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Brain-computer interfaces (BCIs) have achieved important milestones in recent years, but the
majority of breakthroughs in the continuous control of movement have focused on invasive neural
interfaces with motor cortex or peripheral nerves. In contrast, non-invasive BCIs have primarily
made progress in continuous decoding using event-related data, while the direct decoding of
movement command or muscle force from brain data is an open challenge. Multi-modal signals
from human cortex, obtained frommobile brain imaging that combines oxygenation and electrical
neuronal signals, do not yet exploit their full potential due to the lack of computational techniques
able to fuse and decode these hybrid measurements. To stimulate the research community and
machine learning techniques closer to the state-of-the-art in artificial intelligence, we release
herewith a holistic data set of hybrid non-invasive measures for continuous force decoding: the
Hybrid Dynamic Grip (HYGRIP) data set.We aim to provide a complete data set that comprises the
target force for the left/right-hand cortical brain signals in form of electroencephalography (EEG)
with high temporal resolution and functional near-infrared spectroscopy (fNIRS), which captures
in higher spatial resolution a BOLD-like cortical brain response, as well as the muscle activity
(EMG) of the grip muscles, the force generated at the grip sensor (force), and confounding noise
sources, such as breathing and eye movement activity during the task. In total, 14 right-handed
subjects performed a uni-manual dynamic grip force task within 25–50% of each hand’s maximum
voluntary contraction. HYGRIP is intended as a benchmark with two open challenges and research
questions for grip-force decoding. The first is the exploitation and fusion of data from brain
signals spanning very different timescales, as EEG changes about three orders of magnitude
faster than fNIRS. The second is the decoding of whole-brain signals associated with the use
of each hand and the extent to which models share features for each hand or, conversely, are
different for each hand. Our companion code makes the exploitation of the data readily available
and accessible to researchers in the BCI, neurophysiology, and machine learning communities.
HYGRIP can thus serve as a test bed for the development of BCI decoding algorithms and responses
fusing multimodal brain signals. The resulting methods will help understand limitations and
opportunities to benefit people in health and indirectly inform similar methods, answering the
particular needs of people in disease.
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INTRODUCTION

Brain-computer interfaces (BCIs) offer communication pathways
for people with motor disorders to regain agency in their
body and environment (Wolpaw et al., 2002). Since their
first demonstration almost 50 years ago (Vidal, 1973, 1977;
Wolpaw et al., 2000), BCIs have undergone a steady evolution.
Invasive BCIs have achieved significant milestones in continuous
signal read out from nervous system activity such as speech
decoding (Guenther et al., 2009; Bocquelet et al., 2016;
Anumanchipalli et al., 2019), robotic or own arm continuous
control (Pfurtscheller et al., 2003; Hochberg et al., 2012), and
even grip control with touch sense recovery (Ganzer et al.,
2020). Non-invasive BCIs have also succeeded in the continuous
control of trajectories after users learned to modulate event-
related desynchronization (ERD) (Wolpaw andMcFarland, 2004;
Royer et al., 2010; Meng et al., 2016). However, while force
is central to motor control (Westling and Johansson, 1984;
Ostry and Feldman, 2003), its continuous non-invasive decoding
is still challenging even in the offline case, and only modest
accuracies have been reported using electroencephalography
(EEG) (Paek et al., 2019). Previous attempts at decoding force
from non-invasive measures have focused on the classification
of discrete force variables using EEG (Jochumsen et al., 2013;
Wang et al., 2017). In the hybrid case of recording cortical brain
signals non-invasively, by combining EEG and functional near-
infrared spectroscopy (fNIRS), Yin et al. (2015) showed that
the combination of both measures increased the classification
accuracies of different forces featured during imagined hand
clenching by 1–5% compared to EEG or fNIRS alone. However,
the lack of methods successfully integrating both measures in
continuous decoding is still limiting the benefits of hybrid setups
(Ahn and Jun, 2017).

