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Abstract: Based on the results of dynamic probing (DP), time-domain reflectometry (TDR/MUX/MPTS),
resistivity cone penetration tests (RCPT), Marchetti dilatometer tests (DMT), and seismic dilatometer
tests (SDMT), it is possible to develop a relationship to calculate the relative density (Dr) and degree of
saturation (Sr) of selected sandy soils. Compiled databases from documented research points for selected
sandy soils were used to construct and develop direct correlations between the measured pressures
p0 and p1 from DMT and shear wave velocity (Vs) from SDMT, along with pore water pressures
(u0) and atmospheric pressure (Pa). The results allowed us to make a preliminary prediction when
evaluating the parameters. Further, they allowed limiting the use of an additional device, especially
in the case of multilayer heavy preconsolidated subsoils. Moreover, soil physical and mechanical
characteristics (temperature, humidity, pressure, swelling, salinity) measured from TDR/MUX/MPTS
(laboratory/field-operated meter for simultaneous measurements of soil moisture, matric potential,
temperature, and salinity—bulk electrical conductivity) were assessed. The main achievement of this
paper is the original proposal of using a new nomogram chart to determine the relative density and
degree of saturation based on DMT and SDMT tests.

Keywords: geotechnical engineering; new nomogram chart

1. Introduction

In accordance with the applicable construction law (Eurocode 7), each project applying
for a building permit should include, depending on the needs, the results of geological and
engineering research. This documentation consists of the developed results of field and
laboratory tests. The advantage of field tests is the fact that they take place in the natural
environment, which is often difficult to recreate in laboratory conditions. Probing is an
example of such research work carried out to determine the ground condition. Among
numerous available methods, dynamic probing tests (DP), cone penetration tests (CPT),
and dilatometer Marchetti tests (DMT) are commonly applied in leading research centers.
In order to reduce the necessity to use various types of equipment, methods of field
research are being sought for to enable the interpretation of the obtained results in a wide
range [1–5]. One of the field tests that meets this requirement is the Marchetti dilatometer
test [6], whose use in the world is significantly increasing.

The greatest advantage of dilatometer testing is its quick and relatively simple mea-
surement, on the basis of which it is possible to determine the soil parameters. Interpre-
tation of geotechnical parameters is based on the use of empirical relationships related
to pressure values measured directly in the field. This article is based on this type of in
situ research. Based on the results of DP, DMT, SDMT, and RCPT tests carried out in the
Antoniny, Koszyce, and Nielisz sites with organic subsoils under embankment, and the
Stegny and WULS-SGGW campus sites with a sandy soil layer (Figure 1), new relationships
were determined to assess the parameters describing the state of selected mineral soils.
Since cohesive and organic soils were not taken into account to develop the formulas for
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determining the parameters of Dr and Sr, these parameters were not included in their
physical properties in this article.
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Figure 1. Location of the test sites in Poland.

This paper presents the test results of mineral and organic subsoils obtained from
the following sites (WGS-84): Antoniny (WGS-84: 53.06742, 17.07214), Koszyce (WGS-
84: 53.17045, 16.74924), Nielisz (WGS-84: 50.80396, 23.03075), Stegny (WGS-84: 52.18215,
21.04864), and the WULS-SGGW campus (WGS-84: 52.16245, 21.03838).

The Antoniny test embankment was designed and tested in the frame of cooperation
between the Department of Geotechnical Engineering SGGW and the Swedish Geotechnical
Institute (SGI). The physical properties of the soils at the Koszyce, Nielisz, Stegny, and
WULS-SGGW campus test sites were determined as part of a research program conducted
at these sites in previous years.

