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Linoleic acid participates in the 
response to ischemic brain injury 
through oxidized metabolites that 
regulate neurotransmission
Marie Hennebelle1, Zhichao Zhang1, Adam H. Metherel2, Alex P. Kitson2, Yurika Otoki1,3, 
Christine E. Richardson4, Jun Yang   5, Kin Sing Stephen Lee5, Bruce D. Hammock   5,  
Liang Zhang6,7, Richard P. Bazinet2 & Ameer Y. Taha1

Linoleic acid (LA; 18:2 n-6), the most abundant polyunsaturated fatty acid in the US diet, is a precursor 
to oxidized metabolites that have unknown roles in the brain. Here, we show that oxidized LA-
derived metabolites accumulate in several rat brain regions during CO2-induced ischemia and that LA-
derived 13-hydroxyoctadecadienoic acid, but not LA, increase somatic paired-pulse facilitation in rat 
hippocampus by 80%, suggesting bioactivity. This study provides new evidence that LA participates 
in the response to ischemia-induced brain injury through oxidized metabolites that regulate 
neurotransmission. Targeting this pathway may be therapeutically relevant for ischemia-related 
conditions such as stroke.

Omega-6 linoleic acid (LA, 18:2 n-6) is the most consumed polyunsaturated fatty acid (PUFA) in the US diet, 
accounting for approximately 7% of daily calories1. The consumption of its elongation-desaturation product, 
arachidonic acid (AA, 20:4n-6), as well as omega-3 α-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA, 
20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), collectively account for less than 1% of calories. Despite 
being the main PUFA in the diet, little is known about the role of LA in the brain.

Most brain studies have focused on AA and DHA, because they are enriched in phospholipid membranes, 
and are known to regulate many processes including blood flow2–4, pain signaling5–7, inflammation8 and the 
resolution of inflammation9–13 through oxidized metabolites known as oxylipins. PUFA-derived oxylipins are 
synthesized via lipoxygenase (LOX)14–16, cyclooxygenase (COX)15, 17, 18, cytochrome P450 (CYP450)19–21 or sol-
uble epoxide hydrolase (sEH) enzymes6, 22 following phospholipase-mediated release of fatty acids from brain 
membrane phospholipids23, 24. Oxylipin synthesis can also occur non-enzymatically25–27.

Unlike AA and DHA, which make up over 20% of brain total fatty acids, LA accounts for less than 2% of total 
fatty acids28, but enters the brain at a comparable rate to AA and DHA (4–7 pmol/g/s)29, 30. Instead of incorporat-
ing into membrane phospholipids, however, up to 59% of the LA entering the brain is converted into relatively 
polar compounds29, which include LA-derived oxylipins31 produced non-enzymatically or via the same LOX, 
COX, CYP450 and sEH enzymes that act on AA and DHA17, 32–34.

Brain injury caused by hypoxia, ischemia, seizures or trauma activates excitatory N-methyl-D-aspartate 
(NMDA) receptors coupled to phospholipase enzymes35–37, which release AA and DHA from membrane phos-
pholipids38–43. The majority of unesterified AA and DHA are re-esterified into the phospholipid membrane44, 
whereas a small portion (~3%) is converted via non-enzymatic or enzymatic pathways into oxylipins41, 45–47 that 
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regulate the brain’s response to injury2–4. This response involves oxylipins that acutely down-regulate neuronal 
hyperexcitability48 and enhance vasodilation49 as a protective mechanism.

Brain unesterified LA concentration also increases following brain injury24, 40, suggesting that LA or its metab-
olites may be involved in the response to brain injury. However, very little is known about the role of LA or its 
metabolites in brain. LA was reported to raise seizure threshold in rats50, 51, and to increase the number and 
duration of spontaneous wave discharges in a rat model of absence seizures51, suggesting its involvement in neu-
rotransmission. Although it is not known whether the effects of LA in brain are mediated by LA itself or its oxi-
dized metabolites, LA-metabolites have been detected in brain tissue31, 52 and are known to activate pain-gating 
transient receptor potential vanilloid (TRPV) channels and inflammatory pathways in rodent spinal cord53 and 
hindpaw54, and to reduce retinal epithelial cell growth55. These studies suggest that LA metabolites are likely bio-
active in brain. Understanding the conditions that increase the formation of LA-derived metabolites and whether 
they are bioactive in brain may inform on new pathways that could be targeted.

The present study tested the hypothesis that LA partakes in the response to ischemic brain injury through 
oxidized metabolites that regulate brain signaling. A targeted lipidomics approach involving liquid chro-
matography tandem mass-spectrometry (LC-MS/MS) was used to quantify 85 PUFA-derived oxylipins 
(listed in Supplementary Table 1) in cortex, hippocampus, cerebellum and brainstem of rats subjected to CO2 
asphyxiation-induced ischemia or head-focused microwave (MW) fixation, which heat-denatures enzymes to 
halt brain lipid metabolism56, 57. These brain regions were chosen because they are particularly affected to var-
ying degrees by hypoxic or ischemic insults58–65. The lipidomic method used herein, extensively covered LA, 
AA and DHA metabolites, to contrast the ischemia-induced response of LA metabolites to published data 
on the AA and DHA metabolites produced during ischemic injury. It also included metabolites derived from 
other minor fatty acids in brain, such as ALA, EPA and di-homo-gamma-linolenic acid (DGLA), an interme-
diate elongation-desaturation product of LA, because we intended to assess whether they also participate in the 
response to ischemic brain injury.

