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ABSTRACT: To harness energy security and reduce carbon emissions, humankind is
trying to switch toward renewable energy resources. To this extent, fatty acid methyl
esters, also known as biodiesel, are popularly used as a green fuel. Fatty acid methyl esters
can be produced by a batch transesterification reaction between vegetable oil and
alcohol. Being a batch process, fatty acid methyl esters production is beset with issues
such as uncertainties and unsteady state behavior, and therefore, adequate process
control measures are necessitated. In this study, we have proposed a novel two-tier
framework for the control of the fatty acid methyl esters production process. The
proposed approach combines the constrained batch-to-batch iterative learning control
technique and explicit model predictive control to obtain the desired concentration of
the fatty acid methyl esters. In particular, the batch-to-batch iterative learning control
technique is used to generate reactor temperature set-points, which is further utilized to
obtain an optimal coolant flow rate by solving a quadratic objective cost function, with
the help of explicit model predictive control. Our simulation results indicate that the fatty acid methyl esters concentration trajectory
converges to the desired batch trajectory within four batches for uncertainty in activation energy and six batches for uncertainty in
both inlet concentration of triglyceride and in activation energy even in the presence of process disturbances. The proposed
approach was compared to the heuristic-based approach and constraint iterative learning control approach to showcase its efficacy.

■ INTRODUCTION
Emissions due to the burning of fossil fuel products have been
contributing to pollution, global warming, and climate change.
To curb this menace, humankind has been trying to switch
toward greener fuel ecosystems to achieve carbon neutrality. In
this context, fatty acid methyl esters (FAME), popularly known
as biodiesel, have emerged as a reasonable substitute for
petroleum products.1 FAME are produced by batch trans-
esterification reaction of vegetable oils and methanol.2 Biodiesel
production involves many stages like reaction, water washing,
methanol separation, decantation and separation of unreacted
oil, and then purification of diesel. These factors determine the
cost of production of biodiesel.3 Transesterification reaction is
carried out in a batch or continuous reactor, but the industrial
practice is to mostly employ a batch reactor.4 This is because
batch reactors are more flexible and can handle variations like
changes in composition and quantity of raw materials to achieve
the desired product composition and for the production of low-
volume and high-quality chemicals.5−8

Batch processes have applications in many industries like
material processing, biotechnology, pharmaceutical, polymer,
semiconductor, biology, and chemical to produce high-value
products.9−11 Batch processes can also be used for pilot scale
testing purposes at a small scale for the manufacture of expensive

products, which can be later converted to industrial scale.12 The
initial investment in a batch reactor is low, but it has high energy
requirements. Besides the nonlinear characteristics and
unsteady behaviors, batch processes are also highly susceptible
to disturbances and uncertainties.13 Such features impose
challenges on satisfactorily controlling the output variable of
interest for the batch processes to the desired set-points using
the conventional P-, PI-, and PID-type controllers. This
motivated researchers to develop advanced model-based
optimization techniques to achieve desired performance.14

Traditionally, batch processes practiced an open-loop control
policy, without any feedback mechanism; hence, they are
incapable of dealing with disturbances that occur on the fly.15,16

Further, online measurements of quality variables are very
difficult, owing to expensive online sensors and difficulty in
installation, further posing challenges in implementing online
state estimation schemes.17,18 Moreover, the number of batch
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runs that can be performed at the pilot scale before moving to
the actual industrial scale is limited; hence, it becomes very
difficult to take into account all the uncertainties associated with
the process.19 Incidentally, batch processes are characterized by
their repetitive nature, which helps in optimizing the control
policy for the next batch based on the previous batch run
knowledge.20 Hence, batch-to-batch iterative learning control
(ILC) is widely employed for the control of batch
processes.21−25

Batch-to-batch ILC and control correction within each batch
implemented using partial least square models to achieve desired
product quality have also been reported in the literature.26 The
integration of model predictive control (MPC) with ILC can be
advantageous, as it helps in the correction of batch-to-batch as
well as within batch disturbances. To this extent, iterative
nonlinear MPC has been applied to the multi-variable semi-
batch reactor.27 The explicit MPC (eMPC) framework helps in
achieving the solution of the MPC problem offline compared to
the case when MPC problem is solved online.28 In related work,
to capture inherently time-varying parameters and non-
linearities, the linear parameter varying model has been used
in a model learning MPC framework for the batch process.29