The Antoniny embankment and Koszyce test dam are located in the Ruda river valley.
A layer of soft organic soils was discovered in the sublayer of both objects. The organic
soils are Quaternary deposits of an oxbow lake. The thickness of organic soils in this region
generally exceeds 10 m and locally even 20 m. Dense sand occurs under the organic soils.
The Nielisz site is located in eastern Poland in the Wieprz river valley in Lublin Province.
The layer of soft subsoil has a thickness of 3 to 5 m; the soils are slightly preconsolidated.
Two layers of organic subsoil were distinguished at the Nielisz site. The Stegny and SGGW
campus sites are located in the southern part of Warsaw, where a few sedimentation cycles,
from sands to clays, were observed in vertical succession. The entire complex of Pliocene
clays comprises clays, silty clays (60–70%), silts (10–25%), and sands (10–20%).

The index properties of all investigated mineral and organic soils are presented in
Table 1.
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Table 1. Index properties of organic soils at the Antoniny, Koszyce, Nielisz, Stegny, and SGGW campus test sites.

Site Type of Soil

Organic
Con-
tent

Iom (%)

CaCO3
Content

(%)

Water
Content

wn
(%)

Liquid
Limit

wL
(%)

Density
Unit

Weight of
Soil

ρ (t/m3)

Specific
Weight of

Soil
ρs (t/m3)

Antoniny Amorphous Peat 65–75 10–15 310–340 305–450 1.05–1.10 1.45–1.50
Calcareous Gyttja 5–20 65–90 105–140 80–110 1.25–1.40 2.2–2.30

Koszyce
Amorphous Peat 70–85 5–15 400–550 450 1.05–1.1 1.45–1.50

Calcareous Gyttja (Gy) 10–20 65–80 120–160 80–110 1.20–1.35 2.1–2.25
Calcareous Gyttja (Gy) 15–20 65–75 180–220 100–110 1.25–1.30 2.2

Nielisz
Organic Mud (Mor) 20–30 - 120–150 130–150 1.25–1.30 2.25–2.3
Organic Mud (Mor) 10–20 - 105–120 110–130 1.30–1.45 2.30–2.40

Stegny Pliocene Clays - - 19.20–28.50 67.6–88.0 2.1–2.2 2.68–2.73
SGGW Campus Boulder Clay - - 5.20–20.10 21.9–26.6 2.0–2.2 2.68–2.73

2. Literature Review
2.1. Methodology and Interpretation of Dilatometer Test Results

Over 46 years ago, Prof. Silvano Marchetti designed and built the first dilatometer
at L’Aquila University in Italy; the design and principles of soil research were presented
by him in 1975 during the American Society of Civil Engineers (ASCE) conference in
Raleigh [7]. DMT tests consist of measuring the gas pressure acting on the diaphragm of
a dilatometer blade at selected subsoil depths (Figure 1). In soil tests, two pressures are
usually measured (A and B); they force the center of the membrane to move 0.05 mm to the
ground (reading A) and deflect the center of the membrane towards the ground by approx-
imately 1.05 mm (reading B). To extend the dilatometer testing, pressure measurements
are sometimes taken as the membrane returns to ground contact (C reading). Readings
A, B, and C are corrected for the inertia of the diaphragm and marked as p0, p1, and p2,
respectively. Pressures p0 and p1 and the value of the vertical effective stress σ′v0 are used to
determine the following dilatometer indexes: material index ID, horizontal stress index KD,
and dilatometer modulus ED [8–10].

p0 = 1.05(A− ZM + ∆A)− 0.05(B− ZM − ∆B), (MPa), (1)

- The 1.10 mm corrected pressure reading in DMT p1:

p1 = B− ZM − ∆B, (MPa), (2)

- Corrected third reading in DMT p2:

p2 = C− ZM − ∆A (MPa), (3)

- Material index ID:

ID(−) = f (A, B, u0) =
P1 − P0

P0 − u0
, (4)

- Horizontal stress index KD:

KD(−) = f
(

A, u0, σ′v0, B
)
=

p0 − u0

σ′v0
, (5)

- Dilatometer modulus ED:

ED(MPa) = f (A, B) = 34.7·(P1 − P0), (6)

