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a b s t r a c t 

In this paper we specifically present a parallel solution to finding the one-ring neighboring nodes and elements 

for each vertex in generic meshes. The finding of nodal neighbors is computationally straightforward but 

expensive for large meshes. To improve the efficiency, the parallelism is adopted by utilizing the modern Graphics 

Processing Unit (GPU). The presented parallel solution is heavily dependent on the parallel sorting, scan, and 

reduction. Our parallel solution is efficient and easy to implement, but requires the allocation of large device 

memory. 

• Our parallel solution can generate the speedups of approximately 55 and 90 over the serial solution when 

finding the neighboring nodes and elements, respectively. 
• It is easy to implement due to the reason it does not need to perform the mesh-coloring before finding 

neighbors 
• There are no complex data structures, only integer arrays are needed, which makes our parallel solution very 

effective. 
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Fig. 1. A simple illustration of concurrently finding neighboring nodes for each vertex in a mesh. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method details 

In this section, we will describe the basic ideas and implementation details of our parallel solution

to finding the one-ring neighboring nodes and elements for each vertex in generic meshes. 

Parallel solution to finding neighboring nodes for each vertex 

The basic ideas for concurrently finding neighboring nodes for each vertex are as follows. In any

valid meshes, any pair of neighboring nodes is connected using an edge. An edge can be represented

with two nodes (and further, the indices of two nodes). A mesh typically has plenty of edges (i.e., pairs

of nodes). When gathering all edges of a mesh (see Fig. 1 (a) and 1(b)), the edges can be stored in an

array consisting of n pairs of integer values; see Fig. 1 (c). The array of edges can be also considered

as two arrays of integers ( Fig. 1 (d)). If adopting the first array of integers as the keys for sorting and

the second array and the correspondingly attached values, the indices of all the neighboring nodes for

the same vertex can be easily found by performing a parallel sorting; see Fig. 1 (e). 

Parallel solution to finding neighboring elements for each vertex 

The basic ideas for concurrently finding neighboring elements for each vertex are as follows. An

element in a mesh is composed of several nodes ( Fig. 2 (a)). Each element is by nature the one-

ring neighboring element of those nodes it contains. A pair of integer values can be used to simply

demonstrate this relationship: the first integer is the index of one of the nodes in an element; and

the second is the index of the element itself; see Fig. 2 (b). 

For an element, several such pairs of integers can be formed. And for an arbitrary mesh, a group

of such pairs of integers can be obtained, and stored in two arrays of integers. Similar to the finding
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Fig. 2. A simple illustration of concurrently finding neighboring elements for each vertex in a mesh. 
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f neighboring nodes for each vertex, if adopting the first array of integers as the keys for sorting and

he second array of integers as the correspondingly attached values, the indices of all the neighboring

lements for the same vertex can be easily found by performing a parallel sorting; see Fig. 2 . 

mplementation details 

Our solution is applicable to arbitrary meshes. However, to demonstrate our solution, here we

pecifically present the implementation details of our solution when applied to the triangular surface

esh. 
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Our solution is implemented by strongly utilizing the parallel primitives provide by the library

Thrust [1] such as the parallel sorting and reduction. More implementation details are listed as follows.

The finding of neighboring nodes 

The process of finding the neighboring nodes for each vertex is as follows. 

First, we create pairs of integers according to the edges in each triangle. Noticeably, we can form

three edges (pairs of integers) for a triangle when the three nodes in the triangle are organized in

count-clockwise (CCW) order and another three pairs when nodes are organized in clockwise (CW); 

see Fig. 1 (b). That is, a triangle can produce six pairs of integers. These edges/pairs can be obviously

created in parallel. We specifically design a CUDA kernel to realize this. 

After creating the pairs of integers that are stored in two arrays of integers, the second step is

to sort those pairs according to the first array of integers. This procedure can be extremely fast

performed by using the specific function thrust::sort_by_keys() . 
The third step is to determine: (1) the total number and (2) the detailed indices of the neighboring

nodes for each vertex, which can be realized by using segmented scan and reduction. The ideas behind

performing the segmented scan and reduction have been presented in our previous work [2] . 

To determine the number of neighbors, we first create a helper array containing the 

same value 1, and then perform a parallel segmented reduction by using the function 

thrust::reduce_by_keys() . To obtain the indices of the neighboring nodes, we also first 

create a helper array of sequenced integers, and then perform a parallel segmented scan by using

thrust::unique_by_keys() . After performing the segmented reduction and scan, both the 

number and indices of neighbors can be found and then transferred into other target arrays for

further mesh editing such as Boolean operations or mesh optimization. The relevant code is shown in

Code 1 . 

The finding of neighboring elements 

The process of finding the neighboring elements is quite similar to that of finding the neighboring

nodes. The first step is also to form the pairs of integers (i.e., two arrays of integers), then to sort

according to the first array of integers, and third use the parallel segmented reduction and scan to

further determine both the total number and the detailed indices of the neighboring elements. 