The effects of AA, AA-derived prostaglandin E2 (PGE2), LA and LA-derived 13-hydroxyoctadecadienoic acid 
(13-HODE) on hippocampal paired-pulse facilitation (PPF), a marker of short-term plasticity66, were measured 
using extracellular recordings to test whether 13-HODE regulates neurotransmission in a manner comparable to 
PGE2, a well-studied lipid mediator involved in hippocampal signaling67–69. 13-HODE was tested upon finding 
that its concentration increased in cortex and brainstem following ischemia, and that it is the most abundant 
LA-metabolite detected in rat hippocampus. Extracellular recordings were measured from hippocampus because 
of its clearly-defined structural attributes and robust signals which enable accurate extracellular recordings and 
assessment of changes in neurotransmission. It is also vulnerable to the neurodegenerative effects of ischemic 
injury58–61.

Results
Ischemia induced global changes in oxylipin concentrations.  Targeted LC-MS/MS analysis detected 
the presence of 53, 34, 43 and 37 oxylipins in cortex, hippocampus, cerebellum and brainstem, respectively. As 
shown in Table 1, the majority of oxylipins were present in cortex, and many that were not detected in MW-fixed 
control brains, were present upon ischemia.

A heat map depicting the oxylipins common to all 4 brain regions in control and ischemic brains is shown 
in Fig. 1. As indicated, many LA, AA and DHA metabolites were abundant in all brain regions at baseline, and 
increased markedly following ischemia. Interestingly, although LA itself is low in brain compared to AA and 
DHA28, its metabolites were abundant.

Ischemia increased LA-derived metabolites in various brain regions.  LA-derived oxylipins were 
significantly increased in various brain regions following ischemia compared to MW-fixed controls (Fig. 2). 
13-HODE was 1.7-fold higher in the ischemic CO2-group compared to MW-fixed controls in cortex (p = 0.0115) 
and brainstem (p = 0.0098). 9-HODE was also increased in cortex by 1.8-fold in the ischemic CO2-group com-
pared to MW-fixed controls (p = 0.0439). 13-oxo-ODE was increased by 5.6-fold in cortex (p = 0.0499) and by 
3.2-fold in brainstem (p = 0.0134). 12(13)-EpOME was increased in both hippocampus (5.7-fold; p = 0.023) 
and cerebellum (2.7; p < 0.001), whereas 9(10)-EpOME was increased 2.8-fold in cerebellum (p < 0.001) of 

Cortex Hippocampus Cerebellum Brainstem

Control Ischemic Control Ischemic Control Ischemic Control Ischemic

LA-derived metabolites 11 (/12) 11 (/12) 6 (/12) 8 (/12) 9 (/12) 9 (/12) 7 (/12) 9 (/12)

DGLA-derived metabolites 2 (/3) 2 (/3) 0 (/3) 2 (/3) 0 (/3) 2 (/3) 0 (/3) 2 (/3)

AA-derived metabolites 8 (/34) 27 (/34) 4 (/34) 17 (/34) 5 (/34) 21 (/34) 6 (/34) 17 (/34)

ALA-derived metabolites 2 (/8) 2 (/8) 0 (/8) 0 (/8) 1 (/8) 4 (/8) 2 (/8) 2 (/8)

EPA-derived metabolites 2 (/16) 2 (/16) 0 (/16) 1 (/16) 1 (/16) 1 (/16) 0 (/16) 1 (/16)

DHA-derived metabolites 5 (/12) 9 (/12) 6 (/12) 6 (/12) 5 (/12) 6 (/12) 6 (/12) 6 (/12)

Total metabolites 30 (/85) 53 (/85) 16 (/85) 34 (/85) 21 (/85) 43 (/85) 21 (/85) 37 (/85)

Table 1.  Number of oxylipins detected in cortex, hippocampus, cerebellum and brainstem in the control 
(n = 7–9) and ischemic groups (n = 7–9 per group) relative to the total number of metabolites analyzed (in 
brackets).
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ischemic rats compared to MW-fixed controls. Brainstem concentrations of 12,13-DiHOME increased by 1.4-fold 
(p = 0.0088), following CO2-induced ischemia.

Ischemia increased AA-derived metabolites in various brain regions.  Previous studies reported an 
increase in the formation of AA- and DHA- derived oxylipins following hypoxia or ischemic brain injury41, 49. To 
confirm that these changes occurred in the present study, regional changes in AA- and DHA- derived metabolites 
were measured by LC-MS/MS as shown in Figs 3 and 4, respectively.

Compared to the MW-fixed controls, AA-derived epoxy-metabolites, 14(15)-EET, 11(12)-EET and 5(6)-EET, 
were increased in cortex (13 to 55-fold; p < 0.01), hippocampus (41 to 104-fold; p < 0.05), cerebellum (18 to 
52-fold; p < 0.05) and brainstem (19 to 22-fold; p < 0.001) of the ischemic CO2-group. Mono-hydroxylated 
AA-derived metabolites, 5-, 11-, 12-, 15- and 20-HETE, were increased in cortex (10 to 345-fold; p < 0.05), hip-
pocampus (4 to 67-fold; p < 0.01), cerebellum (3 to 204-fold; p < 0.05) and brainstem (2.5 to 372-fold; p < 0.001), 
following ischemia. 15-oxo-ETE, an AA-derived ketone, was increased by 11-fold in cortex (p = 0.0067), 
7.4-fold in hippocampus (p < 0.0001), 4.7-fold in cerebellum (p = 0.03) and 5.2-fold in brainstem (p < 0.0001), 
while 5-oxo-ETE was increased by 7.9-fold in cortex (p = 0.039) and 5.3-fold in hippocampus (p = 0.0099), and 
12-oxo-ETE by 12.9-fold in cortex (p = 0.0061) (Fig. 3).