- Pore pressure index UD:
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UD(−) = f (A, C, u0, B) =
P2 − u0

P0 − u0
, (7)

where p0—pressure reading A corrected for Zm and ∆A membrane stiffness at 0.05 mm
expansion, and 0.05 mm expansion itself, to estimate the total soil stress acting normal to
the membrane immediately before its expansion into the soil (0.00 mm expansion);

p1—pressure reading B corrected for Zm and ∆B membrane stiffness at 1.10 mm expansion
to give the total soil stress acting normal to the membrane at 1.10 mm membrane expansion;

p2—pressure reading C corrected for Zm and ∆A membrane stiffness at 0.05 mm
expansion and used to estimate pore water pressure;

σ′v0—pre-insertion in situ overburden stress;
u0—pore water pressure acting in the center of the membrane before insertion of the

DMT blade (often assumed as hydrostatic below the groundwater table);
Zm—gage pressure deviation from zero when vented to atmospheric pressure (offset

used to correct pressure readings to the true gage pressure).

2.2. Existing In Situ Methods for Determining Relative Density and Degree of Saturation in
Non-Cohesive Soils

By definition, relative density is a parameter that characterizes non-cohesive soils. It
is the ratio of soil compaction in the natural state to the highest possible compaction of a
specific soil. There are two types of dependence for determining relative density (Dr) on
the basis of DMT. The first is the relationship presented by Reyna and Chameau (1991) [11],
and Mayne (2001) [12], and it depends on the horizontal pressure index (KD) from DMT
tests. The second relationship was described by Marchetti (1992) [13]; it is a function of
the dilatometer blade resistance (qD) and effective vertical stress (σ′v0). In the literature,
there are many formulas to determine relative density from in situ studies [11–13]. These
dependencies are presented below:

Dr = −1.082 + 0.204·
(

qD
σ′v0

)0.4
, (8)

where Dr is relative density (as decimal); σ′v0 is effective geostatic stress (kPa); and qD is
wedge resistance.

Dr =

[
1

40·(KD − 1)
+

1
120

]−1.0
, (9)

For normally consolidated (NC) uncemented sands, the recommended equation for
the relative density (Dr) of non-cohesive soils is shown in Formula (8) [11], where parameter
Dr is related to KD from DMT research. This correlation is influenced by the additional
KD−Dr data points (also in Formula (9)) obtained by Tanaka and Tanaka (1998) [14] from
the Ohgishima and Kemigawa sites, where parameter Dr was established on the basis
of high-quality samples collected using the freezing method. In fractured sands in the
range of preconsolidated stress (OC) (Formula (10)), parameter Dr will be overestimated
because part of the KD value is due to the influence of preconsolidation and cementation.
At present, it is difficult to clearly assess the value of parameter Dr.

Dr = 100·
(

KD − 1
7

)0.5
, (10)

Formulas (8)–(10) do not sufficiently describe a satisfying (small cyclic shear stress
factor) state of non-cohesive soils in a wide range of interpretations of the saturation state
with the shear wave velocity propagation for a given soil medium, and their influence on
the compressibility of the air–water mixture filling the pores and on the compressibility
of the soil skeleton. Therefore, later in this article, a decision is made to develop a new
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relationship for determining the degree of relative density of non-cohesive soils based on
vs. obtained from SDMT tests.

