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Abstract

Despite the tremendous growth of the DNA sequencing data in the last decade, our understanding of the human
genome is still in its infancy. To understand the implications of genetic variants in the light of population genetics
and molecular evolution, we developed a database, PGG.SNV (https://www.pggsnv.org), which gives much higher
weight to previously under-investigated indigenous populations in Asia. PGG.SNV archives 265 million SNVs across
220,147 present-day genomes and 1018 ancient genomes, including 1009 newly sequenced genomes, representing
977 global populations. Moreover, estimation of population genetic diversity and evolutionary parameters is available
in PGG.SNV, a unique feature compared with other databases.
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Background
The past two decades have witnessed the exponential
increase in the number of human genomic sequences
[1–6] generated with genotyping or next-generation
sequencing (NGS) technologies, which allow researchers
to delineate the functional consequences of each variant,
the fundamental goal of human genetics. Generally,
there have been three major strategies for accomplishing
the goal: genetic approaches, experimental approaches,
and evolutionary approaches [7]. Genetic approaches
such as linkage analysis and genome-wide association
studies (GWASs) can identify candidate variants, but usu-
ally have insufficient power to pinpoint causal variants [7],
mainly due to the linkage disequilibrium between variants

located closely on an individual chromosome and the
lesser power of GWAS to dissect rare variants [8, 9].
Traditional experimental methods or molecular biology
techniques are generally performed to support a limited
number of candidate causal variants identified for a given
phenotype and are challenging to implement in humans.
Now it is feasible to carry out larger-scale experimental
assessment of genetic variants [10–12] due to rapid devel-
opment of high-throughput sequencing technologies,
which definitely have facilitated our understanding of the
functional elements/variants in humans. However, some
of the experimental methods used are still controversial
for the determination of genomic function. For example,
the biochemically active regions detected by the ENDODE
project (e.g., H3K4me3 containing regions) cover a much
larger fraction of the genome than do evolutionarily
conserved regions, raising the question of whether the
non-conserved but biochemically active regions are truly
functional [13]. Though some recent experimental
methods such as massively parallel report assay [14, 15]
were successful in identifying expression-modulating vari-
ants, they are not ready to be applied in diverse human
populations.
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Compared with other methods, the evolutionary ap-
proaches that facilitate the study of the genetic legacy
left in human genomes are relatively cost-effective and
powerful for narrowing down candidate functional re-
gions. The underlying rational is that the nature as a super
laboratory performs functional experiments by inducing
mutagenesis cross human genomes and simulating diverse
conditions along the evolutionary time; regions/variants
that are evolutionarily conserved or under positive selec-
tion are assumed to be functional. Up to date, substantial
constraint-based algorithms have been developed to meas-
ure the deleteriousness of both protein-coding variants
[16, 17] and non-coding regions [18, 19], and numerous
methods have emerged and applied to larger empirical
data for detecting positively selected regions [20–24]. For
instance, a deleterious missense variant (rs80356779)
located in the gene CPT1A (MIM: 600528) [25], a func-
tional variant (rs7330796) located in the gene TBC1D4
(MIM: 612465) [26], and several variants in proteins that
metabolizes omega-3 polyunsaturated fatty acids [27]
occur at high frequency in Arctic human populations and
might adapt humans to either specific diets or a cold en-
vironment. Other examples include the missense variant
(rs186996510) in the gene EGLN1 (MIM: 606425), some
regulatory variants of the gene EPAS1 (MIM: 603349),
and a novel missense variant in the gene ALDH3A1
(MIM: 100660), which are candidates for high-altitude
adaptation in either Tibetans [28–33] or the Sherpa
people [34]. All of these suggest that evolutionary ap-
proaches have provided new insights into the functional
effects of genetic variants associated with specific environ-
ments [35].
Moreover, by leveraging the laws of intra-species

micro-evolution, analysis of the population prevalence of
variants has increased dramatically in medical studies
and functional genomics [36, 37]. Specifically, researchers
are able to retrieve the allele frequency of a variant and
predict the impact of that variant according to its rareness,
as deleterious alleles are generally assumed to show lower
frequencies in a population than benign alleles [38]. The
two most-frequently used data sets for this are the 1000
Genomes Project (1KGP) [4] and the Genome Aggrega-
tion Database (gnomAD) [39]. However, both data sets
are insufficient to cover the majority of ethnic groups. For
instance, the 1000 Genomes Projects does not sufficiently
cover the human genetic diversity in Asia [40]. Nearly half
of the genomes in gnomAD are from European ancestry
and merely 9% of the genomes are of African ancestry
(though with the highest genetic diversity), implying a se-
vere ancestral bias problem in human variant sequencing
efforts [41]. Moreover, samples in gnomAD were merely
divided into 15 groups majorly on the continental level,
leaving the majority of the specific ethnic groups
unknown. For example, gnomAD exomes grouped East