We have shown that combining both multi-modal BCI
(e.g., Thomik et al., 2013; Belić and Faisal, 2015; Xiloyannis
et al., 2017) and the use of state-of-the-art machine learning—
from introducing Deep Learning for EEG-BCI in 2015 (Walker
et al., 2015) to data-efficient methods for BCI decoding that
minimize the need for collecting data from individual end users
(Xiloyannis et al., 2017; Ortega et al., 2018)—can help BCI
research if data is collected with a machine learning use in mind.
To stimulate the development of advanced multi-modal BCI
techniques we present the Hybrid Dynamic Grip (HYGRIP) data
set1. HYGRIP includes hybrid non-invasive and co-located brain
activity measures as well as the hand contraction and muscular
electrical behavioral activities during a hand-grip task with fast
dynamics. The companion repository2 digests the raw data into
a format that makes it at a data readiness level suitable for
immediate use by machine learning engineers (Lawrence, 2017)
without having to go through a lengthy process of cleanup and
reshaping of the data, which we believe will facilitate drawing in
more data science and machine learning experts to the exciting
problem of BCI.

1Raw data (2.8 h of data- worth time, 328 trials and 14 subjects) available at https://

doi.org/10.6084/m9.figshare.12383639.v1.
2Companion code available at: https://gitlab.doc.ic.ac.uk/bbl/hygrip.git.

PARTICIPANTS

Fourteen (N = 14, anonymized IDs from A to N) healthy,
right-handed volunteers participated in the production of this
data set. Handedness was confirmed by the Edinburgh inventory
(Oldfield, 1971) for all participants. None reported a history of
neurological, cardio-respiratory, or physical disorders. Imperial
College Research Ethics Committee approved all procedures,
and all participants gave their written informed consent. The
experiment complied with the Declaration of Helsinki for human
experimentation and national and applicable international data
protection rules.

MOTOR CONTROL TASK

Themotor task consists of a left/right-hand grip, each hand being
a different condition in the experiment. The task consisted of
10 consecutive contraction (1.55 s)/relaxation (0.55 s) periods
that introduced rapid changes of force. Subjects were instructed
and received visual feedback to exert forces in the 25–50% of
their maximum voluntary contraction (MVC) following the pace
of the 1.55 s contraction/0.55 s relaxation periods. The 25–
50% MVC target range acted as a soft margin within which the
subjects had to produce a contraction rather than a varying force
they had to track. TheMVC target range was implemented in this
way to reduce the effect of visual feedback during the task that was
provided through a computer screen for contractions out of the
task range.

Due to the velocity of the contraction/relaxation periods, we
do not consider each period a single trial but the consecutive 10
periods as a single trial of the task emphasizing the velocity of
the execution. Note also that the much slower fNIRS signals need
longer times to show a response, and using each single period
independently of previous ones could hinder the resolution of
the response. Participants were also instructed to prioritize the
gripping pace rather than accurately matching the visual cues
since the latter was too demanding for the levels of contraction
required. Details follow.

Subjects sat in front of the computer screen with their arms
relaxed and ergonomically hanging down, i.e., the arms were
naturally straight downwards while holding the force transducer
(Figures 1A,B). Subjects were instructed to keep this relaxed
posture and reminded to maintain it throughout the experiment.

At the start of the experiment, subjects were asked to produce
their maximum voluntary contraction (MVC) with each hand.
The MVC was used to calibrate the feedback for each hand
independently. To obtain reliable MVC estimates, MVC grips
were repeated 10 times for 1 s with each hand and following
paced auditory cues. The MVC was computed as the average of
themaximum force across the 10 trials. For the experimental task,
participants had to generate unimanual hand-grip contractions
in the 25–50% MVC range during the 21 s gripping period.
The contraction was computed as the ratio Force/MVC. The
hand used for the grip varied randomly between trials with
equal probability. The force transducer was handed by the
experimenter to the subject within their immediate reach before
each trial and removed after trial completion.
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FIGURE 1 | (A) (Left) Experimental setup with visual feedback. (Top right) Task and data set details. (Bottom right) Task execution across subjects time-locked to the