3. Materials and Methods
3.1. Material

This paper contains the test results of sands located in the subsoil and in embankments
on the test sites that were presented in Section 1, where a laboratory and field testing
program was carried out under and outside of the main dam embankment [15–18]. This
research was carried out according to the Casagrande method modified by Prószyński. Soil
grains in the range from 0.001 to 0.1 mm were collected using the areometric method, and
the remaining fractions in the range above 0.1 mm were collected by the sieve method. The
results of fraction testing from 0.001 to 0.1 mm were read together with smaller percent
passing, and above 0.1 mm with larger percent retaining. After dividing the range of
a particular fraction into clay, silt, sand, gravel, and cobble (the sum of these fractions
amounts to 100%), the soil type was determined according to PN-86 B-02480. For the
embankment layer at the Antoniny site, the clay fraction content was 0%, the clay fraction
ranged from 2 to 3%, the sand fraction ranged from 88 to 91%, and the gravel fraction was
about 7%. At the Koszyce site, the clay fraction content was 0%, the clay fraction ranged
from 2 to 3%, the sand fraction ranged from 89 to 92%, and the gravel fraction was about
5%. At the Nielisz site, the clay fraction content was 0%, the clay fraction ranged from 3 to
5%, the sand fraction ranged from 87 to 92%, and the gravel fraction was about 2%. At the
SGGW campus site, the clay fraction content was 1%, the clay fraction was 4%, the sand
fraction ranged from 88 to 95%, and the gravel fraction was 0%. At the Stegny site, the
clay fraction content was 0%, the clay fraction was 3%, the sand fraction was 92%, and the
gravel fraction was about 5%. The grain size distribution curve obtained from laboratory
tests for mineral soils from the described sites is presented in Figure 2. The index properties
of mineral soils in the Antoniny, Koszyce, Nielisz, Stegny, and WULS-SGGW campus test
sites are presented in Table 2. Figure 3 presents the diagram chart proposed by Marchetti
and Crapps for the analyzed sites [19].
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Table 2. Index properties of sandy soils in the Antoniny, Koszyce, and Nielisz embankment test sites, and Stegny and
WULS-SGGW campus mineral layer test sites.

Sites Type of Soil
CaCO3 Water Content Density

Content wn Unit Weight of Soil Specific Weight of Soil
(%) (%) ρ (t/m3) ρs (t/m3)

Antoniny

sand

<1 6.5 1.7 2.65–2.67
Koszyce <1 6.2 1.85 2.65–2.67
Nielisz 1–3 6.1 1.85 2.65–2.67
Stegny <1 5.4 1.7 2.68–2.66

WULS-SGGW Campus 1–3 6.7 1.85 2.68–2.66Materials 2021, 14, x FOR PEER REVIEW 7 of 18 
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3.2. Laboratory Test with TDR/MUX/mpts Meter

The laboratory TDR/MUX/mpts meter [20] was adapted to measure the following
parameters: volumetric moisture expressed as percentage value using the LP/MS probe;
soil salinity with the LP/MS probe, expressed in S/m; parent pressure inside the soil
sample with the LP/p probe, expressed in mbar; and temperature inside the soil sample
with the LP/t probe, expressed in ◦C. All tests were performed in the Laboratory of the
Department of Geotechnics of the WULS–SGGW (Figure 4).

Each of the sensors was placed in a previously prepared soil sample. The tests were
carried out on 2 soil samples: silty sand and silty clay. Before testing, the soil samples
were compacted and placed in a steel cylinder with holes for sensor placement. Then,
the Lp probe was prepared, which required specialized calibration. Preparation of the
meter included the following steps: 1. Inserting the LP/t sensor (temperature sensor) into
distilled water, while the LP/p sensor (pressure sensor) should be deaerated and put into
a vessel with distilled water. 2. Turning on the readout logging program and defining
the names of the saved files. In the program start window, the appropriate channel in
which the program will work should be selected. 3. Calibrating the sensors, inserting the
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moisture probe into the calibrator, and then into distilled water, so that the water reaches
the sensor cap, waiting for 2 min, and then following the instructions on the computer
monitor. 4. Starting the readings. The probes should be placed in the ground in order not
to damage the ground structure.

The first to be tested was a silty sand sample, which was pressed into a steel cylinder
that was previously weighed on a laboratory scale. Then, the sensors of the LP probe were
pressed, and everything was placed on the scale. The following results were obtained: cylin-
der weight = 344.50 g; weight of cylinder + silty sand = 801.40 g; total weight = 858.85 g;
weight of analyzed silty sand = 456.90 g. The prepared soil sample with the inserted sensors
is shown in Figure 5.
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Figure 5. A sample of silty sand with inserted sensors (Laboratory of the Department of Geotechnics, WULS–SGGW).