However, there is a remarkable difference between the process of finding neighboring nodes and

elements. When finding the neighboring elements, the first integer value of any pair is the index of a

node in an element; and the second value of the pair of integers is the index of the element itself. In

contrast, in the finding of neighboring nodes, both the first and the second integer value of any pair

is the index of node. 

Method validation 

Results 

Six groups of experimental tests are carried out to evaluate the performance of our parallel

solution. These experimental tests of the parallel solution are performed on the desktop computer 

which features with the NVIDIA GeForce GT640 (GDDR5) graphics card and the programming model 

CUDA v7.0. The experiments of the corresponding serial solution are performed on Windows 7 SP1

with an Intel i5–3470 CPU (3.2 GHz and 4 Cores) and 8GB of RAM memory. 

These six triangular surface mesh models employed for testing are directly obtained from the 

Stanford 3D Scanning Repository ( http://www.graphics.stanford.edu/data/3Dscanrep/ ) and the GIT 

Large Geometry Models Archive ( http://www.cc.gatech.edu/projects/large _ models/ ); see Fig. 3 . 

The execution time of both our parallel solution and the serial solution for finding the neighboring

nodes and elements are listed in Table 1 . The experimental results indicate that: our parallel solution

is approximately 55 and 90 times faster than the serial solution when finding the neighboring nodes

and elements, respectively. 

http://www.graphics.stanford.edu/data/3Dscanrep/
http://www.cc.gatech.edu/projects/large_models/
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Fig. 3. Six models for testing. 

Table 1 

Comparison of efficiency of our parallel solution and the serial solution (1 k = 10 0 0). 

Mesh 

Model 

Num. 

of 

Node 

Num. 

of 

Elem. 

Serial (/ms) Parallel (/ms) Speedup 

Find Node Find Elem. Find Node Find Elem. Find Node Find Elem. 

Armadillo 172 k 346 k 2527 1732 50.0 22.1 50.5 78.4 

Angel 237 k 474 k 3635 2580 66.7 29.4 54.5 87.8 

Hand 327 k 655 k 4806 3305 89.1 38.3 53.9 86.3 

Dragon 437 k 871 k 6543 4488 112.7 48.5 58.1 92.5 

Buddha 543 k 1088 k 8577 6072 138.5 60.6 61.9 100.2 

Blade 882 k 1765 k 13,931 10,0 0 0 221.3 93.3 63.0 107.2 
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he advantages of our parallel solution 

The first advantage of our parallel solution is that: it is easy to implement due to the reason it

oes not need to perform the mesh-coloring before finding neighbors. The mesh coloring technique

s frequently used to deal with the race condition issue [3] . 

When finding nodal neighbors in parallel, there exists the race condition. The race condition issue

ppears when two different parallel threads may need to be written in the same memory position [3] .

hen looping over all the elements in a mesh to find the nodal neighbors, two neighboring nodes of

he same vertex may be found concurrently within two parallel threads; and the indices of the two

eighboring nodes may need to be written in the same memory position for storing. In this case, race

ondition arises. 

Currently, the most commonly used method to address the above problem is to color the mesh

rst and then looping over those elements with the same color simultaneously to find neighbors

 3 , 4 , 5 , 6 , 7 ]. This coloring-based method is very effective and efficient for large size of meshes, and is

uite suitable to be applied in parallel pattern. The only minor shortcoming is that: it is needed to

olor the mesh into several groups of elements and thus needs additional computational cost. 

In our parallel solution, we have redesigned the process of finding neighbors to avoid the use of

esh-coloring by strongly exploiting those efficient parallel primitives such as parallel sorting and

can. In addition, there are no complex data structures; and only arrays of integers are needed. Thus,

ur parallel solution is easy to implement in practice. 

The second advantage of our parallel solution is the acceptable efficiency. The experimental results

isted in Table 1 indicate that: our parallel solution can generate the speedups of approximately 55

nd 90 over the serial solution when finding the neighboring nodes and elements, respectively. 

This performance gains benefit from the parallelization performed on the GPU. By analyzing and

eorganizing the process of finding nodal neighbors, we have transferred the entire process into
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Code 1 

Finding neighboring nodes in parallel. 
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everal sub-procedures of parallel sorting, scan, and reduction, while these parallel primitives are

xtremely fast for the large size of data. 

Another reason why our parallel solution is quite efficient is that: there are no complex data

tructures; and only arrays of integers are needed. Inherently, operations and computations for

iscrete arrays of integer values rather than arrays of structures are quite fast on the GPU. We

pecifically avoid using arrays of structures such as pairs, but chose to directly use the arrays of values.

his leads additional performance gains. 

he shortcomings of our parallel solution 

Although our parallel solution is efficient and easy to implement, it has an obvious shortcoming,

.e., it requires more device memory than that of the serial solution. This additionally required device

emory is allocated for performing the sorting, scan, and reduction. 