Prostanoids (6-keto-PGF1α, PGF2α, PGE2, PGD2, PGJ2) were negligible or not detected in MW-fixed controls, 
but were present in the four brain regions of CO2-treated rats (p < 0.001). Ischemia also increased the cortical 

Figure 1.  Heat map of oxylipin concentrations in cortex, hippocampus, cerebellum and brainstem in 
control and ischemic rats. EET, epoxyeicosatrienoic acid; PG, prostaglandin; TXB2, Tromboxane B2; HETE, 
hydroxyeicosatetraenoic acid; oxo-ETE, oxo-eicosatetraenoic acid; DiHETE, dihydroxyeicosatetraenoic acid; 
LTB4, leukotriene B4; EpDPE, epoxydocosapentaenoic acid; DiHDPE, dihydroxydocosapentaenoic acid; 
HDoHE, hydroxydocosahexaenoic acid; HODE, hydroxyoctadecadienoic acid; oxo-ODE, oxo-octadecadienoic 
acid; EpOME, epoxyoctadecamonoenoic acid; diHOME, dihydroxyoctadecamonoenoic acid; TriHOME, 
trihydroxyoctadecamonoenoic acid; EpODE, epoxyoctadecadienoic acid; HETrE, hydroxyeicosatrienoic acid.
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concentrations of epoxy- (8(9)-EpEtrE; p = 0.0048), monohydroxy- (8- and 9- HETE; p < 0.05), dihydroxy- 
(14,15- and 11,12-DiHETrE, p < 0.001; 8,15- and 5,15-DiHETE, p < 0.01) and trihydroxy- (11,12,15-TriHETrE; 
p = 0.0012) AA metabolites, which were not detected in MW-fixed controls (Fig. 3).

Ischemia increased DHA-derived metabolites in various brain regions.  DHA-derived 
epoxy-metabolites (19(20)-, 16(17)-, 13(14)-, 10(11)- and 7(8)-EpDPE) were higher in cortex (3.9 to 7.3-fold; 
p < 0.01), hippocampus (9 to 12.7-fold; p < 0.01), cerebellum (4.8 to 7.9-fold; p < 0.01) and brainstem (6.6 to 
9.4-fold; p < 0.01) of ischemic rats compared to MW-fixed controls (Fig. 4). 17-HDoHE was detected in cortex 
and cerebellum (p < 0.01) of ischemic CO2-treated rats but not MW-fixed controls, and was 8.1- and 7.4-fold 
higher in hippocampus (p = 0.025) and brainstem (p = 0.0072) of ischemic rats, respectively, relative to controls. 
Amongst the dihydroxy DHA metabolites analyzed, only 19,20-DiHDPE increased by 2-fold in hippocampus of 
the ischemic CO2-group compared to MW-fixed controls (p = 0.021).

Other fatty acid metabolites found in relatively low concentrations in control brains were 
increased following ischemia.  The concentrations of DGLA, ALA and EPA-derived metabolites within 
the different brain regions were low and only few of them were detected (Fig. 5). DGLA-derived PGD1 and 
15(S)-HETrE, were present in all brain regions of the ischemic CO2-group but were absent or negligible in the 
MW-fixed group (p < 0.01). ALA-derived 15,16-DiHODE was 2.3 and 1.9 times higher in cortex (p = 0.0314) 
and cerebellum (p = 0.0028) of ischemic CO2-rats relative to MW-fixed controls, respectively. ALA-derived 
13-HOTrE increased by 1.9 fold in brainstem (p = 0.0078). EPA-derived 11(12)-EpETE was detected in hip-
pocampus following ischemia, but not in controls. Other detected EPA-derived metabolites did not significantly 
differ between the groups.

13-HODE and PGE2, but not their fatty acid precursors, increased somatic PPF.  Hippocampal 
extracellular recordings were performed to test whether 13-HODE, the main LA metabolite detected in hip-
pocampus (Fig. 2), altered neurotransmission in a manner comparable to its precursor, LA, and to AA and 
AA-derived PGE2.

Two-way repeated measures ANOVA revealed a significant effect of time (p < 0.0001), and time-compound 
interaction (p < 0.0001) on the minute-by-minute PPF in soma. As indicated in Fig. 6a, compared to vehicle, 

Figure 2.  Cortex (a), hippocampus (b), cerebellum (c) and brainstem (d) linoleic acid (LA)-derived metabolite 
concentrations (in pmol/g) in microwave (MW) control and ischemic rats (CO2; n = 7–9 per group). 
Values are mean ± standard deviation (SD). Significant differences were assessed using an unpaired t-test 
(*p < 0.05; **p < 0.01; ***p < 0.001). HODE, hydroxyoctadecadienoic acid; oxo-ODE, oxo-octadecadienoic 
acid; EpOME, epoxyoctadecamonoenoic acid; DiHOME, dihydroxyoctadecamonoenoic acid; TriHOME, 
trihydroxyoctadecamonoenoic acid; THF, tetrahydrofuran; EKODE, epoxyketooctadecadienoic acid.
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0.1 µM PGE2 significantly increased somatic PPF during the washout period (at 24, 25, 26 and after 28 min-
utes of recording; p < 0.05 by Dunnett’s post-hoc test). Mean somatic PPF was also significantly altered by 
time (p = 0.0003), compound (p = 0.0287) and time-compound interaction (p = 0.0121), as evidenced by the 
significant 1.8-fold and 2.4-fold increase in somatic PPF by 0.1 µM 13-HODE (p = 0.0296) and 0.1 µM PGE2 
(p < 0.0001) during the washout period (Fig. 6b). No significant effects of time or treatment were observed in 
dendritic PPF (Fig. 6c and 6d).