The volume of the test sample was also determined (237.6 cm3), and the sample
humidity was calculated. The reading was set to 60 s. After 20 days of the analysis, the
“drying” of the sample was completed, and the sample was placed on the laboratory scale:
weight of total sample after “drying” = 771.85 g; weight of silty sand after drying = 369.90 g.
After weighing, 100 g of water was added to the rehydrate, and the sample returned to
its original condition. After 8 days of contact of the sample with water, the sandy clay
analysis was completed and the soil was reweighed: final weight of soil with sensors
and cylinder = 819.30 g; weight of hydrated clay = 474.80 g; weight of the remaining
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water = 16.80 g. After drying the sample, cracks in the sample were noticed, indicating
shrinkage of the tested soils. Soil shrinkage is shown in Figure 6.
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Figure 6. Soil sample with cracks and probe sensors: 1. temperature, 2. suction pressure, and
3. moisture and salinity (Laboratory of the Department of Geotechnics, WULS–SGGW).

Finally, the following dependencies were plotted: soil sample temperature vs. exper-
iment duration; sample moisture vs. time; salinity vs. time; soil sample swelling due to
humidity. After the test, the test soil was removed, the probe tips and the metal cylinder
were cleaned, and then a clay sample was placed in the cylinder. The clay tests were carried
out in the same way as the silty sand tests.

3.3. Estimation Theory

For the determination of parameters Dr and Sr based on DMT tests, parameters p0,
p1, u0, and σ′v0 were taken into account in the statistical analysis. These quantities can be
treated as random variables. A total of 48 DMT tests from the sand layer were used, with a
count of 10 to 35 measurements (depth profiles), with a total of 255 measurements. The
distribution of the tested random variables was checked. For example, at the Stegny test
site, a set of investigations was performed, which consisted of a borehole (BH), 10 DMT
soundings (including 3 SDMT), 5 RCPT soundings, and 5 dynamic DP soundings. Surveys
were located in the immediate vicinity of the borehole (within two meters): SDMT—3 units,
RCPT—5 units, DP—5 units, and the results of these surveys were used to create a database
(see attached Figure 7).

Measurements in the SDMT survey were performed every 20 cm, which gave a total
of 17 measurements in the profile from 1 to 4.2 m. Each of these measurements was
paired with a result from the DP dynamic tests or RCPT—this returned a total number of
3 (SDMT) × 17 × 5 (DP), i.e., 255, measurements.

The remaining 7 DMTs from the Stegny test site and studies from the Antoniny,
Koszyce, Nielisz, and SGGW campus sites were used to verify the proposed relationships
(Dr and Sr). In the case of most studies, i.e., random samples in a statistical sense, there
was no reason to reject the hypothesis of normality (Shapiro–Wilk tests suitable for small
samples were applied; they are available, e.g., in the Statgraphics statistical software
package). No other distribution was found to which the tested quantities complied [21–23].



Materials 2021, 14, 6963 9 of 17

Materials 2021, 14, x FOR PEER REVIEW 10 of 18 
 

 

culations carried out in this work, the solver module was used. It is an addition that ex-
tends the functionality of MS Office after it is imported. This function is most often used 
for linear programming including the modeling and optimization of any type of decision 
problem. This linear programming should be based on the creation of a reality model, in 
which the objective function is an important element, the value of which is subordinated 
to a specific profitability criterion (max/min). The solution of the function is assisted by 
the use of variable coefficients (for relative density determined in this paper, α0, α1, and α2 
were assumed), due to which maximum or minimum values are achieved. 

 
Figure 7. Location of DH, SDMT, and RCPT test point positions—the Stegny site. 

