parts of pineapple. This study indicated
potentially important metabolites that are correlated to the ripening of pineapple that would provide
a basis for further study on pineapple ripening process.
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1. Introduction

Pineapple (Ananas comosus) market value is approximately 14.7 billion USD with a production
volume of around 25 million metric tons in the world [1]. Pineapple is categorized as a non-climacteric
fruit. The major difference between climacteric and non-climacteric fruit is non-climacteric fruit
produces low levels of ethylene and does not show any major peak in the respiration rate during
the ripening process, whereas climacteric fruit depends on ethylene bursts during ripening [2,3].
In addition, ethylene treatment does not give any effect to non-climacteric fruit with the exception of
degreening (removal of chlorophyll) [4]. Another distinct characteristic of non-climacteric fruit is the
fruit will not continue its ripening process after harvest, thus making it important to be harvested in
the right ripening stage to ensure proper quality [3]. The ripening stage of pineapple is divided into
5 stages, C0–C4, with the green-ripe fruit at C0 and the full-ripe fruit at C4 based on United Nations
Economic Commission for Europe (UNECE) Standard for pineapple (FFV-49) as seen in Figure 1 [5].
This classification is based on the peel color of pineapple, in which C0 stage contains 0% yellow color,
C1 stage contain 0%–25% yellow color, C2 stage contain 25%–50% yellow color, C3 stage contain
50%–75% yellow color, and C4 stage contain 75%–100% yellow color [5]. Pineapple is usually exported
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in the C1 stage [6], while the fully ripe fruit (C4 stage) is mainly for domestic consumption. The fruit
of pineapple consists of the fusion of individual fruits. These individual fruits are developed from a
single flower and the external of these fruits were protected with a hard-polygonal shield, commonly
called as pineapple peel [7]. On top of pineapple fruit, there are leaves that can be used for vegetative
reproduction of pineapple commonly called the pineapple crown. This crown part is commonly
harvested along with the fruit harvest [7]. Crown and peel parts develop during pineapple fruit
development. Therefore, to understand the pineapple ripening process comprehensively, analysis of
pineapple peel and crown is needed in addition to flesh analysis. At present, there is limited information
on the differences in metabolite composition of pineapple from different ripening stages [8]. Monitoring
metabolites changes using tools such as metabolomics, a comprehensive study of metabolite, is a
powerful tool for further understanding pineapple ripening process.
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Figure 1. Pineapple sample from all ripening stages. From left to right: C0 until C4 stages.
This classification is based on the peel color of pineapple, in which C0 stage contains 0% yellow
color, C1 stage contain 0%–25% yellow color, C2 stage contain 25%–50% yellow color, C3 stage contain
50%–75% yellow color, and C4 stage contain 75%–100% yellow color [5].

Recent studies about fruit ripening metabolomics mostly focused on climacteric fruits, such as
banana, mango, capsicum, dates, avocado, peach, climacteric melon, and mangosteen [9–16].
On the other hand, only a few of non-climacteric ripening processed fruit had been elucidated
using metabolomics approach, such as cherry, blackcurrant, blueberry, non-climacteric melon,
and pineapple [15,17–21]. Previous metabolomics studies on non-climacteric fruit employed
mass spectrometry-based instruments, such as gas chromatography-mass spectrometer (GC-MS)
or liquid chromatography-mass spectrometer (LC-MS). Several studies performed a combination of
headspace-solid phase microextraction (HS-SPME) with GC-MS to measure volatile compounds during
the ripening process [15,20]. Reports on pineapple ripening have been focused in volatile and phenolic
compounds using HS-SPME-GC-MS, high-performance liquid chromatography with diode array
detection and electrospray ionization multiple-stage mass-spectrometry (HPLC-DAD-ESI-MSn), and
electrospray ionization mass spectrometry (ESI(-)FT-ICR MS) [21–24]. The outcome from these previous
reports suggested the changes in phenolic patterns, such as coumaroyl isocitrate and S-p-coumaryl,
and volatile compounds, such as methyl 3-(methylthio)propanoate and δ-octalactone, along the
pineapple ripening process.