Asians roughly into three categories: “Korean,” “Japanese,”
and “other East Asians”; therefore, researchers fail to
query the allele frequencies for most of East Asian popula-
tions, such as the Han Chinese, Tibetan, and Uyghur
populations. In this case, researchers may inadvertently
neglect variants with high disease-associated allele fre-
quencies (DAAF) in their studied populations, as the large
number of un-grouped genomes in gnomAD would dilute
the DAAF, while the value would actually be higher if
specific populations were investigated. The above reveals
the necessity for comprehensively analyzing prevalence of
variants in diverse ethnic groups between which health
disparities of certain diseases probably exists. Fortunately,
tremendous efforts provide us informative reference data
sets for examining the genomic diversity in human popu-
lations (see Table 1). However, to the best of our know-
ledge, few databases archive genetic variants covering as
many as ethnic groups from multiple data sets to reduce
the ancestral bias.
Compared with living anatomically modern human

(AMH) genomes mentioned above, ancient genomes (in-
cluding archaic hominins and ancient AMH genomes)
provide more direct evidence of past human adaptation
and even high-resolution snapshots of the adaptive his-
tories of phenotypes [77–79]. However, analyzing the
detailed time series of allele frequency trajectories from
ancient genomes is usually ignored in many medical or
genomics studies, partly due to the relatively slower
development of ancient DNA sequencing technologies.
Recently, more than 1000 archaic hominin and AMH
genomic sequences are now available, covering time pe-
riods from 430,000 years before present day to the early
twentieth century [78]. Systematically leveraging these
data may therefore facilitate an understanding of how
genetic variants evolve in response to new environments
and how adaptation impacts on health and medicine
today [78].
The current substantial number of human genomes

and comprehensive catalogue of genetic variants avail-
able provide researchers with an extraordinary resource
for dissecting the evolutionary and medical implications
of human single nucleotide variants (SNVs) at a popula-
tion level. To realize this, we first sequenced more than
1000 genomes from East Asia and South Asian to 10–
30× coverage, and collected publicly accessible data sets
and integrated the two. We built a user-friendly database
(PGG.SNV, https://www.pggsnv.org for genome build
GRCh37 and https://grch38.pggsnv.org/ for GRCh38),
which documents 265 million SNVs, featuring more
than 10 billion allele frequency records, for 220,147
present-day human genomes and 1018 ancient genomes
from 977 populations. Based on the database, we then
investigated the characteristics of Mendelian-inherited
disease-associated alleles (DAAs) to address the following
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scientific questions: (1) what is the allele frequency
spectrum of DAAs according to PGG.SNV; (2) which
DAAs distribute disparately between populations/an-
cestries; and (3) which groups harbor heavy genetic
loads for specific diseases. We suggest a helpful popula-
tion prevalence analysis as a reference procedure for
predicting and prioritizing causal variants for Mendelian-
inherited diseases.

Construction and content
Data generation and collection
To improve studies of the genetic diversity of humans,
we generated or collected genomic data from different
human populations (Table 1 and Additional file 1: Table
S1). The newly generated whole-genome sequencing
data (1009 genomes from 16 ethnic groups in Asia) were
sequenced by the Asian Admixed Genomes Consortium
(AAGC). Meanwhile, we worked together with our col-
laborators as well as other initiatives in the Asia-Pacific
region, and sequenced or genotyped the genetic variants
of diverse East Asian and Southeast Asian populations.
We also collected publicly accessible genomic data sets
that covered not only general populations studied by
international projects, such as the HapMap Project [1],
the Human Genome Diversity Project [2], the 1000
Genomes Project [4], the HUGO Pan-Asia SNP Project
[62], the Human Origin data set [54], and the Simons
Genomic Diversity Project [6], but also genomic data
sets from indigenous or isolated populations that were
contributed by regional sequencing efforts, such as the
Singapore Genome Variation Project [63, 64], and gen-
omic data sets from ethnic groups with genomes depos-
ited in the Estonian Biocentre (Table 1 and Additional
file 1: Table S1). The aforementioned data represent the
great genomic diversity of the human population as
described in the PGG.SNV associated database, PGG.Po-
pulation [80]. Besides genomic data, allele frequency
data were also collected from data sets with a substantial
number of samples, such as the Genome Aggregation
Database (gnomAD) [39] and the NHLBI Exome
Sequencing Project (ESP) [3], as well as frequency data
from 3554 healthy Japanese individuals [43]. Although
there could be some overlaps, for example, the frequency
information of ESP is already included in gnomAD, we
treated these datasets as independent so that the sources
are traceable. Beside present-day genomes, we collected
many ancient human and archaic hominin genomes
(ancient genomes hereafter), of which the ages ranged
from 430,000 years before present day to the early
twentieth century, covering the landscape of genomic
diversity across the human evolutionary time scale. All
data sets and populations included in the database are
summarized in Table 1 and Additional file 1: Table S1,
respectively.