Further, it has been shown that a combination of ILC with
appropriate process knowledge and system identification
techniques helps in multi-variable nonlinear tracking prob-
lem.30,31 Along similar lines, a constrained batch-to-batch ILC
that utilizes the previous knowledge of the process to obtain the
updated control policy was proposed.32,33 It is also shown that
latent variable point-to-point iterative learning MPC (LV-PTP-
ILMPC) shows faster convergence and better efficiency as
compared to the PTP-ILC.34 Tube-based ILMPC proved to

show superior performance for nonlinear batch processes as
compared to the ILMPC.35 There were also attempts to develop
a controller as a combination of MPC and ILC to deal with
uncertainties and input and output constraints in the batch
processes.36 Control of the batch process using a four tank
system has been performed with the combination of MPC and
ILC frameworks by utilizing the models derived from the
Koopman operator to capture nonlinearities of the batch
processes.37 The robust ILMPC (RILMPC) scheme has shown
a good ability for disturbance rejection and good tracking
performance with fast dynamics.38 The batch-MPC scheme has
shown success in rejection of both non-repetitive and repetitive
disturbances in selective laser melting applications.39 Even
though various accounts that independently validate MPC and
ILC for the control of various batch processes have been
reported in literature,29,32,40−42 there have been only limited
attempts to integrate them and study their performance.
Therefore, these individual experimental reports29,32,40−42

provide the motivation to explore potential of joint MPC and
ILC frameworks.

In this study, we propose a two-tier control strategy for the
control of the FAME concentration in batch transesterification
integrating ILC and MPC. In particular, in the first layer, we
employ an adaptive constrained ILC layer with a linear time-
varying (LTV) model, which is updated batch-to-batch while
the second layer is based on eMPC. In this context, Li et al.
(2017) proposed a combined NMPC-ILC scheme for the batch
process.42 However, the key differences between Li et al. (2017)
and the proposed work are (i) the difference in types of models
used; (ii) the adaptation of models in batch-to-batch and within
batch context, aiding better performance; and (iii) employment

Figure 1. Schematic of the proposed two-tier framework.
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of (eMPC) in within batch context, aiding computational
efficiency. Therefore, batch-to-batch correction is carried out
with the help of the batch-to-batch ILC technique, while
correction within each batch is performed by employing eMPC,
which is used to obtain an optimal coolant flowrate
(manipulated variable) to achieve the desired FAME concen-
tration, in presence of uncertainty in the process. The ILC layer
provides set-points to the eMPC layer, wherein the models for
the MPC are further updated within the batch based on the
availability of set-point trajectory. The end-point value of the
set-point trajectory becomes the linearization point for the state
space model for eMPC framework. The overall schematic of the
framework is presented in Figure 1. The novel element of the
proposed framework is the integration of ILC and MPC, in
particular eMPC, in an adaptive fashion for the control of the
batch transesterification problem. Adaptive ILC takes care of
slow disturbances and eMPC acts against fast disturbances. The
spare time for the transition between the two batches can be
utilized for performing the offline eMPC calculations.

■ PROPOSED CONTROL STRATEGY
Batch-to-Batch Iterative Learning Control. Consider a

batch process operating for a fixed duration (tf) and let N = (tf/
h) denote sampling instants, where h is the sampling time. Batch
operations are performed with the control objective to achieve
the desired output which is mostly the product quality at the end
of the batch. Here, the product quality (Yk) represents
concentrations and Uk represents the manipulated variable
(control variable), trajectory. Assuming n outputs are being
controlled using m manipulated variables, let the sequence of
product quality variable (Yk) and control trajectory (Uk),
respectively, for the kth batch, be represented as

= [ ]Y y y y N(1), (2), ..., ( )k k
T

k
T

k
T T

(1)

= [ ]U u u u N(0), (1), ..., ( 1)k k
T

k
T

k
T T (2)

where Yk ∈ RnN, Uk ∈ RmN, and k are the batch index, n denotes
number of outputs, and m denotes number of inputs.