As mentioned previously, previous studies on pineapple ripening were on the targeted analysis
of volatile and phenolic compounds using the flesh part as a sample. To date, there is no study that
analyzed different parts of pineapple including flesh, peel, and crown parts, and incorporating broad
coverage of primary metabolites such as sugar, organic acid, amino acid, sugar alcohol, sugar acid,
and amine compounds. In order to suggest metabolites that are associated with ripening, there are
several different multivariate analyses that can be used. The most common multivariate analysis is
principal component analysis (PCA) and orthogonal projections to latent structures (OPLS) regression
analysis [25,26]. In this study, a metabolite profiling approach using GC-MS in combination with PCA
and OPLS was conducted to monitor the changes of primary metabolites (sugar, organic acid, amino
acid, etc.) during pineapple ripening process by analyzing pineapple fruit (crown, flesh, and peel)
from different ripening stage (Figure S1). OPLS model was constructed using metabolites annotated by
GC-MS as an explanatory variable and ripening stages as a response variable. The constructed model
from flesh and peel samples indicated several potentially important metabolites that were correlated
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with the pineapple ripening process. This study would be important to complement the knowledge
of the pineapple ripening process and could serve as a basis for post-harvest handling strategy in
pineapple industries.

2. Results

2.1. Optimization of Sample Preparation Methods in Pineapple Fruit

The first analysis was to compare two different sample preparation methods, namely food
processor and freeze-drying. This analysis was conducted to optimize sample preparation of pineapple
fruit in GC-MS analysis. A total of 47 metabolites belonging to various metabolite classes were
annotated by GC-MS analysis in flesh samples (Table S1). These metabolites comprise of 26 metabolites
belongs to sugars class, 12 metabolites belong to amino acids and amines, and 9 metabolites belong to
organic acids. These annotated metabolites were subjected to PCA to clearly visualize the differences
in metabolite levels in pineapple flesh prepared by food processing and freeze-drying methods.

Figure 2 shows the comparison between these two methods after analysis by GC-MS. From the
score plot, flesh samples prepared by two different methods were clearly separated along the PC1
with a 95.2% variance. The loading plot showed that almost all metabolites were accumulated in the
flesh samples prepared by freeze-dry method. Only sucrose was found to accumulate in samples
prepared by food processor method. In the next analysis, we applied the freeze-drying method to
analyze different parts of pineapple in GC-MS. A total of 54, 44, and 50 metabolites were annotated
from crown, flesh, and peel, respectively (Table S2). PCA score plot from Figure 3 clustered pineapple
fruit into three different parts (crown, flesh, and peel) based on the metabolite distributions. Amino
acid and organic acid were found to be accumulated in crown part, while the peel and flesh part show
accumulation of sugar and sugar-acid. Due to the separation for each part, this result becomes the
basis to analyze three parts of pineapple separately.
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Figure 2. PCA of comparison of different sample preparation methods: Food processor method and
freeze-drying method. 47 annotated metabolites from GC-MS analysis were auto-scaled prior to PCA.
(Left: Score plot between food processor and freeze dry samples; Legends represent the samples and
colored as follow: food processor: light brown circle, freeze dry: red circle. Right: Loading plot shown
almost all metabolites (except sucrose shown by light brown arrow) showed higher accumulation by
freeze-dry method).
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Figure 3. PCA result from different parts of pineapple. 64 tentatively identified metabolites from
GC-MS analysis were auto-scaled prior to PCA. Left: Score plot between crown, flesh, and peel part.
Legends represent the sample and colored as follows: crown: green circle, flesh: yellow triangle, peel:
red square. Right: Loading plot shown that crown part accumulates organic and amino acid, while
flesh and peel accumulate sugar and sugar acid.

2.2. GC-MS and Principal Component Analysis of Pineapple from Different Ripening Stages

Analysis of crown, flesh, and peel parts of pineapple from different ripening stages was conducted
separately. Metabolite profiling approach using GC-MS instrument could detect 351 metabolite peaks
in the crown part, 297 metabolite peaks in the flesh part, and 359 metabolite peaks in the peel part.
Among those peaks, 85 peaks in the crown part, 74 peaks in the flesh part, and 73 peaks in the peel part
were annotated using MSP Library containing RI and EI-MS from our laboratory experimental data.
Metabolites from QC samples with RSD more than 20% were excluded from the analysis [27]. After
exclusion of metabolites with RSD higher than 20%, the number of annotated metabolites in crown
part were 56 metabolites, in the flesh part were 47 metabolites, and in the peel part were 54 metabolites.
A complete list of these metabolites during ripening analysis is shown in Table S3.