“Go” cue at t = 0 s. (B) Sensor layout and EEG and fNIRS sensor arrangement. fNIRS light sources and detectors are placed in a 5× 5 symmetrical grid leaving a

required 3 cm distance. EEG electrodes, red circles, are placed between each pair of sources and detectors overlaying the fNIRS sensing area so fNIRS and EEG

measures are co-located. Each grid is centered around C3 and C4 for the respective hemisphere. (C) A subject’s full stack of neurobehavioral data (5 s, selected

channels per modality for readability). (Top-bottom) Force target for the right hand; force produced by subject’s right hand; EMG channels from right forearm; EEG

channels; HbO (oxyhemoglobin); HbR (deoxygenated hemoglobin); EOG with two eye blinks; breathing from chest strap stretch sensor. Units in the bottom x-axis and

each corresponding y-axis.
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A computer screen in front of the participants delivered the
feedback at an approximate 60 Hz refreshing rate (Figure 1B). A
cross indicating the center of the screen was used as fixation point
during the experiment and subjects were instructed to stare at it
to avoid eye movements. A white discontinuous circumference
was used as a visual target and appeared at either side of the cross
ipsilateral to the hand to be used in each trial. This visual target
matched the 25–50% of the maximum voluntary contraction
(MVC) of the subject for that hand and paced the contraction-
relaxation periods. When the visual target appeared (shown for
1.55 s) the instruction was to contract and, when it disappeared
(not shown for 0.55 s), to relax. A red filled circle indicated
the real-time contraction level and subjects aimed to fill the
discontinuous target circle with red. Visual feedback was only
coupled to grips outside the desired range of contraction (25–
50% MVC) making the red circle bigger or smaller than the
target. Otherwise, the red circled filled the white discontinuous
circumference within the target range of contraction.

Each trial of the task consisted of 10 consecutive contraction
(1.55 s) and relaxation (0.55 s) periods (total, 21 s) with one
hand (Figure 1A). The dynamic grip was executed with the hand
indicated at the beginning of the trial by synthetic voice 2.5 s
before the “Go” signal (used as the origin of time, t = 0 s, for
each trial). All participants did a balanced amount of left- and
right-hand trials of at least 10 (max. 13) trials per hand. We
limited the number of trials to avoid effects of muscular fatigue
given the relatively high contractions that the task demanded.
Left and right-hand conditions were pseudorandomized across
trials to avoid anticipation and interference between conditions.
The refreshing rate of the visual feedback overlaid with the force
produced in real-time. Each trial was followed by a randomized
resting period uniformly distributed between 15 and 21 s, to avoid
phasic constructive interference of systemic artifacts, e.g., Mayer
waves, in the brain responses.

DATA COLLECTION PIPELINE AND
METHODS

We recorded multiple signals representing brain activity, motor
behavior, and confounds (Figures 1C, 2A–C). The signals
capturing brain activity consisted of electroencephalography
(EEG) and functional near-infrared spectroscopy (fNIRS). Motor
behavior was captured by the force sensor on which the
subjects gripped and surface electromyography on both forearms.
Potential confounds interfering (breathing and EOG) with EEG
and fNIRS were also recorded. A total of three recording
devices were used to record all the signals. fNIRS was recorded
using a NIRScout system (NIRx Medizintechnik GmbH, Berlin,
Germany). EEG, EMG, and EOG were recorded together with an
ActiChamp amplifier (BrainProducts, Berlin, Germany). Force
and breathing were recorded with a PowerLab 4/25T system
(ADInstruments, Castle Hill, Australia). To synchronize the
devices, the same computer used to present the task and visual
feedback was used to send time-stamping signals to the three
devices simultaneously at the beginning and end of the recording
and every “Go” cue and were stored by each device in its time

reference. The timestamps are used to locate the positions of
the same event across different devices and align the measures
to the events shown in the computer used to present the task.
The sampling frequencies (12.5 Hz for fNIRS and 4 kHz for
remaining measures) were selected so that they had a common
divisor facilitating the resampling processes without the need to
round up due to inexact divisors.