Data integration, quality control, and upstream analysis
Different data analysis processes were performed based
on the type of the genomic data (contemporary vs. an-
cient genomes), as well as the data type (sequencing or
genotyping data) (Fig. 1).
For sequencing data from contemporary genomes with

raw data, we analyzed each set from cleaned fastq files
(Additional file 2: Supplemental methods). Short reads
were mapped to the human reference genome (GRCh37)
using “mem” algorithm “bwa mem –M –R @RG\tID:
name\tSM:name” in the Burrows-Wheeler Algorithm
(BWA) [81]. Duplicated reads were removed using
Picard. Base quality score recalibration (BQSR), single
nucleotide variant (SNV) calling, and variant quality
score recalibration (VQSR) were carried out using the
BQSR module, the HaplotypeCaller module, and the
VQSR module in GATK [82, 83], respectively. Variants
in joint VCF file with phred-scaled quality score less
than 30 (QUAL < 30) were considered as low quality
and therefore were filtered out. Variants within complex
regions in the human reference genome where the variant
calling can be challenging were also removed following
the pipeline described elsewhere [6]. The methodology de-
tails for the raw sequencing data processing were summa-
rized in the Additional files. For 3.5KJPN and gnomAD
data sets with only VCF files, only variants labeled “PASS”
in the QUAL column of VCF files were retained. For
ancient genomes with raw data, we used BAM files for
upstream analysis, as previous studies were assumed to
have carried out strict quality control for ancient short
reads. The variant calling and filtering approaches were
similar to the strategies used for contemporary genomes
as mentioned above.
We controlled the quality of each genotyping data set

at two levels. First, within data sets, we removed SNVs
with a call rate of < 90% (across all individuals) and
required at least 90% genotyping completeness for each
individual (across all of the SNPs). We also discarded
recently related individuals by filtering one individual
from all of the pairs when identity by descent (IBD) was
> 0.25. Please note that this IBD threshold only removed
the second degree of the relatedness; some indigenous
ethnic groups of small population size could retain some
samples with third-degree relatedness, although most
populations are not affected. Second, we integrated each
data set into the 1KGP data to estimate the data quality
by performing principal component analysis (PCA)
(Additional file 2: Figure S1). Outliers were identified
using the PGG.Population web tool [80] and were then
removed from genotyping data sets. At both levels,
strand information was determined from the whole-
genome sequence data based on the Human Genome
Build 37 positions, and a strand was flipped to match
that of the sequenced data. At both levels, all of the A/T
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and G/C markers were removed to reduce the risk of
any ambiguity.
To document SNVs with both genome assemblies, we

converted the coordinates of all dataset, except for 1KGP,
from GRCh37 to GRCh38 with Picard. For 1KGP, we
directly obtained the VCF with GRCh38 assembly from the
official website. Data sets for both genome builds were fur-
ther applied for annotation and other downstream analysis.

Population and ancestry assignment
In the context of PGG.SNV, population or ethnic group
refers to a kind of “inherited” status of shared genetic
ancestry, language, history, society, culture, or nation. For
present-day human samples, populations were firstly veri-
fied based on PCA (Additional file 2: Figure S1). Popula-
tion and/or sample outliers that are in conflict with the
geographic origin of sampling and/or self-reporting
(reported by each data set) would be excluded in our data-
base. Populations with extremely large sample size and
clear sampling locations were divided into different
subgroups. The Han Chinese from Han Chinese Genomes

Project (n = 51,094) is the only case in the current version
of PGG.SNV, as it is the world’s largest ethnic group and
previous studies have shown their sub-structures [84–86].
Each population was further assigned into the following
eight geographical groups with ancestries derived from
the continent where the group is residing: African,
American, Central Asian and Siberian, East Asian, Ocean-
ian, South Asian, Southeast Asian, and West Eurasian. For
ancient human genomes, we assigned populations based
on geography and their time periods, as we do not know
exactly which ethnic group they belong to. The time- and
geography-based population assignment for ancient ge-
nomes facilitate us to trace the allele frequency fluctuation
through history and thus to understand the genetic origin
of a specific variant. All populations and their ancestry
information can be obtained from Table S1 and the user
guide section on the PGG.SNV website.

Variant annotation and other downstream analysis
Variant effect and conservation scores were performed
using a variant effect predictor [87]. The population

Fig. 1 Analysis framework for data generation, collection, integration, and annotation. The ellipsis in the right hexagonal represents other population
genomics analyses that are not included in the current version of the database but would be performed in later versions
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prevalence of variant for each population was calculated
from the genotype counts of the corresponding popula-
tion. The population differentiation measured by FST
between each pair of populations was calculated follow-
ing Weir and Cockerham [88]. Natural selection was
analyzed using SelScan [89]. Genomic diversity and link-
age disequilibrium were calculated in real-time using
VCFtools [90]. For sequencing data set without available
genotypes on an individual level, such as the 3.5KJPN
and gnomAD data sets, analyses of natural selection,
genomic diversity, and linkage disequilibrium cannot be
performed by PGG.SNV.