Figure 4 shows the score plot from PCA for pineapple from different ripening stages (C0 to C4
stage) as observed in three different parts of pineapple. As seen in Figure 4b,c, flesh and peel part
showed two distinct clusters along PC1. Less ripe samples (C0–C2) were clustered together and
ripe fruit samples (C3 and C4) formed a separate cluster. This trend was explained by 63.9% and
53.3% variance in the flesh and peel part, respectively. However, this trend was not shown in the
crown part of pineapple from all principal components. Loading plot in Figure 4b,c showed the
metabolite accumulation in the less ripe and ripe samples for flesh and peel part, respectively. These
metabolite intensities that used to create a score plot were normalized using an internal standard,
ribitol. The internal standard was chosen because it is not present in pineapple samples and stable in a
mixed solvent solution.
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Figure 4. PCA result from flesh, crown and peel parts of pineapple from different ripening stages.
Variables used for PCA were 56, 47, and 54 annotated metabolites by GC-MS from crown, flesh, and peel
parts respectively. Data was auto scaled prior to PCA. (a) Score and loading plot from the crown part;
(b) score and loading plot from the flesh part; (c) score and loading plot from the peel part. Legends
represent the samples and colored as follows: brown: C0 stage, red: C1 stage, green: C2 stage, blue: C3
stage, black: C4 stage. Upper part show score plot; Bottom part show loading plot. Loading plot was
colored based on metabolite classes: green: sugars; red: organic acids; yellow: amino acids and amines.

2.3. Orthogonal Projection to Latent Structures of Pineapple Ripening Process

Orthogonal projection of latent structures (OPLS) regression analysis was conducted to identify
metabolites that were highly influenced by the process related to the response variable [28]. In this
study, two latent variables were used to construct the model using flesh and peel parts of pineapple.
Crown part was not analyzed based on the previous result in PCA which indicated that crown part
was not able to show any trend in ripening process. Response variables that were used to generate
the model were ripening stages from C0 as 1, C1 as 2, C2 as 3, C3 as 4, and C4 as stages 5, while
the explanatory variables were metabolites annotated by GC-MS analysis. Pineapple from C0 to C4
ripening stages harvested in April 2019 were used as a training set to generate the model (Figure 5).
Model validation was conducted by leave-one-out cross-validation from each replicate.
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Figure 5. Orthogonal projection to latent structures (OPLS) results from flesh and part of pineapple.
Explanatory variables in flesh part are 47 metabolites, while in peel part are 54 metabolites. Response
variable for both models is the ripening stages with numbered as follows: C0 stage as 1, C1 stage as 2,
C2 stage as 3, C3 stage as 4, and C4 stage as 5. Value of R2, Q2, RMSEE, and RMSECV were used to
evaluate the model. (a) OPLS model of flesh part; (b) OPLS model of peel part.

The constructed OPLS regression model with R2 of 0.888 and 0.931 for flesh and peel part,
respectively, are shown in Figure 5. In the OPLS regression analysis, statistically important metabolites
for the models were indicated by the score of variable important in projection (VIP). Metabolites with a
VIP score of more than 1 considered important for the model [28] (Table S4). Contributing metabolites
were chosen based on the five highest VIP scores. The metabolites were melezitose, inositol, xylonic
acid, gluconic acid, and raffinose in the flesh model, whereas inositol, mannose, galactose, sucrose,
and aspartic acid were the top five highest VIP metabolites in the peel. Among these highest VIP
metabolites in both flesh and peel, melezitose, xylonic acid, gluconic acid, and sucrose have a positive
correlation with the ripening stages, while inositol, raffinose, mannose, galactose, and aspartic acid
showed a negative correlation with the ripening process (Figure 6).