Brain Signals
All brain signals were non-invasively recorded. A custom 3D
printed (formlabs Form2, Formlabs Inc., Somerville, MA 02143,
USA) holder made of flexible resin (formlabs RS-F2-FLGR-02)
was used to align the fNIRS and EEG sensors to approximately
target similar cortical areas (Figure 1B). The sensor layout was
configured to result in 12 hybrid EEG-fNIRS recording locations
per hemisphere. These locations were homogeneously spread
with a 3 cm separation creating a grid. Each hemispherical
grid was centered around the corresponding 10-20 system
C3 and C4 location.

fNIRS signals were recorded using a NIRScout system (NIRx
Medizintechnik GmbH, Berlin, Germany). We used a total of
12 optodes per hemisphere (10 sources and eight detectors
in total) sampling at 12.5 Hz. An optode is a source-detector
pair 3 cm apart from each other (allowing light to reach an
approximate 1.5 cm depth into the skull). fNIRS sources and
sensors were laid out to result in 12 optodes. The sources and
sensors were symmetrically laid around C3 and C4 positions
according to the International 10-20 system leaving an inter-
optode distance of 3 cm (Figure 1B). Two wavelengths (wl1 =

760 nm, wl2 = 850 nm) continuous functional near-infrared
spectroscopy (fNIRS) was used to obtain optical absorption
densities that were transformed to oxy-hemoglobin [HbO] and
deoxy-hemoglobin concentrations [HbR] using the modified
Beer-Lambert Law (Cope et al., 1988). The raw optical densities
are also provided in the data set.

An ActiChamp amplifier (BrainProducts, Berlin, Germany)
operating at 4 kHz (running software BrainVision, v1.20.0801)
was used to record EEG. Twelve EEG sensors per hemisphere
were placed in between each sensor-detector fNIRS pair
overlaying the region measured by that optode (Figure 1B). The
reference in our setup corresponds to the standard Cz 10-20
position (Nomenclature, 1991; Klem et al., 1999). The signals
were down-pass filtered and downsampled to 1 kHz in the
data set.

To enable EEG and fNIRS sensors to record cortical activity
from the same cortical locations, we used a non-standard sensor
arrangement covering the bilateral motor cortex (Figure 1B). We
used a custom sensor holder 3D printed in flexible resin that for
every recording channel allowed the EEG sensor to sit on top
of the cortical area targeted by a corresponding fNIRS source-
detector pair. Namely, for every fNIRS source-detector pair, an
EEG electrode was placed in between. Each holder consisted of
a 5 × 5 grid of circular holes whose centers were 1.5 cm apart
allowing the required 3 cm separation between fNIRS source-
detector pairs with an EEG sensor occupying a hole in between.
The positions in the 5 × 5 grid marked in red in Figure 1B

correspond to the physical location of EEG electrodes and
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the approximate recording areas of EEG electrodes and fNIRS
source-detector pairs. Physical locations of fNIRS sources and
detectors are marked, respectively by “S” and “D” in Figure 1B.
A total of 12 recording sites were used per hemisphere due to
the limitation of space to fit the multi-modal sensors together. A
holder was placed on each hemisphere and held in position using
elastics. The disposition of every sensing point is symmetrical to
the scalp mid-line, and each grid is centered in the corresponding
C3 or C4 site depending on the side so that the central hole
overlaid the respective central position. C3 and C4 were located
per subject following the 10-20 standard (Nomenclature, 1991;
Klem et al., 1999), i.e., at a 20% of the distance between the
pre-auricular points passing over the top of the head from the
mid-line. The spherical coordinates of the standard positions are
provided in the data set.

Motor Signals
We recorded the grip force and muscular electrical activity to
represent motor behavior during the task.