Observation of the obtained results shows that there is a strong relationship between 
parameter Dr and dilatometer pressures, i.e., p0 and p1, and shear wave velocity, as well as 
u0 and σ′v0: Dr = f (p0, p1, u0, σ′v0). For non-cohesive soils in the studied sites, a formula was 
proposed on their basis, and the lowest value of the mean square relative deviation was 
calculated for them. The formula that was used for the calculations is our original pro-
posal. The summarized test results, i.e., p0 and p1 vs. values from DMT and u0 tests, al-
lowed determining the formula for relative density (Dr) in the following form: = (α , α , α  , , , , , ), (11)= ∙  −′ ∙ 100 , (12)

where α0, α1, and α2 are the coefficients. The formula was created dependent on variables , , , , which belong to variable cells in the solver function. An additional column 
was added, the formula of which determines the percentage deviation between the result 
of the calculated relative density (Dr) for a given depth and the value of the result obtained 
from DP tests. The given depth is the corresponding level of the measuring point at which 
the readings from both SDMT (DMT) and DP are recorded. These are the readings every 
20 cm. The purpose of the calculations was to obtain the lowest possible mean square 
relative deviation MSRD. The values for the statistical compilation were calculated from 
the following formulas: 

Maximal relative deviation: max, ,…, ∙ 100%, (13)

Mean square relative deviation: = ∑ ( ) ∙ 100%, (14)

Figure 7. Location of DH, SDMT, and RCPT test point positions—the Stegny site.

The purpose of determining new formulas for calculating relative density (Dr) is to
derive the dependencies closely related to the parameters of the measurements with the
dynamic DP probe. Apart from the parameters of the DMT tests, the results of RCPT were
also used. Several stages to determine the authors’ dependencies calculating the subsoil
state differed for the given parameters. This is due to the fact that we had different data for
specific sites. For determining the relative density (Dr) on the basis of the dependence of DP
and RCPT results with the transition to DMT, consisting of performing all the calculations
carried out in this work, the solver module was used. It is an addition that extends the
functionality of MS Office after it is imported. This function is most often used for linear
programming including the modeling and optimization of any type of decision problem.
This linear programming should be based on the creation of a reality model, in which
the objective function is an important element, the value of which is subordinated to a
specific profitability criterion (max/min). The solution of the function is assisted by the use
of variable coefficients (for relative density determined in this paper, α0, α1, and α2 were
assumed), due to which maximum or minimum values are achieved.

Observation of the obtained results shows that there is a strong relationship between
parameter Dr and dilatometer pressures, i.e., p0 and p1, and shear wave velocity, as well
as u0 and σ′v0: Dr = f (p0, p1, u0, σ′v0). For non-cohesive soils in the studied sites, a formula
was proposed on their basis, and the lowest value of the mean square relative deviation
was calculated for them. The formula that was used for the calculations is our original
proposal. The summarized test results, i.e., p0 and p1 vs. values from DMT and u0 tests,
allowed determining the formula for relative density (Dr) in the following form:

Dr = f
(
α0, α1, α2, p0, p1, Vs, u0, σ′v0

)
, (11)

Dr = α0·
(

p1 − u0

σ′v0

)α1

·
(

Vs

100

)α2

, (12)

where α0, α1, and α2 are the coefficients. The formula was created dependent on variables
p0, p1, u0, σ′v0, which belong to variable cells in the solver function. An additional column
was added, the formula of which determines the percentage deviation between the result
of the calculated relative density (Dr) for a given depth and the value of the result obtained
from DP tests. The given depth is the corresponding level of the measuring point at which
the readings from both SDMT (DMT) and DP are recorded. These are the readings every
20 cm. The purpose of the calculations was to obtain the lowest possible mean square
relative deviation MSRD. The values for the statistical compilation were calculated from
the following formulas:
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Maximal relative deviation:

MRD max
i=1,2,...,m

∣∣∣∣yi − ỹi
yi

∣∣∣∣·100%, (13)

Mean square relative deviation:

MSRD =

√ 1
m ∑m

i=1

(
yi − ỹi

yi

)2
·100%, (14)

The function was programmed in a way that allowed achieving the lowest possible
target cell value. The results of the calculations are presented in Section 4 below. For
non-cohesive soils located in the study area, i.e., in the “Stegny” and WULS-SGGW sites,
and the data obtained from the dilatometer test, a formula was proposed, and the relative
density was calculated.