To implement batch-to-batch ILC, it is desired to have a
process model to be linearized at a certain nominal operating
point.43 For continuous reactors, linearization can be performed
around the steady-state of the reactor but since there is no
steady-state in the batch reactor, therefore linearization is
performed around a nominal trajectory. Let the reference
trajectory of the inputs Us and the outputs Ys, respectively, be
represented by

= [ ]U u u u N(0) , (1) , ... ( 1)T T T T
s s s s (3)

= [ ]Y y y y N(1), (2), ..., ( )T T T T
s s s s (4)

Let the nominal trajectory of inputs Ud and outputs Yd,
respectively, be represented as

= [ ]U u u u N(0) , (1) , ... ( 1)T T T T
d d d d (5)

= [ ]Y y y y N(1), (2), ..., ( )T T T T
d d d d (6)

As Yk is the nonlinear function of Uk, hence

=Y F U( )k k (7)

In the ILC framework, the above model is identified as an
LTV impulse response model. Linearizing Yk around the
nominal trajectories (Ud, Yd) yields

= +Y Y
F U

U
U U

( )
( )k

k

k U
ks s

d (8)

Let Gs be defined as

=G
F U

U
( )k

k U
s

d (9)

Then, Yk is modeled as the output of the following linear
perturbation model with U̅k = (Uk − Us), resulting

= = +Y Y Y G U mk k ks s b (10)

with Gs having the following form

=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

G

g

g g

g g g

0 0 . . 0

0 0 . 0
. . . . . .
. . . . . .

. . .N N NN

s

10

20 21

0 1 1 (11)

The size of Gs is (NOP × N) × (NIP × N), where NOP and NIP
denotes number of output and input variables, respectively.
Here, mb denotes the sequence of model disturbances which
comprises of a sequence of measurement noise and model
disturbance. These disturbances are taken care of during the
construction of the Gs matrix. The elements of the Gs matrix are
calculated employing the multivariable least-square regression
method, which is based on the input−output data obtained by
performing a certain number of batch operations. However, to
accommodate changes happening across batches, eq 10 can be
rewritten with a LTV perturbation (LTVP) model. The
estimated elements of the Gs matrix can be represented in the
Gk matrix as follows

= +Y Y G Uk k ks (12)

with Gk synthesized as a block column matrix

= [ ]G g g g, , ...,k k
T

k
T

k N
T T

,1 ,2 , (13)

with each of the elements of Gk and gk,i are calculated by the
methods of least squares as follows

=g H H H Z( )k i k
iT

k
i

k
iT

k
i

,
1

(14)

Here, i, represent indices for the length of the trajectory and
batch number, respectively. The matrices H and Z are
synthesized by augmenting the batch data after introducing a
forgetting factor (β) so that the recent batch data can be
preferentially weighted, as follows

= =
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(15)

with

=Y i Y i Y i( ) ( ) ( )l l k (16)
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= [ ]h i u u u i( ) (0), (1), ..., ( 1)l l l l
T (17)

=u t u t u t( ) ( ) ( )l l k (18)

where i = 1, 2, ...,N; t = 1, 2, ..., (i− 1); l = 1, 2, ..., L and (0.9 ≤ β
≤ 1), L is the number of batches. The deviation variables are
refined with respect to the most current batch.

To formulate a quadratic programming problem (QPP) for
ILC, the model predictions are represented as

= + ++ +Y Y G U Y Y( )k k k k k1 s 1 (19)

Further, tracking errors are computed as

=e Y Yk ks (20)

Therefore substituting eqs 12 and eq 19 in eq 20, iterative
relationship of ek̂ along the batch index can be computed as given
below

=+ +e e G Uk k k k1 1 (21)

The change in perturbation variable in input profile Δ(U̅k+1)
is defined as

= =+ + +U U U U Uk k k k k1 1 1 (22)

For evaluating input profile of (k + 1)th batch, we optimize
the following quadratic objective function after the completion
of kth batch, penalizing tracking errors and rate of change of
control inputs enforcing constraints on the input variables Uk+1
and U̅k+1 as in eq 23

= [ + ]+ + + + +
+

J e Qe U R Umin 1/2k U
k
T

k k
T

k1 1 1 1 1
k 1 (23)

=+ +e e G Us. t. k k k k1 1 (24)

+U U Uk
lower

1
upper

(25)

+U U Uk
lower

1
upper

(26)

The solution of the above QPP yields the manipulated input
policy for the (k + 1)th batch, namely, Uk+1, as well as the target
Yk+1 based on the LTVP model eq 10.44 We evaluate the
performance of the algorithm by computing the end-point
tracking error of the process (eb,k), which is given by