Analysis of population prevalence for Mendelian-
inherited disease variants
The variants associated with Mendelian disorders were
obtained from ClinVar, where variants have been grouped
into five categories ordered by the severity of disease: (1)
pathogenic, (2) likely pathogenic, (3) uncertain signifi-
cance, (4) likely benign, and (5) benign, according to the
recommendation of the American College of Medical
Genetics and Genomics and the Association for Molecular
Pathology (ACMG/AMP) [91].
The alternative allele frequencies for all of the

Mendelian-inherited disease variants were calculated
over all populations with sample size larger than 5 of
each data set, each ancestry, and our entire database. To
estimate the frequency differentiation between popula-
tions or ancestries, we used the formula zDiff ¼ maxðA
FiÞ−AF , where AFi represents the alternative allele fre-
quency of the ith population/ancestry, and AF is the
mean frequencies of all of the populations/ancestries,

calculated from the formula AF ¼
Pn

i¼1
AFi

n . Since we
focus on Mendelian disease variants which may have
severe effects than other variants, they are in relatively
low frequency in human and are usually not highly dif-
ferentiated among populations. We examined the distri-
bution of the allele frequency of disease variants in the
PGG.SNV database and observed that the top 5% of the
frequency is around 0.1. We therefore defined variants
with Diffpop. > 0.1 as variants that largely differ between
populations and variants with DiffAnces. > 0.1 as variants
that largely differ between ancestries. Largely differenti-
ated variants between populations/ancestries were sorted
by relative difference (RD), which was defined as RD

¼ Diff
AF .

Website design and database back-end
PGG.SNV is available at https://www.pggsnv.org and re-
quires no username or password. The static web tech-
nology used included HTML5, CSS, and the Bootstrap
framework. To enhance the user experience, JavaScript,

jQuery, and ECharts were implemented. The dynamic
web was built using Java and a Spring MVC framework.
Integrative genomic viewer (IGV) [92] was embedded
into the web to allow the visualization of variants.
Genomic data were stored using a Huawei data storage
system. Annotation data were imported into MySQL
and MongDB. The data on natural selection signals were
JSON-formatted, so data could be recognized and plot-
ted by LocusZoom.js in the front webpage. We receive
email inquiries and give timely responses at pggadmin@-
picb.ac.cn, and any suggestions on the website and data-
base are welcome.

Utility and discussion
Comprehensive genetic diversity and variant annotation
in diverse populations
PGG.SNV currently consists of 220,147 modern human
genomes comprising different genetic ancestries (African
[n = 17,430], American [n = 18,477], Central Asian and
Siberian [n = 783], East Asian [n = 69,717], Oceanic [n =
59], South Asian [n = 17,234], Southeast Asian [n =
2780], West Eurasian [n = 90,053], and Unknown [n =
3617]) from 852 distinct present-day ethnic groups (Af-
rican [n = 130], American [n = 47], Central Asian and Si-
berian [n = 70], East Asian [n = 159], Oceanic [n = 11],
South Asian [n = 163], Southeast Asian [n = 89], West
Eurasian [n = 181], and Unknown [n = 2]) (Fig. 2a).
Compared to other frequently used data sets,

PGG.SNV documents more genomes (Fig. 2b) and rep-
resents a much more comprehensive genomic diversity
of worldwide populations (Fig. 2c). For instance, there
are 90,514 Asian genomes included in PGG.SNV, com-
pared to 993 and 25,285 in the 1KGP and gnomAD data
sets, respectively. Remarkably, our database integrate
hundreds of populations from diverse data sets, while
each data set alone merely covers a small number of
ethnic groups (e.g., 1KGP) and some data sets such as
gnomAD assign genomes majorly based on continent,
leaving the specific information for populations ambigu-
ous (Fig. 2c). Moreover, PGG.SNV includes 1009 newly
generated whole-genome sequences from 16 ethnic
groups, especially many indigenous groups living in East
Asia and Southeast Asia whose genomes have not been
sequenced before (Additional file 1: Table S1). Besides
present-day human populations, the database integrates
1018 ancient genomes (including two archaic hominins
and 1016 ancient AMHs) that represent time periods from
the 430,000 years before the present day up to the early
twentieth century, which, to the best of our knowledge, is
rarely considered in many other existing databases.
The genomic data from numerous populations with

different ancestries represent a comprehensive catalogue
of human genetic variation, comprised of 265 million
SNVs as of March 2019. We therefore annotated each
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variant based on numerous aspects including, but not
limited to (1) basic information and variant browser, (2)
population prevalence or allele frequency, (3) ancient
and archaic frequency, (4) variant effect annotation, (5)
consequence prediction, (6) population differentiation,
(7) natural selection signal, (8) genomic diversity, and (9)
linkage disequilibrium (LD) (Table 2 and Fig. 1). Each
type of annotation aimed to dissect the evolutionary and
medical implications of human single nucleotide variants
at the population level. Annotations (1) and (4) offer
information such as the genomic location, variant type,
and gene content, for each variant. Annotation (2)