Gas-chromatography analysis confirmed the purity of LA and AA stock solutions to be 96.6% and 91.7%, 
respectively. AA contained a small amount of palmitic acid (C16:0; 1.3%), oleic acid (C18:1 n-9; 1.0%) and LA 
(0.3%). LC-MS/MS analysis showed that 13-HODE and PGE2 were 98–99% pure in the stock solution. LC-MS/
MS analysis of artificial cerebrospinal fluid (ACSF) aliquots obtained at the end of the 10-minute perfusion was 
also performed to test whether the fatty acids or oxylipins were degraded during their incubation in ACSF at 37 °C 
under constant bubbling of 95% oxygen. As shown in Fig. 7, AA and LA did not degrade into any of the measured 
oxylipins, although this does not preclude the possibility of degradation into other compounds not covered by our 
lipidomic assay such as AA-derived F2-isoprostanes. ACSF aliquots of 13-HODE were >99% pure. PGE2, how-
ever, contained 20% PGE2 and 78% PGD2, suggesting degradation of the PGE2 into PGD2 during the 10-minute 
perfusion period.

Discussion
Here, we provide new evidence that LA is involved in the response to ischemia-induced brain injury and the reg-
ulation of neurotransmission through its oxidized metabolites. Ischemia increased cortex, cerebellum, hippocam-
pus and brainstem LA-derived oxylipin concentrations, of which 13-HODE was tested and found to increase 
somatic PPF in hippocampus similar to AA-derived PGE2. The results suggest that during ischemic brain injury, 
the brain actively produces LA-metabolites that regulate neuronal signaling.

The present study confirmed previous reports of increased AA-derived prostaglandins (in particular PGE2 and 
PGD2), thromboxane B2 and lipoxygenase products (HETE, oxo-ETE and leukotrienes)41, 46, 47, 56, 70, and increased 
DHA-derived 17-HDoHE41, 49 in hippocampus or whole brain of rodents subjected to hypoxic or ischemic brain 
injury. By incorporating an expanded AA and DHA oxylipin panel in our LC-MS/MS platform, we also found 
an increase in epoxidized metabolites of AA and DHA following ischemia in cortex, hippocampus, cerebellum 

Figure 3.  Cortex (a), hippocampus (b), cerebellum (c) and brainstem (d) arachidonic acid (AA)-derived 
metabolite concentrations (in pmol/g) in microwave (MW) control and ischemic rats (CO2; n = 7–9 per 
group). Values are mean ± standard deviation (SD). Significant differences were assessed using an unpaired 
t-test (*p < 0.05; **p < 0.01; ***p < 0.001). EET, epoxyeicosatrienoic acid; DiHETrE, dihydroxyeicosatrienoic 
acid; TriHETrE, trihydroxyeicosatrienoic acid; PG, prostaglandin; TXB2, thromboxane B2; HETE, 
hydroxyeicosatetraenoic acid; oxo-ETE, oxo-eicosatetraenoic acid; DiHETE, dihydroxyeicosatetraenoic acid; 
LTB4, leukotriene B4; LXA4, lipoxins A4.
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and brainstem. Because AA- and DHA-derived epoxides are anti-inflammatory and neuroprotective71–74, their 
increase following ischemia likely represents an adaptive response to prevent ischemia-related brain injury.

The parallel increase in LA metabolites in cortex, hippocampus, cerebellum and brainstem suggests that 
LA oxidized products are also involved in the response to ischemic brain injury, consistent with one study that 
reported increased 9- and 13-HODE in cortex of dogs subjected to 10-minutes of ischemic cardiac arrest75. 
CYP-derived LA epoxides (9(10)- and 12(13)-EpOME) were increased in hippocampus and cerebellum, two 
brain regions sensitive to hypoxic and ischemic insults58–61, whereas LOX-derived 9- and 13-HODE and oxo-ODE 
were increased in cortex and the brainstem. This reflects the selective synthesis of LA-derived species that likely 
play diverse roles during ischemia.

Many oxylipins produced following brain injury (prostanoids or epoxides) are known to regulate neuro-
transmission coupled to physiological processes that promote vasodilation or reduce excitotoxicity48, 49, 76. In the 
present study, we tested whether LA-derived 13-HODE also regulated neurotransmission. 13-HODE at 0.1 µM 
increased somatic but not dendritic paired-pulse facilitation in hippocampus, suggesting its involvement in 
regulating post-synaptic transmission and consistent with the somato-dendritic localization of COX and LOX 
enzymes that rapidly synthesize it77. 13-HODE was found to block phospholipase C-induced activation of pro-
tein kinase C78, a key regulator of short-term plasticity79. The mechanism of action of 13-HODE may involve a 
G-protein coupled receptor, such as the G2A receptor which binds oxidized fatty acid metabolites80. Identifying 
the specific G-protein receptor(s) that selectively binds 13-HODE in future studies might elucidate the mecha-
nisms by which 13-HODE regulates neurotransmission in response to ischemic brain injury. Confirming that 
13-HODE also regulates neurotransmission in cortex and brainstem, two brain regions were 13-HODE increased 
during ischemia, will inform on whether 13-HODE acts globally or on specific brain regions.