Bilateral bipolar surface electromyography (EMG) was
recorded over the longitudinal axis (+ distal and − proximal)
of the muscle belly of the flexor digitorum superficialis (4 kHz,
on the Aux channels of the BrainVision ActiChamp) placed
in the anterior and posterior forearm faces (Figure 1B). Before
electrode placement, the skin was cleaned with abrasive pads and
alcohol to eliminate dead skin cells and fat impact on electrical
recording quality. EMG signals were down-pass filtered and
downsampled to 1 kHz in the data set.

The dynamic gripping task was conducted using a
continuously recorded grip force transducer (PowerLab
4/25T, ADInstruments, Castle Hill, Australia) sampling at
1 kHz. The signal was also used to provide real-time visual
display feedback to the subject and the target force level they
were asked to produce (Figure 1A). The Maximum Voluntary
Contraction (MVC) force for each subject’s hand was measured
and computed using the same transducer. The recorded force
signals, in Volts, were down-pass filtered and downsampled to
50 Hz in the published data set.

Recording of Potential Confounds (EOG
and Breathing)
To complete the picture provided by the data, we recorded
potential confounds in the brain and motor behavior signals of
interest. The pulse and breathing rate have an impact at the
body level on the concentration of hemoglobin and therefore
can have an impact on brain and scalp levels of hemoglobin
concentration. Whereas pulse is easily removed in the fNIRS
analysis band (0.01–0.25 Hz), the breathing rate can overlap
with it (Pinti et al., 2019). Sources of muscular electrical activity
can spread to the EEG sensors and include eye muscles and
skeletal muscles. Thus, we consider electrooculography (EOG),
which also carries information on blinks, and breathing as pure
confounds. However, EMG might also leak into the EEG sensors
and can carry confound information at the same time it provides
behavioral information.

Electrooculography (EOG)
Bipolar EOG was recorded on the vertical axis (top+, bottom−)
of the right eye for all subjects (4 kHz, BrainVision ActiChamp,
BrainProducts GmbH, Germany). The signal was down-pass
filtered and downsampled to 1 kHz before being included in
the data set. We note that the EOG of participant “I” is absent.
Nonetheless, this participant was included as the impact of the
EOG in the recording locations can be less severe than for
frontal recording sites can be corrected using techniques like
Independent Component Analysis (ICA) (Onton and Makeig,
2006).

Breathing
We captured breathing as the chest diametrical changes during
inspiration and expiration. A variable resistor placed inside
an elastic strap adjusted around the chest at the level of the
Xiphoid process (Figure 1B) was used to record the expansion
and contraction of the thoracic cage (1 kHz, PowerLab 4/25T,
ADInstruments, Castle Hill, Australia). The signal was down-
pass filtered and downsampled to 50 Hz before being included
in the data set.

DATA SET OVERVIEW

The data set, provided as a single hard-disk file (HDF), has
undergone very little processing to avoid biasing future analyses.
Here, we make the raw data available and provide companion
code that preprocesses the raw data into a readily usable data
set (Data Readiness Level C). Preprocessing comprises down-
sampling to reduce storage space and the formatting of data,
recorded events, and other meta-data from different devices
so that all data followed the same format regardless of their
device origin. Further preprocessing can be directly applied using
the utils python package provided, making the data readily
available to exploit in popular python machine learning packages
as pytorch and tensorflow.

Companion Code
The utils package only depends on the public python
packages, h5py, numpy, scipy, scikitlearn,
matplotlib, which need to be installed. The notebook
presentation.ipynb contains a thorough explanation and
examples of how the tools in utils can be used to process the
data and depends on jupyter. A conda environment.yml
file is provided with all dependencies to facilitate installation.
All together make the data readily available to exploit, i.e., Data
Readiness Level C (Lawrence, 2017).