provides the population prevalence of variants in contem-
porary populations, which enables studies of variants that
are rare or absent in many well-studied populations, fur-
ther guiding Mendelian-inherited disease mapping studies.
Annotation (3) provides the population prevalence of
variants in ancient groups, facilitating an understanding of
the evolutionary trajectory of genetic variants as well as
the gene flow or potential introgression events. Annota-
tions (6), (7), and (8) enable the detection of the genetic
legacy (within species) left in human genomes, as these
regions or variants have been assumed to be functionally
relevant. Annotation (5) uses different algorithms such as

Fig. 2 Comparison of the number of genomes and populations between PGG.SNV and other frequently used data sets. a Geographical distributions
of the population samples included in PGG.SNV. Each dot represents an ethnic group, and each bar denotes the number of genomes of
the corresponding ancestry. b A comparison of the numbers of genomes included in the 1000 Genomes Project (1KGP), Exome Sequencing Project
(ESP), The Genome Aggregation Database (gnomAD), and PGG.SNV. Each color represents an ancestry that was used in a. c A comparison of the
numbers of populations or ethnic groups included in different databases. PGG.SNV includes 852 present-day populations and 125 ancient populations
which is defined based on geography and time period
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CADD [18] and GERP [19], predominantly based on con-
servation information between species, to predict the
functional consequences of each variant. Annotation (9)
provides the genetic linkage between a given variant and
its surrounding loci, which may improve the interpret-
ation of phenotype-genotype association studies.

High-performance database construction and user-
friendly interfaces
Genomics is a big data science [93], and one of its biggest
challenges is the extreme variety of data and an even
greater variety of file formats [94]. PGG.SNV applies dif-
ferent strategies for storing, processing, exploring, and/or

Table 2 Summary of variant annotation types and their web illustration elements

No. Annotation Description Illustration

0 Basic information Basic information, such as allele status, alternative allele frequency of all genomes as a whole, and
variant-related links

Card

1 Variant browser The Integrative Genomics Viewer (IGV) to visualize genomic data sets, such as human and ancient
reference genomes, and conservation scores

IGV browser

2 Population
prevalence

Alternative allele frequency (AAF) in worldwide populations AAF distribution
map; Table

3 Ancient frequency Alternative allele frequency for selected variant in ancient genomes AAF distribution
map; Table.

4 Variant effect Variant types, effects, and gene contents for selected variant Table

5 Consequence
prediction

Consequence predicted Conservation scores for selected variant Table

6 Population
differentiation

Estimation of population differentiation that measured by FST Heat map plot;
Table

7 Natural selection Natural selection signals for selected variant and/or its surrounding region Manhattan plot,
Table

8 Genomic diversity Genomic diversity pattern for regions near selected variant Scatter plot,
Table

9 Linkage
disequilibrium (LD)

Genetic linkage pattern for regions near selected variant LD decay plot;
Table

Fig. 3 Construction of PGG.SNV database. SQL, Structured Query Language; API, Application Programming Interface; App, Application
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querying the diverse data types that have been generated,
collected, analyzed, and annotated (Fig. 3). Upstream data,
such as short read files and .bam files, have been deposited
in a Huawei data storage system, which has at least 500
Terabyte dedicated for use by PGG.SNV. For small down-
stream data, such as sample and population information,
the data are imported into a MySQL database (with 10
Terabyte storage volumes) as relationship data. For larger
downstream data, such as annotations, we imported them
into MongoDB clusters currently comprised of three
servers, each of which has 12 Terabyte local storage and at
least 64 Gigabyte memory. The largest collections in the
PGG.SNV MongoDB database documents the counts of
genotypes for each SNV in each population and contain
10 billion items at the time of the first release of
PGG.SNV. For downstream analyses (such as linkage
disequilibrium and genomic diversity analysis) that can
generate extreme large data sets, PGG.SNV does not store
the data but instead performs the corresponding analysis
in real-time using genomic application programming in-
terfaces (genomic API) (Fig. 3).
PGG.SNV provides three types of approaches to access