3. Discussion

Metabolite profiling is known to be useful to analyze a large group of metabolites that belong to a
specific class of compounds that reflects the dynamic response to physiological change or developmental
stimuli [29,30] In this study, a metabolite profiling approach using GC-MS was employed for the
study of pineapple ripening process. GC-MS is suitable for metabolite profiling because it provides
high sensitivity, reproducibility, and quantitation of a large number of metabolites with a single-step
extraction [31,32]. Metabolite annotated in pineapple crown, peel and flesh were classified as sugars,
amino acids, amines, organic acids, and other compounds. Sugars were found to be the most abundant
in pineapple. This is in agreement with previous work that mentioned the high content of sugars was
observed in pineapple flesh samples [21]. In this study, we conducted for the first time the analysis
of peel and crown parts of pineapple in addition to flesh samples. Annotated metabolites from each
part were subjected to PCA and OPLS analyses. Principal component analysis (PCA) is a multivariate
data analysis that could show the variance among the samples using metabolites as the explanatory
data [33]. Based on the PCA, pineapple ripening was clustered into two major phases namely C0-C2
stages (early ripening) and C3-C4 stages (late ripening). The trends above were observed only in
flesh and peel samples, whereas there was no clear trend of ripening in crown part. It was previously
suggested that crown photo-assimilation seems to be derived from its own photosynthesis, not from
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the fruit [34]. It is also well known that pineapple maturation developed from the bottom, not from the
top [35]. Therefore, crown part is considered to have no correlation with fruit ripening.

Metabolites 2019, 9, x FOR PEER REVIEW  7 of 15 

maturation developed from the bottom, not from the top [35]. Therefore, crown part is considered to 
have no correlation with fruit ripening.  

 
(a) 

 
(b) 

Figure 6. Bar graph of five highest variable important in projection (VIP) metabolites related to 
pineapple ripening process in (a) flesh and (b) peel part. The relative intensity of the five highest 
VIP metabolites was normalized by the internal standard. Vertical axis represents metabolites 
relative intensity and horizontal axis represents ripening stages. Significant differences (p < 0.05) 
are indicated with the different letters based on mean comparison Tukey’s test   

Further analysis to identify potentially important metabolites that are correlated with the 
ripening process was conducted using OPLS regression analysis. OPLS regression analysis is known 
to be more powerful to explain the relationship between the response variable and explanatory 
variable because it is a supervised multivariate analysis [28]. The OPLS regression model shown in 
Figure 5 has some parameters that could be used to evaluate the quality of the model itself. These 
parameters are R2, Q2, RMSEE, and RMSECV. R2 is defined as the square of the correlation coefficient 
between observed and predicted value in a regression [36]. Q2 is known to be a reliable parameter for 
model predictivity [16,36]. RMSEE or root mean square error of estimation and RMSECV or root 
mean square error of cross-validation are the values to evaluate accuracy, prediction, and model 
robustness [36,37]. A good model would have an R2 value of more than 0.6, Q2 value of more than 0.6, 
and a low value of RMSEE and RMSECV [36]. We constructed 3 OPLS models from metabolites 
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Figure 6. Bar graph of five highest variable important in projection (VIP) metabolites related to
pineapple ripening process in (a) flesh and (b) peel part. The relative intensity of the five highest VIP
metabolites was normalized by the internal standard. Vertical axis represents metabolites relative
intensity and horizontal axis represents ripening stages. Significant differences (p < 0.05) are indicated
with the different letters based on mean comparison Tukey’s test.

Further analysis to identify potentially important metabolites that are correlated with the ripening
process was conducted using OPLS regression analysis. OPLS regression analysis is known to be
more powerful to explain the relationship between the response variable and explanatory variable
because it is a supervised multivariate analysis [28]. The OPLS regression model shown in Figure 5
has some parameters that could be used to evaluate the quality of the model itself. These parameters
are R2, Q2, RMSEE, and RMSECV. R2 is defined as the square of the correlation coefficient between
observed and predicted value in a regression [36]. Q2 is known to be a reliable parameter for model
predictivity [16,36]. RMSEE or root mean square error of estimation and RMSECV or root mean square
error of cross-validation are the values to evaluate accuracy, prediction, and model robustness [36,37].
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A good model would have an R2 value of more than 0.6, Q2 value of more than 0.6, and a low value of
RMSEE and RMSECV [36]. We constructed 3 OPLS models from metabolites annotated in flesh, peel
and crown. The constructed model of flesh and peel showed R2 value of more than 0.6, Q2 value of
more than 0.6, and a low value of RMSEE and RMSECV, whereas crown model showed R2 value of
0.896, Q2 value of 0.432, RMSEE value of 0.509, and RMSECV value of 1.066. These results indicated
that only peel and flesh model meet the thresholds for a valid model with a good fit. The low Q2 value
in crown model showed that the samples from crown part cannot be used to predict ripening stages in
pineapple. This is in line with the results obtained from PCA.