Data Set Organization
The data set file structure follows a tree-like organization in three
levels. In the first and third levels, the data set contains meta-
data in string format that can be accessed via the attributes of the
level. The first level is the data set itself and the shared attributes
across subjects measures, e.g., sampling frequencies and units,
and other information such as the channel grid disposition and a
template of hybrid sensor spherical coordinates over the scalp. In
the second level, the data set is organized in one group per subject
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indexed by their anonymized ID (i.e., 14 groups with keys A to N)
and contain no attributes. In the third level, each group contains
a subgroup for each measure (e.g., keys frc for force and eeg
for EEG) containing the data in numeric format and an attribute
called events containing the times at which a timestamp
was received during the recording (e.g., “relax,” “left-hand,”
“right-hand”) and the “begin” and “end” timestamps indicating
the beginning and end of the recording session, also numeric.
In particular, the events group contains a second numeric
attribute MVC containing the maximum voluntary contraction
value for each hand.

Data Validation Preprocessing Pipeline
The following preprocessing was applied to the raw signals in the
data set to obtain the brief analysis in Figure 2, which can be
reproduced using the companion notebook. After preprocessing
all signals, epochs were extracted from 5 s before the “Go”
instruction to 25 s after.

fNIRS
The optical intensity, Î

λ

ij, for each wavelength, λ, was low-pass
filtered below 0.25 Hz with a 7th order elliptical filter. Changes in
optical densities per wavelength, 1ODλ

ij(t), were obtained using

1ODλ
ij(t) = −log

(

Î
λ

ij(t) / Ī
λ
ij

)

(1)

with i and j the indices of valid sensor-detector pairs respectively,

t the time and Ī
λ
ij the average of the optical intensity 1 s prior to

the “Go” instruction. Oxygenated and deoxygenated hemoglobin
concentration changes, 1HbO and 1HbR, respectively, were
computed solving the modified Beer-Lambert law (Cope et al.,
1988),

1ODλ
ij = Lλ

ijDPF
λ(ǫλ

HbR1HbR+ ǫλ
HbO1HbO) (2)

with DPFλ, the dimensionless differential path-length factor
accounting for the reduction in intensity due to scattering tissues
(DPF760 = 5.98 and DPF850 = 7.54); ǫλ

Hb, the molar extinction
coefficient for each hemoglobin and wavelength in mol−1cm−1

accounting for the absorption of light (ǫ760HbO = 1486.6, ǫ760HbR =

3843.7, ǫ850HbO = 2526.4, and ǫ850HbR = 1798.6); and L the source-
detector distance in cm (L = 3cm). After this preprocessing, the
average and the standard error of the mean across subjects for
each hand condition and hemoglobin type were plotted in the
corresponding position of the 2D layout (Figure 2A). We can
observe an increase and decrease of HbO with the task onset
(t = 0 s) and end (t = 21 s), respectively. We can also identify
several peaks in the average response which might be a result
of the on-off dynamics of the task which might introduce small
variations on the global trend of Hb variations. Opposite changes
can be observed for HbR at a smaller scale.

EEG
EEG was first downsampled to 250 Hz (with anti-aliasing down-
pass filtering). Notch filters were applied at the mains (50 Hz) and
fNIRS (12.5Hz) frequencies and their harmonics. EEGwas finally
high-pass filtered above 1 Hz using a 5th order Butterworth filter.

ICA was used in two stages to remove components correlated
first with EOG and second with EMG. ICA related preprocessing
only affected the signals used to compute the mixing matrix,
which was then applied to the data going through the main EEG
pipeline. For EOG, both the EOG and EEG were downsampled
to 25 Hz. A maximum of 1 independent component correlated
above 0.3 (in absolute values) with the EOG was rejected.
For EMG, both the EMG and EEG were downsampled to
125 Hz. The rejection of components was stricter to ensure EMG
was not contaminating the data. One component was rejected
whenever its correlation magnitude with any of the recorded
EMG channels was >10−4. Figure 2B presents the averaged
spectrogram across subjects for the right-hand condition (the
left-hand condition can be found in the notebook) for the mu
band (8–13 Hz). Interestingly, the on-off nature of the task might
be introducing periodic variations of power in the mu band due
to desynchronization (Pfurtscheller et al., 2006).