data. A web-based service is the major, more user-friendly
method, as it supports not only data accessibility but also
result visualization. By searching genetic variants by
physical position or RSID, PGG.SNV currently returns
nine annotations (as mentioned in the above section) for
the corresponding variant if it has been included in the
database. By querying by a genomic region, official gene
symbol or Ensembl gene name, the website returns all of
the variants that meet the requirement and users can
further select one for which to visualize the annotation
web. Each type of annotation map comes with one or
more figures or tables with interactive website elements
(such as mouse hover and wheel scroll events) to illustrate
the result (Fig. 4a and Additional file 3: Table S2). For
instance, in the population prevalence annotation section
for rs186996510, which is an adaptive variant in Tibetan
highlanders [28–33], PGG.SNV initially returns an inter-
active figure (Fig. 4b), plotting the allele frequency pie
charts of each population in a worldwide map where
geographic locations represent the position of slices for
the corresponding populations. By hovering the mouse on
each slice, users can get detailed information such as the
population name, ancestry, and sample size (text in
shaded box of Fig. 4b) for the population denoted by that
slice. By scrolling the mouse wheel, users are able to zoom
the resolution of the map in and out to focus on specific
regions. Moreover, users can customize the specific data
sets, ancestries, or populations to be shown in the
returned results (Fig. 4c) and can switch the result pattern
from figure to table (at the top right corner of Fig. 4b) to
obtain results in a .txt file or other file formats. Be-
side the population prevalence, the web summarizes

the prevalence pattern of a derived allele in the assigned
data sets (Fig. 4d). This function distinguishes the derived
allele frequency differentiation between various data sets,
facilitating the understanding of data set bias in the ana-
lysis of an allele’s prevalence. More specifically, in Fig. 4d,
the derived allele frequency of 1:231557623-G-C (G allele)
was higher in the AAGC data set (7.6%) than in other data
sets (< 2.0%), because AAGC includes more genomes of
East Asian populations, especially Tibetan highlanders.
PGG.SNV has also embedded a web-based tool (https://
www.pggsnv.org/tools.html) for the generation of figures
after users have uploaded their own analyses.
In addition to the web-based interface, users can query

variants using a mobile application (App) by linking to
the WeChat official account named PGGbase (Fig. 4e
and Additional file 2: Figure S2). WeChat can then return
corresponding results (currently population prevalence)
from PGG.SNV. Lastly, PGG.SNV offers client libraries
(using python run on the command line) that run on a
user’s own platform to query result in batch (Fig. 3), so
that developers (currently restricted to collaborators) can
incorporate these libraries into their own unique bioinfor-
matics analysis pipelines.

Prevalence of Mendelian-inherited disease variants across
populations
PGG.SNV contains a substantial number of genetic vari-
ants from diverse populations of different ancestries,
providing an extraordinary platform for dissecting the
rareness of Mendelian-inherited disease variants in
humans as a whole and for assessing their prevalence in
diverse ethnic groups. We therefore systematically esti-
mated the population prevalence of Mendelian-inherited
disease-associated alleles (hereafter referred to as DAAs)
based on PGG.SNV. We found that although most of
DAAs in ClinVar are rare (Fig. 5a), 7.0% of these vari-
ants had a frequency of causal alleles larger than 0.05 in
humans based on the allele frequency spectrum of all
genomes that collected by PGG.SNV (Fig. 5b and
Additional file 3: Table S2). This probably indicates that
the phenotypes caused by these variants have had little
effect on fitness during human evolutionary history. The
proportions vary in five different variant groups, with
0.35% being pathogenic variants, 0.10% likely pathogenic,
0.19% uncertain significance, 6.26% likely benign, and
43.2% benign variants (Fig. 5b and Additional file 3:
Table S2), suggesting that the more severe the variant
group, the rarer the causal alleles. This result is expected
since the classification of severity of Mendelian disease-
related variants by the American College of Medical
Genetics and Genomics (ACMG) [91] partly relied on
allele rareness or population data obtained from Exome
Sequencing Project, 1000 Genomes Project, or Exome
Aggregation Consortium.
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Population differentiation of Mendelian-inherited disease
variants
Mendelian-inherited disease-associated alleles are expected
to be rare or in low frequency. As mentioned above, we
did observe that many Mendelian disease variants often
have high allele frequencies in different populations, sug-
gesting that a Mendelian-inherited disease-associated allele
defined or identified in one study or population could be a
benign one in other populations, it is also true vice versa.
We therefore investigated whether the frequencies of DAA
differed between populations or ancestries. We identified a
substantial number of 72 very severe variants (62 patho-
genic variants and 10 likely pathogenic variants) and 20,

274 less-severe variants (12,511 benign variants and 7763
likely benign variants) that show differentiation between
ethnic groups (DiffPop > 0.1) (Fig. 5b and Additional file 4:
Table S3). Some distinguished examples are rs78838117 in
the gene SLC22A18 (MIM: 602631), rs41469351 in the
gene CCR5 (MIM: 601373), rs1024196 in the gene DST
(MIM:113810), and rs150877473 in EPAS1 (MIM:
603349). rs78838117 is a pathogenic variant in ClinVar
and is associated with rhabdomyosarcoma. Its derived
allele frequency (DAF) is high in some Southeast Asian
populations such Bateq people (DAF = 0.33), Jakun
people (DAF = 0.15), and Mendriq people (DAF = 0.125)
in Malaysia, while the average DAF of worldwide