=e Y Yk kb, s (27)

where Yk denotes the FAME concentration profile obtained
from the non-linear plant model and Ys represents the target
trajectory of FAME concentration, which we are trying to
achieve.
eMPC Formulation. MPC employs a system model for

future predictions, and the optimal control trajectories are
generated by minimizing a certain cost function honoring
process constraints. The first element of the control trajectory is
then applied to the system, and this process is repeated in the
subsequent time instants.45−49 The eMPC framework is used to
pre-solve the MPC optimization problem so that optimal
solution can be obtained offline.28,50 In the proposed framework,
the eMPC layer uses the trajectory obtained by solving the
batch-to-batch ILC which are used as the targets to yield control
corrections to be applied within the operation of a batch.

Let the state-space model of the plant, in deviation form, be
represented as

= ++x Ax But t t1 (28)

=y Cxt t (29)

Here, x̅ = x̅k,1, x̅k,2, ..., x̅k,N represents states trajectory in deviation
form, y̅ = y̅k,1, y̅k,2, ..., y̅k,N represents outputs trajectory in
deviation form, and u̅ = u̅k,1, u̅k,2, ..., u̅k,N represents manipulated
inputs trajectory in deviation form. Here, “k” represents the
current batch number and “N” represents the number of
sampling instants within the batch. All the deviations are
evaluated based on the trajectory obtained from the ILC step.
The reformulated constraints based on deviation variables can
be represented as

x x xtmin max (30)

u u utmin max (31)

For obtaining the MPC law, we solve the following
optimization problem

[ + + ]
=

x Q x u R u x Pxmin ( )
u t

N

t t t t N N
1

1

(32)

subject to eqs 28−31 online in a receding horizon fashion, for a
prediction horizon N.

The receding horizon optimization formulation presented in
eq 32 can be formulated as the following QPP28

= + +
Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑV x Yx M HM x FM

1
2

min
1
2u (33)

+GM W Exs. t. (34)

with Y,H, F, G,W, and Ematrices with appropriate dimensions,
and M = [u̅t,..., u̅t+N−1] is the optimal control vector.

To overcome the online computational challenges associated
with MPC, the eMPC method is utilized, where the optimization
problem is solved in a manner that optimal solutions are
obtained as an explicit function of parameters and reference
vectors, which can be obtained offline.51 This can be done by
converting the MPC cost function to a multi-parametric QPP
(mpQP), which on solving provides us with optimal solutions
which are piecewise affine functions of the polyhedral partition
of the parameter space. These partitions are called critical
regions and each are formed with optimal active set of
constraints.52 mpQP is an optimization framework to solve
constrained optimization problem by pre-computing para-
metric-dependent optimal solutions offline, whose values
become apparent online.28,50,53 Therefore, this mpQP method
is utilized to obtain explicit optimal control solution of a
constrained optimization problem of MPC very rapidly.50,54−56

To this end, the traditional MPC problem is converted to a
regulator problem, where we are tracking a reference trajectory.
The A, B, and C matrices of linear time invariant state space
model eq 28 and eq 29 can be obtained by linearizing the first-
principles model. The states “x̅” represent the deviation of the
system from the target states trajectory obtained by solving the
QPP in eqs 23−26. Similarly “u̅” represents the deviation form of
the manipulated variable trajectory.

Now to solve the equivalent mpQP, we need to convert the
eqs 33 and 34 into following equivalent form

=
Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑV min z Tz

1
2

( )z
z (35)

+Gz W Sxs. t. (36)
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where z = u̅ + H−1Fx̅ , S = E + GH−1F ′ and
=V V x Y FH F x( )z

1
2

1 . This step is completed in
the time during the transition time between two batches.
Algorithm for Batch-to-Batch ILC with eMPC.
1. Construct Gs as in eq 11 matrix using past historical data

from the nominal input (Ud) and output (Yd) profiles.
2. For batch 1, that is, for k = 1, apply Uk = Us to process.

This Uk and the corresponding Yk are added to the
historical data set, that is, eq 15.

3. Update the LTVP model of the Gk matrix with the newly
added input (Uk) and output profiles (Yk) by introducing
the forgetting factor (β) as in eq 19.

4. Solve QPP as in eqs 23−26 for the six-state model (mass
balance equations) to obtain the control input profile for
the subsequent batch, that is, Uk+1.