13-HODE and PGE2 increased somatic PPF at 0.1 µM but not 1 µM. The 0.1 µM dose of 13-HODE and PGE2 is 
consistent with the amount found in brain (based on measured concentrations in Figs 2 and 3 corrected for brain 
density), thus being physiologically relevant. Hippocampal dendritic PPF was reported to decrease by 5 µM67, 68  
or remain unchanged by 0.5 µM81 or 10 µM69 PGE2, respectively. We are not aware of studies that specifically 
explored the effects of PGE2 on somatic transmission. However, by quantifying PGE2 (and 13-HODE) in hip-
pocampus, this study demonstrated the signaling effects of both compounds at physiologically relevant concen-
trations and showed that higher doses were ineffective. Unesterified LA and AA did not alter PPF when applied 
at a physiologically relevant concentration of 1 µM82, suggesting that their signaling effects in brain are likely 
mediated by their metabolites.

Figure 4.  Cortex (a), hippocampus (b), cerebellum (c) and brainstem (d) docosahexaenoic acid (DHA)-
derived metabolite concentrations (in pmol/g) in microwave (MW) control and ischemic rats (CO2; 
n = 7–9 per group). Values are mean ± standard deviation (SD). Significant differences were assessed using 
an unpaired t-test (*p < 0.05; **p < 0.01; ***p < 0.001). EpDPE, epoxydocosapentaenoic acid; DiHDPE, 
dihydroxydocosapentaenoic acid; HDoHE, hydroxydocosahexaenoic acid.
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Approximately 78% of the PGE2 was converted to PGD2 in the ACSF chamber, before reaching the slice. This 
means that the observed changes in hippocampal PPF in this study and possibly others67–69 could be mediated 
by PGD2. Little is known about the role of PGD2 on hippocampal neurotransmission. Chen et al. reported that 
0.33 µM PGD2 did not alter postsynaptic excitability and induction of long-term potentiation in the presence of a 
COX-2 inhibitor, suggesting it likely has limited effects on neuronal excitability83.

Regional increases in brain EPA-derived 11,12-EpETE and 17,18-diHETE, ALA-derived 13-HoTrE and 
DGLA-derived PGD1 and 15(S)-HETrE were also seen following ischemia. DGLA-, ALA- and EPA- derived 
metabolites have been reported to reduce inflammation in vitro and in vivo84–87, although their role in regulating 
neurotransmission or the response to brain injury is not known. The observed increase in their concentrations 
following ischemia highlights the need to explore their neurophysiological role and bioactivity in future studies.

In summary, this study showed that LA participates in the response to ischemic brain injury through metab-
olites that also regulate neurotransmission. Targeting this pathway using low LA diets8, 31 or novel drugs may 
be therapeutically useful for ischemia-related conditions such as stroke or hypoxic-ischemic encephalopathy of 
newborn infants.

Methods
Animals.  All procedures were performed in agreement with the policies of the Canadian Council on Animal 
Care and were approved by the Animal Ethics Committee of the University of Toronto and University Health 
Network. Thirty to thirty-four day old male rats were purchased from Charles River (Saint-Constant, QC, 
Canada). Upon their arrival, rats were housed in pairs and fed for 30 days with a Harlan Teklad 2018 diet con-
taining 18.6% protein, 6.2% fat, 58.9% carbohydrate, 3.5% crude fiber and 5.3% ash and 7.5% moisture. The diet 
contained (% of total fatty acids), 18.5% palmitic acid (16:0), 2.8% stearic acid (18:0), 18.5% oleic acid (18:1 n-9), 
54.8% LA and 5.6% ALA88.

Rat tissue collection.  Rats were subjected to head-focused microwave (13.5 kW for 1.6 s; MW-fixed con-
trol group; n = 9) or CO2 asphyxiation for 2 min (CO2-group; n = 9)89. Brains were rapidly removed following 
head decapitation and separated into cortex, cerebellum, hippocampus and brainstem on ice. The use of CO2 
causes hypercapnia, which is followed by decapitation-induced ischemia. The effects of hypercapnia on measured 

Figure 5.  Cortex (a), hippocampus (b), cerebellum (c) and brainstem (d) di-homo-gamma-linolenic acid 
(DGLA)-, α-linolenic acid (ALA)- and eicosapentaenoic acid (EPA)-derived metabolite concentrations (in 
pmol/g) in microwave (MW) control and ischemic rats (CO2; n = 7–9 per group). Values are mean ± standard 
deviation (SD). Significant differences were assessed using an unpaired t-test (*p < 0.05; **p < 0.01; 
***p < 0.001). PG, prostaglandin; HETrE, hydroxyeicosatrienoic acid; EpODE, epoxyoctadecadienoic 
acid; DiHODE, dihydroxyoctadecadienoic acid; HEPE, hydroxyeicosapentaenoic acid; DiHETE, 
dihydroxyeicosatetraenoic acid; EpETE, epoxyeicosatetraenoic acid; HOTrE, hydroxyoctadecatrienoic acid.
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oxylipins are minimal compared to that of ischemia, which is why the effects reported in this study will be linked 
to ischemia rather than the combined effect of hypercapnia and ischemia89. Samples were stored at −80 °C for 
approximately one month until they were shipped on dry ice from Toronto, ON, Canada to Davis, CA, USA, 
where they were stored in a −80 °C freezer until use.