Contributing metabolites related to ripening stages could be obtained from the variable importance
in the projection (VIP) scores. Based on these scores, the five highest VIP metabolites in the flesh
part are melezitose, inositol, xylonic acid, gluconic acid, and raffinose; while for peel part are inositol,
mannose, galactose, sucrose, and aspartic acid. Figure 6 shows the dynamic of these VIP metabolites
relative intensity (normalized with ribitol) along the ripening process of pineapple. These metabolites
were shown to be increased or decreased during the pineapple ripening process. From these VIP
metabolites in flesh parts, the raffinose level was in agreement with the previous report that showed
a decreased level during ripening process [38]. In addition to the previously reported metabolites
that correlate with the ripening process, this study also reports the dynamics of inositol, melezitose,
xylonic acid, and gluconic acid in the flesh part during ripening process. Inositol or commonly known
as myo-inositol was known to regulate osmotic pressure in blueberry fruit thus maintaining turgor
and fruit firmness between the firm cultivar and soft cultivar [19]. In addition to that, inositol might
be oxidized to D-glucuronic acid known as a major precursor of the cell wall in Arabidopsis [39].
Therefore, the presence of inositol might also relate to the cell wall in fruit. Melezitose is known
to play a role in osmoregulation system [40]. However, comparing the relative intensity trend
with inositol, the mechanism underlying these two metabolites might be different to regulate the
osmoregulation system during the pineapple ripening process. Even though melezitose relative
intensity was considered low compared to other sugar, it was reported in the previous study that it
could attract ants in honeydew fruit [41]. Therefore, the accumulation of melezitose in the latter stage
of ripening might reflect the attractancy of the fruit in the fully ripe stage.

Xylonic acid relative intensity was shown to be increased during the ripening process (Figure 6a).
The increase of this organic acid might be related to the reactive oxygen species (ROS). During
fruit ripening, oxidative stress was increased and might result in some changes in fruit, such as
changes in skin color or fruit softening. Due to the presence of ROS, fruit antioxidants might act
to balance the reduction–oxidation homeostasis [42]. One of the most known fruit antioxidants is
ascorbic acid. The previous report stated that xylonic acid is a product of ascorbic acid degradation,
thus explaining the increase of xylonic acid during the ripening process [43]. During the pineapple
ripening process, raffinose was found to be decreased along with the progression of ripening (Figure 6).
In agreement with this result, previous report showed that the raffinose level also decreases in Japanese
plum non-climacteric cultivar during its ripening [38]. They reported that the raffinose level in
non-climacteric fruit might be related to its ability to alleviate the oxidative process during fruit
ripening [38]. Therefore, not only xylonic acid but the level of raffinose might also be related to the
reduction–oxidation process along the ripening process. The gluconic acid concentration was shown to
be increased during the late-ripening process in pineapple (Figure 6a). This increase might be triggered
by the increase of carbon molecules availability during the later stage of pineapple ripening [44].
In addition, gluconic acid intensity increase might also cause by the effect of cell wall degradation,
change in cuticle composition and pH of host cells that allow the transition of fungi into their aggressive
colonization [44]. The presence of gluconic acid might indicate an infection that could secrets gluconic
acid and acidify the pH in fruit such as in apple and mango [45,46].

Metabolite that shows the highest VIP score in peel after inositol is mannose. Mannose is known
as a component of the plant cell wall, specifically hemicellulose [47]. The previous report mentioned
that the concentration of mannose was decreased during fruit development, hence support our findings
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shown in Figure 6b [48]. Similar to mannose, decrease level of aspartic acid in the pineapple ripening
process were also reported during ripening of banana [49]. Aspartic acid was known to be a source
for umami taste along with glutamic acid [50]. Its level was known to be varied among the fruits. In
banana and Vasconcellea quercifolia, the level of aspartic acid was found to be decreased along with the
ripening progress, while mature or ripe tomato contained more aspartic acid that brings out the umami
taste [49,51,52]. Other than the source of umami taste, the level of aspartic acid might also connect
with the free auxin level in fruits that affect its ripening [53]. Aspartic acid was found to be conjugated
with indole acetic acid (IAA) and lead to degradation of the IAA hormones [53].