(a) At each sampling time, control input is obtained by
solving eq 35 and eq 36 to evaluate the off-line
optimal solutions which are a piecewise affine
function of the state in the form ofM =Wx + V for
different values of x, that is, states.

(b) After solving the eMPC problem for the energy
equations, the first element of u(t) = M(1) is
injected for next time step.

5. The control input profile Uk+1 will be used to update the
state-space model:

(a) The state-space model will be updated by updating
the point of linearization.

(b) The endpoint of target state values profile, that is,
reactor temperature profile (Tr) obtained by
solving the QPP in eqs 23−26 is used to evaluate
the target manipulated variable (coolant flowrate)
and reactor jacket temperature (Tj) using eq 48.

(c) This endpoint value of Tr and calculated values of
Tj and coolant flowrate become the point of
linearization to evaluate state-space model for every
batch. This model will be updated for every batch.

6. This control input profile obtained (Uk+1) will be the set-
point for the next MPC layer. Within batch corrections
carried out are employing eMPC to deal with
disturbances. This step will help us to provide the actual
uk+1 using eqs 33 and 34.

7. Set Uk+1 in step 2 with uk+1, and repeat the steps till the
convergence is achieved.

■ RESULTS AND DISCUSSION
Batch Transesterification Model. FAME and glycerol are

manufactured by transesterification (also known as alcoholysis)
reaction of triglycerides (TG) present in animal fats and
vegetable oils with alcohol such as methanol (M) in the presence
of an alkaline or acid catalyst. Monoglycerides (MG) and
diglycerides (DG) are produced as intermediates in these
reactions. The three-step reaction mechanism can be shown as
follows57,58

+ +F
k

TG M DG FAME
k

1

2 (37)

+ +H Ioo
k

DG M MG FAME
k

3

4 (38)

+ +H Io
k

MG M GL FAME
k

5

6 (39)

The overall reaction can be given as

+ +FTG 3M GL 3FAME (40)

Here, k1−8 represents the kinetic rate constants of the reactions
and they are functions of reactor temperature. The batch kinetic
six-state model of the three-step mechanism transesterification
reaction can be stated as below

= +
C

t
k C C k C C

d
d

TG
1 TG A 2 DG FAME (41)

=

+

C
t

k C C k C C k C C

k C C

d
d

DG
1 TG A 2 DG FAME 3 DG A

4 MG FAME (42)

=

+

C
t

k C C k C C k C C

k C C

d
d

MG
3 DG A 4 MG FAME 5 MG A

6 GL FAME (43)

= +

+

C
t

k C C k C C k C C

k C C k C C k C C

d
d
FAME

1 TG A 2 DG FAME 3 DG A

4 MG FAME 5 MG A 6 GL FAME
(44)

=C
t

C
t

d
d

d
d

M FAME
(45)

=
C

t
k C C k C C

d
d

GL
5 MG A 6 GL FAME (46)

Here, ki is the reaction rate constant which is evaluated by
Arrhenius equation =k a ei i

E RT/ai . The values of pre-exponen-
tial factor (ai) and activation energy (Eadi

) for transesterification
reaction at 323 K is given in Table 1:

The energy balance equations are given by

= +T
t

M
V c

Vr H AU T T
d
d

( ( ))r R

R m,R
r j r

(47)

Table 1. Values of ai and Eadi
at 323 K32

ai in (m3 kmol−1 min−1) a1 a2 a3 a4 a5 a6

3.92 × 107 5.77 × 105 5.88 × 1012 0.98e10 5.35 × 103 2.15 × 104

Ea di
in (kJ/mol) Ea d1

Ea d2
Ead3

Ea d4
Ead5

Ea d6

54.99 41.55 83.08 61.25 26.86 40.11

Table 2. Values of Parameters Used in Energy Balance
Equations14

V (m3) 1 ΔHr(kJ kmol−1) −18,500
ρr(kg m−3) 860 AU (kJ min−1 k−1) 450
MR (kg/kmol−1) 391.4 mJ (kg) 99.69
cmR(kJ kmol−1 K−1) 1277 cw (kJ kmol−1 K−1) 4.21
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In the above equations, Tr is reactor temperature, Tj is jacket
temperature, MR is the molar mass of reactor content, V is
reactor volume, ρR for density of reactor content, cm,R is the
molar heat capacity of reactor content, r ̇ for the rate of reaction,
ΔHr for the heat of reaction, A is heat exchange surface area,U is
thermal transmittance, cw is the specific heat capacity of water,Tc
(293.15 K) is the inlet jacket temperature, ṁc is coolant flow

rate, andmj is mass of reactor inside reactor jacket, whose values
are collated in Table 2.