Oxylipin extraction by solid phase extraction (SPE).  Oxylipins were extracted from the different cer-
ebral regions by solid phase extraction (SPE), as previously described31, 90, 91. Two to four hundred µL of ice-cold 
extraction solvent (0.1% acetic acid and 0.1% butylated hydroxytoluene (BHT) in methanol) was added to frozen 
cortex (average weight >200 mg; 400 µL of extraction solvent), hippocampus, cerebellum and brainstem (weight 
<200 mg; 200 µL of extraction solvent), followed by the addition of 10 µL of antioxidant mix and 10–20 µL sur-
rogate standard solution. The antioxidant solution containing 0.2 mg/mL of BHT, triphenylphosphine (TPP) 
and ethylenediaminetetraacetic acid (EDTA) in methanol/water (50/50, v/v) was filtered through a Millipore 
filter (Millipore, Bedford, MA, USA) prior to use. The surrogate standard solution contained 500 nM of d11–
11(12)-EpETrE, d11-14,15-DiHETrE, d4-6-keto-PGF1α, d4-9-HODE, d4-LTB4, d4-PGE2, d4-TXB2, d6-20-HETE 
and d8-5-HETE in methanol, and was added at an amount of 5–10 pmol per sample.

Frozen pre-weighed samples were homogenized for 5 to 10 min at 30 vibrations per second with a bead 
homogenizer. After storage overnight in a −80 °C freezer, samples were centrifuged at 13,200 rpm for 10 min at 
4 °C. Two hundred µL of supernatant were added to a 60 mg Waters Oasis HLB 3cc cartridges (Waters, Milford, 
MA, USA), pre-rinsed with one volume of ethyl acetate and two volumes of methanol, and pre-conditioned with 
two volumes of SPE buffer containing 5% methanol and 0.1% acetic acid in ultrapure water. The columns were 
rinsed twice with SPE buffer and dried under vacuum (≈20 psi) for 20 min. Oxylipins were eluted with 0.5 mL 
methanol and 1.5 mL ethyl acetate into a 2 mL centrifuge tube containing 6 µL of glycerol in methanol (30%).

Figure 6.  Somatic (a and b) and dendritic (c and d) Paired-Pulse Facilitation (PPF) measured on hippocampal 
slices perfused with vehicle (artificial cerebrospinal fluid containing 0.1% ethanol), 1 µM linoleic acid (LA), 
1 µM arachidonic acid (AA), 0.1 µM or 1 µM 13-hydroxyoctadecadienoic acid (13-HODE), or 0.1 µM or 1 µM 
prostaglandin E2 (PGE2). Data (mean ± SD) are expressed relative to baseline (n = 4–6 per condition). Graphs 
(a and c) showe the minute-by-minute data; (b and d) represent average PPF during compound incubation 
and washout relative to baseline (dotted line). Data were analyzed by a two-way repeated measures ANOVA 
followed by Dunnett’s multiple comparison test. *Significantly different compared to vehicle at a specific time 
point.
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Samples were dried in a Speed-Vac®, reconstituted in 50 µL methanol containing 200 nM 1-cyclohexyl ureido, 
3-dodecanoic acid (CUDA) as a recovery standard and filtered by centrifugation using Ultrafree-MC-VV polyvi-
nylidene fluoride filters (0.1 µm; Millipore, Bedford, MA, USA).

Oxylipin analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS).  The 
PUFA-derived oxylipin analytical platform included 85 oxylipins (Supplementary Table 1) derived from omega-6 
LA, LA’s elongation-desaturation products DGLA and AA, and omega-3 ALA, EPA and DHA. Oxylipins were 

Figure 7.  Dynamic multiple reaction monitoring scan of oxidized fatty acids in artificial cerebrospinal 
fluid (ACSF) containing vehicle, 1 µM linoleic acid (LA), 1 µM arachidonic acid (AA), 1 µM 
13-hydroxyoctadecadienoic acid (13-HODE), or 1 µM prostaglandin E2 (PGE2). The vehicle or compounds were 
incubated in ACSF at 37 °C for 10 min under constant bubbling of 95% O2. No contamination was observed 
in vehicle and ACSF containing LA and AA. ACSF containing 13-HODE was pure at >98%. ACSF containing 
PGE2 had 20% PGE2, 78% PGD2 and 2% unidentified impurities. As shown in the figure, PGE2 and PGD2 peaks 
eluted at the same time.
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analyzed by ultra-high pressure liquid chromatography tandem mass spectrometry UPLC-MS/MS as previously 
described90, 92 on an Agilent 1200SL (Agilent Corporation, Palo Alto, CA, USA) UPLC system connected to a 4000 
QTRAP tandem mass spectrometer (Applied Biosystems Instrument Corporation, Foster, CA, USA) equipped 
with an electrospray ion source (Turbo V). Oxylipins were separated on an Agilent 2.1 × 150 mm Eclipse Plus C18 
column with a 1.8 µm particle size. Standards obtained from Larodan (Solna, Sweden), Cayman Chemicals (Ann 
Arbor, MI, USA) or synthesized by Dr. Hammock’s laboratory were used for calibration curves for each oxylipin.