Other than the previously reported metabolites, this study found the change of sucrose and
galactose level in the peel part might correlate with the pineapple ripening process. This study showed
the sucrose level in pineapple peel part was increased during ripening (Figure 6b) while previous
report mentioned the increase of sucrose during ripening process in pineapple flesh [21]. Sucrose
was known to become a source of sweet taste in food and commonly used as a standard solution
for sweetness [54]. However, sucrose in the peel part might not directly affect the sweetness in the
flesh. It is reported that sucrose in the peel is lower if compared with the flesh part [55]. Sucrose not
only contributes to sweetness, but it also plays a role to regulate fruit development and ripening in
strawberry fruit, a non-climacteric fruit [56]. Sucrose accumulation might induce the expression level
of the key enzymes in abscisic acid (ABA) hormones pathway, hence promote ripening process in
non-climacteric fruit via ABA hormones [57]. Galactose in Figure 6b was shown a decreasing trend
along the ripening stages. This might be explained by the relation of galactose with the plant cell
wall. The previous report showed that galactose is the major non-cellulosic sugar in the cell wall and
significantly decreased during fruit ripening [58,59]. All these metabolites with high VIP score consist
of sugars (melezitose, inositol, raffinose, mannose, galactose, and sucrose) and organic acids (xylonic
acid, gluconic acid, and aspartic acid).

During ripening process, many biological processes occur, such as cell wall loosening, texture
changes, flavor development, chlorophyll degradation, and pigment accumulation [60]. Changes in
melezitose and inositol level might indicate the texture changes during pineapple ripening process.
Melezitose and inositol are known to regulate fruit firmness that affects the texture or hardness of
fruit [19]. In addition to that, inositol, galactose, and mannose levels might be related with cell wall
loosening during ripening. Inositol were known to be precursor of D-glucuronic acid of plant cell wall,
galactose is a major non-cellulosic sugar in plant cell wall, and mannose are component of hemicellulose
in plant cell wall. Therefore, the decrease of these three metabolites might correlate with loosening of
cell wall that usually accompanied with decrease level of firmness and increase of gluconic acid [19,44].
Reactive oxygen species also play a role in ripening process to regulate programed cell death and cell
aging [61]. This report in line with our results that show decrease level of xylonic acid and increase
level of raffinose during ripening process. Both metabolites were known to respond to reactive oxygen
species as discussed previously. These biological processes that affected by the ripening process are
product of biochemical changes that mediated by plant hormone. Abscisic acid (ABA) and auxin
were known to be affecting the ripening process in non-climacteric fruit [60]. Changes in sucrose and
aspartic acid during ripening process might affected abscisic acid and auxin, respectively. Therefore,
it might modulate ripening process in pineapple fruit.

This study showed the significance of sample preparation to gain more metabolite coverage that is
useful for further analysis. Based on metabolites data acquired from GC-MS analysis, flesh and peel data
could show clustering separation between C0-C2 stages and C3-C4 stages using principal component
analysis (PCA), while the crown part does not show correlation with the ripening process. Orthogonal
projection to latent structures (OPLS) regression analysis reveals metabolites that have possible relations
to the pineapple ripening process in flesh and peel parts. In the flesh part, melezitose, inositol, xylonic
acid, gluconic acid, and raffinose were found to be the five highest important metabolites, while for the
peel part are inositol, mannose, galactose, sucrose, aspartic acid. These metabolites were known to be
involved during plant cell wall metabolism and osmoregulation system thus affecting the firmness and
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shelf life of pineapple, in addition to the redox defense system and non-climacteric ripening hormones.
For future applications, these VIP metabolites could be added exogenously to regulate specific effects,
for example, the addition of polyamine and ascorbic acid to regulate the shelf life of fruit, as shown in
the previous reports [62,63]. In addition, influencing the level of the metabolites through post-harvest
treatment was also feasible to be conducted, such as regulating inositol, galactose, and raffinose by
cold or heat treatment [64–66]. It must be noted that this study only limited to the “Queen” cultivar.
Future study using other widely known cultivars, such as “Smooth Cayenne”, is still needed to enrich
the information regarding pineapple ripening process. Regardless, this study might become a basis
for resolving the post-harvest issue in the pineapple industry by controlling important metabolites
influenced in the ripening process.