As for the second parameter, which is the degree of saturation (Sr), the results of
dilatometer tests (DMT) were also used to determine it. Following the observations, there
was a strong relationship between parameter Sr and pressures p0 and p1, and parameters u0
and σ′v0: Sr = f (p0, p1, u0, σ′v0). For non-cohesive soils located in the studied sites, a formula
was proposed on their basis, and the lowest value of the mean square relative deviation
was calculated. The formula on the basis of which the calculations were performed is also
an original proposal of our team and attains the following form:

Sr = f
(

β0, β1, p0, p1, u0, σ′v0
)
, (15)

Sr = β0·
[
(P0 − u0)(P1 − u0)

σ′v0

]β1

, (16)

4. Test Results

The DMT test results obtained for the Antoniny, Koszyce, Nielisz, Stegny, and WULS-
SGGW campus sites are presented in Figure 8. They were taken into account in the construc-
tion of a new correlation for mineral and organic soils presented in the following chapter.

4.1. Estimation of Relative Density

Using the solver module, the values of the coefficients (α0, α1, α2) were determined,
where there is the lowest value of the mean square relative deviation for pressure, expressed
in kPa. For the proposed formula for relative density (Dr), the following statistical values
were obtained (summarized in Figure 9 below). The obtained pattern is as follows:

Dr = α0·
(

p1 − u0

σ′v0

)α1

·
(

Vs

100

)α2

, (17)

where α0 = 0.35, α1 = 0.14, and α2 = 0.16.
The values obtained from the DP test related to the values calculated based on Formu-

las (8)–(10) using qD and KD from DMT tests show a large range of the mean error results.
The correlation between the values calculated (from Formulas (8)–(10)) and measured is
presented in Figure 10.
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Figure 10. Values obtained from TDR tests and RCPT related to the values calculated from formulas (Equations (8)–(10))
based on DMT tests.

From the chart, it can be seen that the values calculated using the formula correspond
well with the values obtained from the DP tests. They behave predictably and fit into
an overall trend line, while the DP test values have higher amplitudes. The relationship
between the results obtained from DP tests and those determined on the basis of the
Formula (17) is presented above.

Using the proposed dependencies to determine the relative density (Dr) in the case of
fine-grained soils, the compaction index Is can also be determined as follows using and
modifying the formula developed by Pisarczyk (1975, 2015) [24–26] and the dependencies
proposed herein:

IS = 0.855 + 0.058·
[

K∗0.14
D ·

(
Vs

100

)0.16
]

, (18)

where K∗D(−) =
p1−u0

σ′v0
.
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4.2. Estimation of the Degree of Saturation (Sr)

The results of the TDR/MUX/mpt tests and RCPT were used to determine parameter
Sr. The following graphs were obtained during the tests: temperature dependence on time;
soil swelling dependence on time; time dependence of humidity; and dependence of soil
salinity on time. Graphs for a silty sand sample are presented below (Figures 11–13). In
these figures, the following observations can be made:

- When examining the dependence of salinity on time, the amount of salinity decreases
with soil drying but increases with the addition of water. The minimum salinity value
is 0.044, while the maximum value is 0.126.

- During the analysis of the time dependence of humidity, the minimum value was
obtained with complete drying of the soil; this value was 17.6%, while the highest
was 38.2%.