The autosampler temperature was kept at 4 °C and the column at 50 °C. The mobile phase A contained 0.1% 
acetic acid in ultrapure water and the mobile phase B contained acetonitrile/methanol /acetic acid (84/16/0.1). 
Gradient elution was performed at a flow rate of 0.25 mL/min for a total run time of 21 min as follows: solvent B 
was held at 35% for 0.25 min, increased to 45% from 0.25 to 1 min, to 55% B from 1 to 3 min, to 65% B from 3 to 
8.5 min, to 72% from 8.5 to 12.5 min, to 82% B from 12.5 to 15 min, to 95% B from 15 to 16.5 min, held at 95% for 
1.5 min, decreased to 35% from 18 to 18.1 min and held at 35% for 2.9 min. The instrument was operated in neg-
ative electrospray ionization mode and used optimized multiple reaction monitoring (MRM) conditions of the 
parent and fragmentation product ion to target each oxylipin90. Peaks were quantified according to the standard 
curves and corrected for the surrogate standard recovery using Analyst software 1.4.2.

The limit of quantification (LOQ) was set to three times the lowest standard concentration used in the stand-
ard curve. Oxylipins with >30% of values below the LOQ were excluded from the statistical analysis.

Preparation of the artificial cerebrospinal fluid (ACSF) solutions.  A low Na+/Ca2
+ ACSF containing 

50 mM NaCl, 160 mM sucrose, 3.5 mM KCl, 2 mM NaH2PO4, 0.5 mM CaCl2, 2 mM MgCl2, 7 mM glucose and 
5 mM HEPES (pH adjusted to 7.4) was prepared and used during intracardial perfusion and the slice prepara-
tion to limit excitotoxicity. A standard ACSF containing 3.5 mM KCl, 1.25 mM NaH2PO4, 125 mM NaCl, 25 mM 
NaHCO3, 10 mM glucose, 2 mM CaCl2 and 1.3 mM MgSO4 (pH 7.4 when aerated with 95% O2−5% CO2) was 
used during the hippocampal slice perfusion and electrophysiology recordings.

Slice preparation.  Experiments were performed on 400-µm-thick hippocampal slices from 62- to 74-d-old 
male Long Evans rats (Charles River Laboratory, Quebec, Canada). Rats were euthanized with a lethal dose of 
sodium pentobarbital (70 mg/kg) and intracardially perfused with cold low Na+/Ca2

+ ASCF. After decapitation, 
the brain was rapidly removed and maintained in ice-cold oxygenated (95% O2−5% CO2) low Na+/Ca2

+ ACSF 
for a few minutes. The brain was hemi-sectioned and the hippocampus isolated and glued onto an aluminum 
block. Four hundred-µm-thick transverse hippocampal slices were obtained using a vibratome and then placed 
in the standard ACSF at room temperature for at least 1 hour before recordings.

Extracellular recordings.  Extracellular recordings were used to test the isolated effect of each compound on 
paired-pulse facilitation. Extracellular recordings were obtained from 4 to 6 slices per fatty acid or oxylipin treatment. 
Slices were transferred to a submerged recording chamber and continuously perfused with warm (37 °C) oxygen-
ated (95% O2−5% CO2) standard ACSF at a flow rate of 10 mL/min. All recordings were done at a perfusate tem-
perature of 37 °C. The Schaeffer collateral pathway was stimulated electrically with a bipolar stimulating electrode 
(polyamide-insulated stainless steel wires; outer diameter 100 μm; Plastics One, Ranoake, VA) placed in the stra-
tum radiatum at the CA1-CA2 border. Recording electrodes were made from thin wall glass tubes (OD 1.5 mm; ID 
1.12 mm; World precision Instruments, Sarasota, FL) filled with ACSF and placed in the stratum pyramidale (soma) 
and stratum radiatum (dendrite) of the CA1 region. Constant-current pulses (duration of 0.1 ms each, intensities of 
10–150 μA) were generated by a Grass stimulator (model S88, Grass Medical Instruments, Warwick, RI, USA) and 
delivered through an isolation unit. Extracellular signals were recorded using a dual channel amplifier (700B) and 
digitized using an analog-digital converter (Digidata 1400, Molecular Devices, Sunnyvale, CA, USA). Data acquisition, 
storage and analysis were done using the pCLAMP software (version 10.5, Molecular Devices, Sunnyvale, CA, USA).

To examine paired-pulse facilitation (PPF), twin stimuli (intensity range: 10–100 μA) were delivered with an 
interpulse interval of 35 ms. Representative recordings are shown in Supplementary Figure 1. Paired-stimuli were 
delivered every 10 s. Baseline recordings were measured for at least 10 min, followed by compound delivery for 
8–15 min and finally, a washout period of at least 19 min (n = 4–6 per condition). The somatic amplitudes and 
dendritic field postsynaptic potential slopes were measured. PPF was calculated every minute by taking the ratio 
of the second response to the first response.