4. Materials and Methods

4.1. Plant Materials

Pineapple (Ananas comosus) fruit from Indonesia corresponding to 5 different ripening stages
were used in this study (Figure 1). To set the same harvest time at the end of April 2019, ethephon
treatment was used to induce fruit development around November to December 2018. Cultivars of
pineapple used in this study to represent the important cultivar from the pineapple Industry is cv.
Mahkota Bogor ‘Queen’. Three samples (biological replicates) from different plants were collected
from each ripening stage for Queen cultivars from the cultivation period of November 2018—April
2019 in Center for Tropical Horticulture Studies, Bogor Agricultural University (CENTROHS, Bogor
Agriculture University), Bogor, Indonesia (minimum temperature 21 ◦C and maximum temperature
35 ◦C). Ripening stage determination was conducted with the help of a trained panelist according to
peel color changes [5].

4.2. Optimization of Sample Preparation

4.2.1. Comparison between Food Processor and Freeze-Drying Methods

Pineapple fruit was cut into half then the flesh was diced using a stainless-steel knife. Diced
flesh with 1 × 1 cm size from one half of fruit was subjected to freeze dry-extraction method using
VD-800F Freeze dryer (Taitec, Saitama, Japan). This flesh was put into a Pyrex tube and closed with
holed parafilm before being quenched with liquid nitrogen and lyophilized. Diced flesh with 1 × 1 cm
size from the other half of the fruit was homogenized using hand immersion-blender WSB-33XJ
(Waring Commercial, Pennsylvania, United States of America) before extraction. Ten milligrams of
both samples were subjected to extraction following the method described previously prior to GC-MS
analysis [66].

4.2.2. Comparison of Crown, Flesh, and Peel of Pineapple Fruit

The pineapple was cut into three different parts, crown, flesh, and peel. Crown part was analyzed
by cutting the leaves into a 1x1 cm size before quenching by liquid nitrogen and freeze-dried. Peel part
was analyzed by scraping the peel into a 1x1 cm size using a stainless-steel knife before quenching
and freeze-drying. Flesh part was analyzed according to above description. Lyophilized sample
was homogenized using Multi-beads shocker (Yasui Kikai, Osaka, Japan). Ten milligrams of the
homogenized sample of each part of pineapple was subjected to extraction and GC-MS analysis [66].

4.3. Sample Preparation and Extraction of Pineapple from Different Ripening Stages

Pineapple fruit of different ripening stages collected in Indonesia was divided into three parts:
Crown, flesh, and peel. Each part was cut into small pieces and placed into a Pyrex tube covered
with holed parafilm. Samples were quenched by immersing the Pyrex tubes in liquid nitrogen prior
to lyophilization using the VD-800R Freeze dryer (Taitec, Saitama, Japan). Freeze-dried pineapple
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samples were transported from Indonesia to Japan within a day. The samples were homogenized and
ground into a fine powder using Multi-beads shocker. This extraction method was conducted based
on the method described in our previous study [66]. Pineapple samples (10 mg), blank samples and
quality control (QC) samples were extracted together and lyophilized in a single day. QC samples
were prepared by collecting small aliquots of each sample obtained in this study.

All samples were extracted using the mixture of methanol (Wako Chemical, Osaka, Japan),
chloroform (Kishida Chemical Co. Ltd, Osaka, Japan), ultrapure water (Wako Chemical, Osaka, Japan);
in the ratio of 2.5/1/1 (v/v/v) containing 100 µg/mL ribitol as an internal standard. The mixture was
incubated at 37 ◦C, 1200 rpm for 30 min followed by centrifugation for 3 min at 40 ◦C. Six hundred
microliters of supernatant was transferred to a new 1.5 mL microtube and 300 µL water was added
into the mixture. The sample mixture was centrifuged for 3 min at 40 ◦C and 400 µL of supernatant
was transferred to a new microtube and closed with a holed cap. The solvent from the sample mixture
was evaporated for 1 h at room temperature followed by lyophilization overnight. All samples were
analyzed in triplicates (n = 3). One hundred microliters of methoxyamine hydrochloride (20 mg/mL
in pyridine) was added into lyophilized samples and incubated in thermomixer for 90 min at 30 ◦C.
Subsequently, 50 µL N-Methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) (GL Sciences) was added
to the samples and incubated for 30 min at 37 ◦C.