In the serial solution, a STL ( C ++ Standard Template Library) container, vector < int > , is

dopted to allocate an array to dynamically store the indices of neighboring nodes for each vertex. The

ize of the array can be dynamically determined without redundant space. Similar, another array of

ntegers is needed to hold the indices of neighboring elements. Moreover, the number of neighboring

odes and elements are directly the size of the dynamic arrays, which can be easily and automatically

etermined. Thus, there is no need to allocate other additional arrays. 

In contrast, in our parallel solution, six additional arrays of integers are required. First, two arrays

f integers need to be allocated to store the edges (i.e., pairs of integers). Second, another two arrays

f integers are needed to hold the first indices and numbers of neighboring nodes. And third, to

erform the segmented parallel reduction and scan, another two temporary arrays are also required. 

Due to the required additional arrays of integers, our parallel solution cannot be applied to quite

arge size of meshes since the device memory (the global memory) of most current GPUs is quite

imited. Thus, future work may focus on redesigning the parallel process of finding nodal neighbors

o reduce the device memory. 

onclusions and outlook 

In this paper, we have presented a parallel solution to finding the neighboring nodes and elements

or each vertex in an arbitrary mesh by exploiting the GPU. Our solution is a topology-based method,

nd is heavily dependent on the use of parallel sorting, scan, and reduction. We have compared our

arallel solution to the corresponding serial solution to evaluate its performance. We have found that:

ur parallel solution is approximately 55 and 90 times faster than the corresponding serial solution

hen finding the neighboring nodes and elements, respectively. Our solution is efficient, simple and

asy to implement, and can be applied for arbitrary meshes. However, our parallel solution requires

he allocation of large device memory; and thus future work is planned to be carried out to address

his problem. 

dditional information 

Introduction 

Mesh generation plays an important role in geometric modeling, computer graphics, and numerical

imulations. After generating various types of meshes, typically mesh editing is intentionally

erformed to modify or improve the generated meshes to meet desired requirements. In mesh editing

uch as Boolean operations [8] or mesh optimization [9] , the local mesh connectivity especially the

djacent/neighboring nodes and elements for each node or element is frequently needed to reduce

he computational cost of local search. 

The finding of one-ring nodal neighbors in arbitrary valid mesh is computationally straightforward,

nd can be completely carried out based on the connectivity/topology of meshes. The simplest method

s to loop over all elements in a mesh to identify: (1) which pair of nodes is connected by an edge

nd (2) which nodes are contained in an element [ 4 , 9 , 10 ]. This is because that: (1) any pair of nodes
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connected by an edge is the one-ring neighboring node for each other; and (2) any element is directly

the one-ring neighboring element for those nodes it contains. 

Another simple method for finding the one-ring neighboring nodes for each vertex in a polygonal

mesh was introduced by Dahal and Newman [11] . They first determined the boundary vertices by

finding the opposite edges for each vertex and then forming a closed polygon using those opposite

edges. They adopted the vertices of the closed polygon as the one-ring neighbors for each vertex. 

Both of the above neighbors-finding methods are easy to implement in the serial programming

pattern. However, due to the fact that it needs to loop over all the elements of a mesh in sequential,

the computational cost is in general too high for large size of meshes; and this will reduce the

computational efficiency of the entire mesh editing procedure. 

An effective strategy to improve the efficiency of the neighbors-finding procedure is to parallelize

it on various parallel computing architectures such as multi-core CPUs or many-core GPUs. 

However, when finding nodal neighbors in parallel, there exists the race condition. The race 

condition issue appears when two different parallel threads may need to be written in the same

memory position [3] . When looping over all the elements in a mesh to find the nodal neighbors, two

neighboring nodes of the same vertex may be found concurrently within two parallel threads; and

the indices of the two neighboring nodes may need to be written in the same memory position for

storing. In this case, race condition arises. 

Currently, the most commonly used method to address the above problem is to color the mesh

first and then looping over those elements with the same color simultaneously to find neighbors

[ 3 , 4 , 5 , 6 , 7 ]. This coloring-based method is very effective and efficient for large meshes, and is quite

suitable to be applied in parallel pattern. The only minor shortcoming is that: it needs additional

computational cost to color the mesh into several groups of elements. 

In this paper, without the use of mesh-coloring, we specifically design and develop a parallel

solution to finding nodal neighbors by utilizing the power of modern GPUs. Our solution is efficient,

simple and easy to implement, which heavily depended on the use of parallel primitives such as

sorting, scan, and reduction. In addition, in our solution there is no need to adopt complex mesh

data structures; and only arrays of integers are required. To evaluate the performance of our parallel

solution, we compare it to the corresponding serial solution in six experiments. 
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