Fig. 4 An example of the user-friendly method for visualization and accessing data. a Basic information for the selected SNV. Alt. Allele Frequency
denotes the frequency of alternative alleles in the PGG.SNV database, with the alternative allele counts and total allele counts shown in brackets.
The Modern Human Population Count represents the number of ethnic groups whose genomic data contain the selected variant in the PGG.SNV
database. The Ancient Genome Count denotes the number of ancient genomic data sets that contain the selected variant in the PGG.SNV
database. At the bottom of a, there are nine annotation cards for a selected variant. Users can switch them to visualize the corresponding
annotation. b Allele frequencies of the variant across worldwide populations. The figure is interactive on the web, with an allele frequency pie
chart of each population in a worldwide map where geographic locations represent the position of slices for corresponding populations. It has
embedded mouse-scrolling events allowing the user to zoom in and out the resolution, a mouse-hovering event on a slice to get detailed
information, and a figure- and table-switching event. c Custom pop-up windows for selecting populations, ancestries, and data sets. Note that
the choices between population, ancestry, and data set buttons are related but not independent. d Allele frequencies of a variant in different
data sets. e WeChat Quick Response (QR) code for access to the information including that in the PGG.SNV database. Users can scan the code
and follow the PGGbase official account to access data via a smart phone
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populations is as low as 0.01 (Fig. 5c). rs41469351 is another
pathogenic variant which is associated with maternal trans-
mission of human immunodeficiency virus, and the derived
allele of rs41469351 is common in West African populations
such as the Gambian people (DAF = 0.36) but is rare in
non-African populations such as Han Chinese (DAF = 0)
and West Eurasians (DAF = 0) (Fig. 5d). rs1024196 is related
to hereditary sensory and autonomic neuropathy type IV,
and the derived allele is enriched in some Africans,

especially in the Xuun and Mbuti Pygmy populations. For
instance, DAF is as high as 0.961 in Xuun and Mbuti
Pygmy, while the mean DAF across all global ethnic groups
is only 0.097. Another example is that rs150877473 contrib-
utes to familial erythrocytosis and shows an extremely high
DAF in Tibetans (0.88), while the derived allele is nearly
absent in non-Tibetan populations (0.021).
Meanwhile, we found 42 severer variants (5 pathogenic

variants and 37 likely pathogenic variants), 12,333

Fig. 5 Prevalence and differentiation of Mendelian disease variants across populations. a Allele frequency spectrum of Mendelian-inherited
disease variants. Mutations are grouped into five categories by their severity (see “Population and ancestry assignment”). b Rareness and
population and ancestry differentiation of Mendelian-inherited disease variants. c An example of a pathogenic variant (rs78838117) that shows
high DAF in some Southeast populations such as Bateq people (DAF = 0.33), Jakun people (DAF = 0.15), and Mendriq people (DAF = 0.125) in
Malaysia. The corresponding PGG.SNV link is https://www.pggsnv.org/searchinfo.html?key=11-2930440-G-A. d An example of a pathogenic variant
(rs41469351) that shows high DAF in some West Africa populations such as the Gambian people (DAF = 0.36). The corresponding PGG.SNV link is
https://www.pggsnv.org/searchinfo.html?key=3-46412262-C-T. e An example of a variant (rs12917189) that shows large differentiation between
Africans and non-Africans. The corresponding PGG.SNV link is https://www.pggsnv.org/searchinfo.html?key=15-43023482-T-C. f An example of a
variant (rs10828415) that shows large differentiation between East Asian and other ancestral populations. The corresponding PGG.SNV link
is https://www.pggsnv.org/searchinfo.html?key=10-23482850-G-A
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functionally less-severe variants (8770 benign variants
and 3563 likely benign variants), and 155 uncertain
significant variants that show differentiation among
populations of distinct ancestries (DiffAnces > 0.1) (Fig. 5b
and Additional file 5: Table S4). Remarkably, the DAF of
rs12917189 was largely different between African (0.821)
and non-African populations, such as South Asians
(0.271), East Asian (0.175), West Eurasian (0.236),
American (0.126), Southeast Asian (0.015), Central Asian
and Siberian (0.214), and Oceanic populations (0.260)
(Fig. 5e). rs12917189 is located in the gene CDAN1
(MIM: 607465), and the derived allele C contributes to
congenital dyserythropoietic anemia or congenital dyser-
ythropoietic anemia, type I. This phenotype is more
prevalent in Africa and is reported to play a role in
resistance to malaria [95, 96]. Another example is
rs10828415, which shows a large difference in the DAF
comparing East Asians (0.387) and non-East Asian
populations such as African (0.078), South Asian (0.050),
West Eurasian (0.040), Americans (0.139), Southeast
Asian (0.020), Central Asian and Siberian (0.114), and
Oceanic populations (0.036) (Fig. 5f). The variant is
located in the gene PTF1A (MIM: 607194) and can lead
to permanent neonatal diabetes mellitus according to
the ClinVar database.
The above results suggest that a large number of the