EMG
The EMG was also first downsampled to 250 Hz (with anti-
aliasing down-pass filtering), and it was then high-pass filtered
with a 17th order Butterworth filter of above 110 Hz. To generate
Figure 2C we computed the Hilbert envelope of the signal and
used it to obtain decibels of power density referred to the
mean power of the signal during the epoch. We finally averaged
these power densities across subjects per hand condition and
arm location of the electrodes. The active EMG (i.e., those
corresponding to the arm used during each hand condition) carry
a similar amount of power density for each hand condition. The
passive electrodes have a much flatter amount of power density
during the task and instead have clear peaks at the beginning and
end of the trials when the subjects were allowed to relax.

Force
The force signal was band-pass filtered between 10−4 and 9 Hz
(second order elliptical filter). Once epochs were extracted, it was
again high-pass filtered above 10−3 Hz to remove any remaining
offset. These low high-pass frequencies were selected to preserve
the squared shape of the forces, which are very rich in low
frequencies. Once the offset was removed, voluntary contraction
values were obtained by dividing the resulting forces by the
maximum voluntary contraction force recorded at the beginning
of the trial. Figure 1A shows the gathered trials for all subjects per
hand condition. Subjects mostly engaged with the task in timing
and contraction values with the left condition presenting slightly
more overshoots. Although the task is conceptually simple, the
provision of only partial visual feedback and its fast on-off
nature contributed to higher variability in the behavior within
the desired levels of contraction. We consider these aspects to be
more representative of natural force applications where feedback
is more proprioceptive and changes in force can be fast and span
a wider range than discrete target levels.

Other Signals (EOG and Breathing)
EOG was downsampled (with prior anti-aliasing filtering) to
50 Hz. Then filtered using an 8th order high-pass filter above
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FIGURE 2 | (A) Cross-subject average of HbO and HbR changes across trials, time-locked to the “Go” cue (t = 0 s) of each trial. Each trial consists of 10

contraction/relaxation periods (21 s of activity starting at the “Go” cue). HbO increases during the task and HbR decreases at a smaller scale, both start returning to

baseline after the 21 s of activity. Units in top-left. (B) Cross-subject mu-band spectrogram averaged across right-hand trials as in (B). Periodic desynchronizations

can be observed. Units in top-left. (C) Averaged EMG spectral density across trials as in (A,B) showing similar power density for the active muscles controlling the

hands. (D) Brain and behavior correlation matrix computed on the force onset (−1 s to 1 s around the “Go” cue) showing only significant (p < 0.001) correlations. It

shows a contralateral change in correlation values between HbO and HbR and force and the time-locked mu desynchronization event represented as the negative

correlation between force and the EEG mu power band. (E) Confounds correlation matrix showing only significant (p < 0.001) correlations computed along the task

(t = [−1, 20] s around the “Go” cue) for the right hand condition. Correlations between brain signals and confounds are non-significant (α = 0.001).
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1 Hz. Breathing was also low-pass filtered with a 6th order
Butterworth filter below 0.25 Hz.

Correlations Across Multi-Modal Signals
and Validation
After preprocessing, signals were correlated to characterize a
“brain and behavior” or neurobehavioral correlation (EEG,
fNIRS, EMG, and force in Figure 2D) and a “confounds”
correlation structure (EEG, fNIRS, EOG, and breathing in
Figure 2E). EEG and EMG underwent additional filtering and
spectral density computation similarly to that used for the EMG
plots. For EEG the mu (8–12 Hz), beta (12–30 Hz), and gamma
(60–125 Hz) bands spectral densities were extracted. Then,
signals were downsampled to the lowest sampling frequency
in the data set, i.e., 12.5 Hz, and cropped between −1 and
1 s (“Go” cue at t = 0 s) to focus on the onset of motor
activity in the case of the “brain and behavior” correlation
and between −1 and 21 s for the “confounds.” The signals
were finally normalized. For each hand condition, the “brain
and behavior” correlation (Figure 2D) was computed over the
appended observations corresponding to the t = [−1, 1] s
crops for all combinations of the left and right hemisphere
mu, beta, and gamma EEG power bands and HbO and HbR,
the right- and left-arm EMG and force. For the brain signals,
channels 4 and 16 (Figure 1B) were selected as representative
of the corresponding hemisphere activity. A similar process was
used for the “confounds” correlation for the t = [−1, 20] s. A
significance level α = 0.001 is set and only significant correlation
values are shown.