- When analyzing the dependence of temperature on time, daily temperature fluctua-
tions may be noticed; the lowest was 20.4 ◦C, while the highest was 25.1 ◦C.
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According to the diagram (Figure 14), the concordance between the parameter calcu-
lated on the basis of DMT and the parameter obtained from the TDR and RCPT results is
high (MSRD = 12%, MRD = 22%). These values provide a good prediction for determining
the degree of saturation in both the aeration and saturation zones based on DMT tests. On
this basis, the following relationship is proposed:

Sr = 1.50·
[
(P0 − u0)·(P1 − u0)

σ′v0

]−0.33
, (19)

Sr = 1.50·
[

BD
σ′v0

]−0.33
, (20)

where the dilatometer pressure number BD = [(P0 − u0)·(P1 − u0)]
−0.33.
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5. Discussion of the Results

The obtained values of the relative density and degree of saturation for soils from
the proposed two new nomogram charts are comparable to those obtained directly after
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probing from another device or from the calculation methods. The proposed nomograms
are convenient and user-friendly, very helpful for both students and designers.

The nomogram can be used in several ways depending on the data available to the
user. With dilatometer pressures p0 and p1, u0, and σv0 from SDMT values of the tested soil,
the approximate relative density and degree of saturation can be read (procedure: on the
nomogram moving from point A to B, then to C, the value at point C is the value of the parameter
we are looking for). The nomograms were used to determine the state of sands in the studied
sites, and soils with a granular material (such as sand). The proposed nomogram chart was
used to compare the values of the relative density and degree of saturation obtained from
the tests by several methods (Figure 15).
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The soil type is important for selecting the method of calculating both the degree of
compaction (Dr) and the degree of saturation (Sr). Therefore, it is important to become
acquainted with the conditions in the course of preparations, e.g., geology, stratigraphy,
and hydrology of the study area.

This study was able to propose a formula and a new nomogram for determining
parameter Dr, which are regional and allow for obtaining results similar to those from DP
tests without distinguishing whether the ground is above or below the groundwater table.

The deviation values obtained in the course of the calculations were acceptable; their
values were as follows: a mean square relative deviation (MSRD) = 8.0%, and a maximal
relative deviation (MRD) = 22%.

The obtained formula is as follows: Dr = α0·
(

p1−u0
σ′v0

)α1 ·
(

Vs
100

)α2
, where α0 = 0.35,

α1 = 0.14, and α2 = 0.16.
The performed calculations show that the deviation values were satisfactory for

the degree of humidity. The lowest value of 0.02% was obtained for the measurement
both below the groundwater table and above the groundwater table; these values were,
respectively, a mean square relative deviation (MSRD) = 12.0%, and a maximal relative
deviation (MRD) = 22%. The formula for calculating the degree of saturation that was

finally obtained is as follows: Sr = 1.50·
[

Bp
σ′v0

]−0.33
, where the dilatometer pressure number

Bp = (P0 − u0)·(P1 − u0).
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6. Conclusions

This study presented the results of dynamic probing (DP), time-domain reflectometry
(TDR/MUX/MPTS), resistivity cone penetration tests (RCPT), Marchetti dilatometer tests
(DMT), and seismic dilatometer tests (SDMT), from which it is possible to develop a
relationship to calculate the relative density (Dr) and degree of saturation (Sr) of selected
sandy soils. Probing was conducted at five sites (Antoniny, Koszyce, Nielisz, Stegny, and
SGGW campus) in Poland.

Based on the results obtained, two relationships were proposed for determining the
relative density (Dr) and the degree of saturation (Sr) in mineral soils based on SDMT
(DMT). In addition, this paper proposed a new nomogram chart for determining the
relative density (Dr) and saturation degree (Sr) from DMT and SDMT tests. The proposed
formula and the new nomogram for determining parameter Dr are local in nature. In
the future, our study will continue to be devoted to checking the proposed formulas and
nomogram charts on other sites at home and abroad.

The proposed nomogram charts may be limited to a greater extent for additional
laboratory tests that must be performed to obtain these values. Thanks to the empirical
method established, we may reduce the time needed to assess the ground state for non-
cohesive soils.
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