4.4. GC-MS Analysis

GC-Q/MS analysis was performed on a GC-MS QP2010 Ultra (Shimadzu, Kyoto, Japan) equipped
with an InertCap 5 MS/NP column (GL Sciences). Tuning and calibration of the mass spectrometer
were done prior to analysis. One microliter of the derivatized sample was injected in split mode,
25:1 (v/v), with an injection temperature of 230 ◦C. The carrier gas (He) flow was 1.12 mL/min with a
linear velocity of 39 cm/s. The column temperature was held at 80 ◦C for 2 min, increased by 15 ◦C/min
to 330 ◦C, and then held for 6 min. The transfer line and ion source temperatures were 250 and 200 ◦C,
respectively. Ions were generated by electron ionization (EI) at 0.94 kV. Spectra were recorded at
10,000 u/s (check value) over the mass range m/z 85−500. A standard alkane mixture (C8–C40) was
injected prior to analysis for peak identification.

4.5. GC-MS Data Analysis

The raw data obtained from the analysis was converted to the AIA file using GCMS solution
software package (Shimadzu, Kyoto, Japan). Peak alignment, peak filtering and annotation
was conducted by MS-DIAL ver. 4.00 using GCMS-5MP Library (Riken, Kanagawa, Japan).
Peak confirmation of important metabolites, namely inositol, mannose, galactose, melezitose were
conducted by co-injection with authentic standard (Wako Pure Chemical Industries Ltd., Osaka, Japan;
Sigma-Aldrich Japan Ltd., Tokyo, Japan; Alfa Aesar Ltd., Heysham, UK).

4.6. Statistical Analysis

Annotated metabolites from GC-MS analysis were pre-treated by normalizing each metabolite
peak height to internal standard (ribitol). Normalized data were scaled by autoscaling and without
transformation subjected to PCA (Principal Component Analysis) using SIMCA-P+ version 13
(Umetrics, Umea, Sweden). Principal component analysis is an unsupervised analysis that is useful as
a dimension-reduction tool in order to easily observe trends, clusters and outliers [25]. Other than PCA,
a projections to latent structures (PLS) regression model that is constructed from the maximal correlation
of explanatory variable (x-variable) with response variable (y-variable) offers ranking of metabolites
correlation with a certain quantitative phenotype [67,68]. In particular, orthogonal projections to
latent structures (OPLS) regression model is very useful for reducing many variables to limited latent
variables [26]. Parts that show ripening trends in PCA were subjected to OPLS (Orthogonal Projections
to Latent Structures) analyses using SIMCA-P+ version 13. From OPLS analyses, variable importance
in projection (VIP) were calculated for each metabolite. The top five highest VIP score’s metabolites in
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each pineapple part were statistically analyzed by analysis of variance (ANOVA) with Tukey’s post
hoc test performed using JASP Version 0.11.1 (JASP Team, Amsterdam, Netherlands). The statistical
analysis was conducted to evaluate the differences among mean values of VIP metabolites obtained
from all ripening stages. Differences were considered significant if p < 0.05.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/4/134/s1,
Table S1: Complete list of annotated metabolites with RSD < 20% for sample preparation analysis, Table S2:
Complete list of annotated metabolites with RSD < 20% for different part analysis, Table S3: Complete list of
annotated metabolites with RSD < 20% for ripening process analysis, Table S4: metabolites with VIP score (more
than 1) and its coefficient, Figure S1: Visual experimental design on pineapple ripening study, Figure S2: Venn
diagram of annotated metabolites in crown, flesh, and peel part on different parts analysis, Figure S3: Venn
diagram of annotated metabolites in crown, flesh, and peel part on pineapple ripening analysis.
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