Compounds.  13-HODE and PGE2 were purchased from Cayman Chemicals (Ann Arbor, Michigan, USA). 
LA and AA were purchase from Nuchek Prep, Inc. (Elysian, MN, USA). The different drugs were dissolved in 
ethanol (stock concentration at 1 mM or 0.1 mM) and diluted 1000 times in ACSF to 1 µM LA, 1 µM AA, 0.1 µM 
or 1 µM 13-HODE, and 0.1 µM or 1 µM PGE2. Vehicle was made by diluting 100 µL of pure ethanol per 100 mL 
ACSF. The final ethanol concentration for vehicle or compounds was kept at or below 0.1%. The fatty acid precur-
sors, LA and AA, were tested at 1 µM to mimic physiological conditions, because brain unesterified LA and AA 
concentrations in rodents range between 1–3 nmol/g28, which corresponds to 0.96–2.88 µM, based on a rat brain 
density of 1.04–1.05 g/mL93.

In an exploratory manner, we also tested the effects of AA-derived 14(15)-EET synthetized to 99% purity, at 
1 µM and of LA-derived 9-oxo-ODE at 0.1 µM (Cayman Chemicals). We had intended to test lower concentra-
tions of 14(15)-EET, but by testing the dose of 1 µM, we ran out of the compound and were not able to perform 
tests at 0.1 µM. Pilot data related to the effects of 14(15)-EET on PPF are provided in Supplementary Figure 2. 
As shown, 14,15-EET significantly reduced dendritic PPF during the washout period. The 9-oxo-ODE data 
were not included because LC-MS/MS analysis revealed that the stock solution was impure and contained 80% 
9-oxo-ODE, 11% 5,6-DiHETrE and 9% EPA. Regardless, no significant changes in somatic or dendritic PPF were 
observed with 9-oxo-ODE.
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The purity of the stock LA and AA was determined by gas-chromatography (GC), whereas that of 13-HODE, 
PGE2 and 14,15-EET was measured by LC-MS/MS. An 1 ml aliquot of ACSF containing the metabolites was 
obtained at the end of the 10-minute perfusion to determine whether the compounds were modified by being 
maintained at 37 °C in oxygenated ACSF (95% O2−5% CO2 for 10 minutes). The purity of the compounds was 
measured on an Agilent 1290 Infinity UHPLC system coupled to a 6460 triple-quadrupole tandem mass spec-
trometer with electrospray ionization (Agilent Corporation, Palo Alto, CA, USA). The system used optimized 
multiple reaction monitoring (MRM) conditions and was operated in negative electrospray ionization mode. 
Oxylipins were separated on an Agilent Eclipse Plus C-18 reverse-phase column (2.1 × 150 mm, 1.8 µm parti-
cle size). The auto-sampler temperature was kept at 4 °C and the column at 45 °C. Mobile phase A contained 
ultrapure water with 0.1% acetic acid. Mobile phase B contained acetonitrile/methanol (80/15 v/v) with 0.1% ace-
tic acid. The flow rate started at 0.3 mL/min, decreased to 0.2 mL/min between 6 and 6.1 min, held at 0.2 mL/min  
for 24.4 min, increased to 0.35 mL/min between 30.5 and 30.6 min, held at 0.35 mL/min for 2.1 min, and decreased 
to 0.3 mL/min between 32.7 and 34 min. The following elution gradient was applied: mobile phase B was held at 
40% for 6.1 min, increased to 80% from 6.1 to 20 min, increased to 82% from 20 to 30 min, increased to 99% 
from 30.5 to 30.6 min, held at 99% for 2 min, decreased to 40% between 32.6 and 32.7 min and held at 40% 
for 1.3 min. Peaks were analyzed using Agilent Mass Hunter Workstation Software Quantitative Analysis for 
QQQ (Version B.07.00). The oxylipin panel assayed included 72 available compounds from Cayman Chemicals 
and Larodan. The panel included all compounds listed in Supplementary Table 1, less the following: THF diols, 
EKODE, 15(16)-EpODE, 12(13)-EpODE, 9(10)-EpODE, 15,16-DiHODE, 12,13-DiHODE, 9,10-DiHODE, 
19,20-DiHDPE, 16,17-DiHDPE, 13,14-DiHDPE, 10,11-DiHDPE, 7,8-DiHDPE, 4,5-DiHDPE, 11,12-DiHETE, 
8,9-DiHETE, 11,12,15-TriHETrE and LTB5. It also included leukotrienes C4, D4 and E4.

Statistical analysis.  Data were expressed as mean ± standard deviation (SD). Oxylipin extraction and anal-
ysis, as well as the analysis of extracellular recordings were performed by blinded individuals.

Differences between the CO2-group and MW-fixed controls were assessed using an unpaired t-test (GraphPad 
Prism 6.0, GraphPad Software Inc., San Diego, CA, USA). The final sample size per group was between 7 and 9, 
because the surrogate standard peak could not be accurately integrated for some of the samples. Heat maps were 
generated using MetaboAnalyst 3.094, 95.

Somatic and dendritic PPF were expressed relative to the average baseline per slice. Absolute PPF data are 
presented in Supplementary Table 2. The effect of time and test compound on the normalized somatic and den-
dridic PPF were evaluated with a two-way repeated measures ANOVA (GraphPad Prism 6.0, GraphPad Software 
Inc., San Diego, CA, USA). When a significant interaction was found, Dunnett’s multiple comparison test was 
performed to evaluate for each time point the effect of the test compound compared to vehicle. The analysis 
was performed on the minute-by-minute data, as well as on the average data per period (baseline – compound 
– washout).

Statistical significance was set at p < 0.05.
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