There is a very small correlation between brain signals and
confounds (< 0.03 in absolute values, not shown due to lack
of significance α = 0.001, Figure 2E). This suggests that
the confounds do not interfere with the recorded signals after
applying the standard preprocessing pipeline to the raw data.

The key observations of our data can be found for the
“brain and behavior” correlation (Figure 2D). For considering
the interaction between brain signals (fNIRS and EEG) and
task measure (force) we need to bear in mind that the time
scales of fNIRS and EEG are very different (seconds vs.
milliseconds). In the EEG domain, it is known that motor
activity onsets are reflected in EEG power features. In our
data, we observe significant strong anti-correlation (r ≈ −0.3,
p < 0.001) between the EEG power in the mu band and
the force which indicates that passing from a resting state
(high mu power) to motor activity (low mu power) is properly
captured by these spectral features when we look at a time
window from −1 to 1 s around the Go cue. This decrease
in power, also known as mu event-related desynchronization
(mu-ERD), is due to the desynchronization of neuronal activity
(Pfurtscheller et al., 2006), and it shows that the EEG is aligned
with the force, helping to further confirm the validity of our
data set.

However, when the correlation is computed focusing on
the 20 s of the task (from 0 s before the Go cue to 20 s
after), the EEG mu-ERD is not significant (p > 0.001). Only
the beta band (12–30 Hz), known to be synchronized with

motor activity (Kristeva-Feige et al., 2002), appears with a low
level positive correlation (r ≈ 0.04 − 0.05, p < 0.001).
The lack of mu-ERD and force correlation during the 20 s of
continuous contraction/relaxations might be a consequence of
the velocity at which the sequential contractions/relaxations were
executed, not leaving enough time to the motor cortex to reach
a synchronized equilibrium state before it was desynchronized
again. Furthermore, this can also indicate that mu frequencies
(8–12 Hz) are not fast enough to track this kind of subtle
phase changes and a justification to develop more precise
algorithms or feature extractors as suggested by Paek et al.
(2019).

In the fNIRS domain ±1 s around the “Go” cue, we also
observe a typical HbO/HbR anticorrelation (r ≈ 0.15, p <

0.001) (Jasdzewski et al., 2003; Huppert et al., 2006) in the
structure with higher magnitudes present for the contralateral
hemisphere to the hand used. The HbO/HbR anticorrelation
is stronger in the right hemisphere for the left hand although
also present in the left hemisphere, and it is stronger in
the right hemisphere. This suggests that the dominant right
hand may engage the left hemisphere while the non-dominant
left hand engages both hemispheres with a preference for
the contralateral one. HbO and HbR also show significant
correlation with the force (r ≈ 0.2 − 0.3, p < 0.001). In
particular, HbR, which is more specific than HbO (Hirth et al.,
1997), also shows higher anticorrelation with the force for the
contralateral hemisphere.

Finally, there is a strong significant correlation (r ≈ 0.7,
p < 0.001) between the EMGpower envelopes of the active hands
and the force which supports the synchronization of the different
devices used to record these measures.

This brief analysis aims to validate the data set and present
some of its features. We encourage the community to develop
algorithms to better understand the rich temporal relationships
between brain signals spanning very different time scales
and physical origins present in the data set with BCI and
neuroimaging purposes.
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