Mendelian-inherited disease variants, while assumed to
be rare in frequency including those pathogenic or dele-
terious, vary in populations and ancestries, reflecting
that health disparities exist extensively in human popula-
tions and ancestries. This pattern is likely to be shaped
by the complex demographic history as well as local
adaptations experienced by early humans or their
descendants after population divergence. Therefore, it is
of the utmost importance to concentrate on diverse pop-
ulations and families with different genetic backgrounds
when mapping causal variants for Mendelian-inherited
diseases. PGG.SNV provides such a platform for examining
allele frequency and various population genetic parameters
in several hundred diverse populations worldwide.

Cautions for interpreting genetic variants
Recently, an increased number of researchers investigate
the allele frequency of variants in human populations
and predict functional impacts or causality for each vari-
ant according to an allele’s rareness in medical studies
[7, 36–38]. Though there has been a dramatic increase
in the number of genomes sequenced for diverse human
populations, most population prevalence annotation
tools [87, 97] are frequently based on a few number of
data sets, especially on 1KGP [4] and gnomAD [39],
which are absolutely valuable reference panels. However,
these data sets are insufficient to cover the majority of
ethnic groups and therefore are not able to represent

comprehensive genomic diversity of human populations.
Concentration on specific data sets or attempts to use
estimates of genetic risk from unrelated ancestral popu-
lations in a population may introduce frequency bias at
the population level, ancestry level, and data set level,
and may result in inaccurate assessment. First, one com-
mon allele in one population of a specific ancestry may
be rare in another population of different ancestries and
vice versa. For example, rs10828415 is common in East
Asian (DAF = 0.387) but rare in Southeast Asians
(DAF = 0.020) and South Asians (DAF = 0.050), even
though all of these populations are located in Asia
(Fig. 5). Second, one common allele in a specific popula-
tion may be rare in populations of the same ancestry
and vice versa. For example, rs150877473 shows an
extremely high DAF in Tibetan population (0.88) but an
extremely low DAF in Han Chinese (0.03), even though
these two populations are from the same ancestral
population [34, 98]. Lastly, one common allele in a spe-
cific data set could be rare in another data set and vice
versa. Consider that the derived allele in rs186996510 is
rare in the 1KGP data set (0.0065) but relatively common
in the AAGC data set (0.075). We therefore suggest that
researchers or organizations that specify standards and
guidelines for the interpretation of sequence variants should
investigate a sufficient number of populations of different
ancestries so as to decrease the bias or error rates in future
studies. By generating and collecting the genomes of diverse
data sets (including 1KGP and gnomAD) from various an-
cestries and populations, PGG.SNV provides an extraordin-
ary tool for dissecting the implications of human SNVs.
According to the frequency spectrum of Mendelian-

inherited disease variants (Fig. 5a, b), the causal alleles of
many variants (7.0%) are not rare (< 5% is often the
criteria for defining a variant as rare or common), indi-
cating that the commonly used standard of assuming
that causal variants should be rare when mapping causal
variants may not be applicable to many of the Mendelian
diseases. There are many factors that may change
disease risk alleles from rare to common, including the
following: (1) if a disease had little effect on fitness
during human evolution or the age of the onset is very
late, the allele frequency could be shifted by random
genetic drift; (2) the prevalence of a disease allele could
be elevated by positive selection if the allele was once
advantageous during human evolution, a selective sweep
on a deleterious mutation in CPT1A in arctic popula-
tions is such an example [25]; (3) genetic hitch-hiking
during a selective sweep could increase the frequency of
moderately deleterious mutations; and (4) strong bottle-
necks in the history of a population would accumulate
alleles associated with recessive disorders [22–24, 79].
We suggest that researchers should loosen the criteria of
population prevalence when identifying causal alleles for
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Mendelian-inherited diseases or populations that may
potentially meet the above conditions to avoid false
negative results.

Conclusion
PGG.SNV provides reference genomic resources for
diverse human populations, particularly including those
from indigenous Asian populations (Additional file 6).
With a comprehensive catalogue of genetic variants and
annotations, PGG.SNV enables studies of variants that
are rare or not existing in well-studied populations, and
provides the population prevalence of variants in various
populations with little ancestral bias and further guides
Mendelian-inherited disease mapping studies. PGG.SNV
documents many ancient genomes and compares them
with contemporary human genomes, allowing researchers
to understand the evolutionary trajectory of genetic vari-
ants as well as gene flow or introgression events. More-
over, this database improves interpretations of putative
causal loci for Mendelian diseases, population differenti-
ation analysis, and adaptation to local environments for
global populations. Eventually, PGG.SNV will help ad-
vance our understanding of the biological meaning of the
human genome sequence in light of human evolution.
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