The nominal reactor temperature (Trs) profile for 15 sampling
instants for a batch residence time (tf) of 100 min was evaluated
based on the FAME maximization problem. The corresponding
reference FAME concentration (Ys) can be calculated based on
the 6-state plant model with an endpoint concentration of
0.8948 kmol/m3 at tf as discussed in De et al.
Case Study Design. In this framework, batch-to-batch ILC

is used to provide the reactor temperature target profile to
eMPC, which will utilize energy balance equations to obtain

Table 3. End Point Tracking Error Comparison Study

end point tracking error

case study 1 case study 2

batch number heuristic-based approach batch-to-batch ILC proposed approach heuristic-based approach batch-to-batch ILC proposed approach

batch 1 0.0456 0.0456 0.0456 0.0602 0.0602 0.0602
batch 2 0.0422 0.0374 0.0375 0.0570 0.0477 0.0526
batch 3 0.0409 0.0299 0.0262 0.0540 0.0356 0.0408
batch 4 0.0358 0.0228 0.0136 0.0510 0.0353 0.0301
batch 5 0.03288 0.0163 0.0482 0.0334 0.02
batch 6 0.0299 0.0101 0.0454 0.029 0.0146
batch 7 0.027 0.0427 0.0233
batch 8 0.0242 0.0401 0.0233
batch 9 0.0215 0.0375 0.0134
batch 10 0.0189 0.0350
batch 11 0.0163 0.0326
batch 12 0.0138 0.0302
batch 13 0.0279
batch 14 0.0257
batch 15 0.0235
batch 16 0.0214
batch 17 0.0193
batch 18 0.0173
batch 19 0.0154
batch 20 0.0135

Table 4. RMSE Comparison Study

RMSE

case study 1 case study 2

batch number heuristic-based approach batch-to-batch ILC proposed approach heuristic-based approach batch-to-batch ILC proposed approach

batch 1 0.0506 0.056 0.0506 0.0639 0.0639 0.0639
batch 2 0.0409 0.0313 0.0494 0.0547 0.0582 0.0625
batch 3 0.0338 0.0309 0.0393 0.0474 0.0311 0.0515
batch 4 0.0297 0.0414 0.0302 0.0425 0.0264 0.0432
batch 5 0.0289 0.0531 0.0398 0.0409 0.0364
batch 6 0.0309 0.0633 0.0392 0.0575 0.033
batch 7 0.0346 0.0402 0.0551
batch 8 0.0391 0.0424 0.0683
batch 9 0.0438 0.0453 0.0594
batch 10 0.0486 0.0485
batch 11 0.0531 0.0518
batch 12 0.0574 0.0551
batch 13 0.0583
batch 14 0.0613
batch 15 0.0641
batch 16 0.0666
batch 17 0.069
batch 18 0.0712
batch 19 0.0732
batch 20 0.075
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optimal coolant flow rate in the presence of added 2%
measurement noise for reactor temperature and 2% disturbance
in the inlet jacket temperature. The purpose of decoupling is that
the batch-to-batch ILC can take care of disturbances in the inlet

jacket temperature, and eMPC can take care of disturbances in
the rate of reaction of the batch transesterification process. The
whole batch time (tf) is divided into (N = 15) sampling instants.

The proposed approach was compared with a heuristic-based
approach and constrained ILC approach with 2 percent
measurement noise. In the heuristic approach, reactor temper-
ature has been increased by a fixed magnitude of 2 K for
subsequent batches in the six-state model until the FAME
concentration reaches the desired reference trajectory.

Here, batch-to-batch correction is carried out with the help of
the batch-to-batch ILC technique and correction within a batch
is performed by employing eMPC, which is used to obtain an
optimal coolant flowrate to achieve the desired FAME
concentration, in spite of uncertainty in the process. As the
MPC problem is computationally challenging, to curb that, the
eMPC method is utilized, where the optimization problem is
solved in a manner that optimal solutions are obtained as an

Table 5. End Point FAME Concentration Comparison Study

end point FAME concentration (kmol/m3)

case study 1 case study 2

batch number heuristic-based approach batch-to-batch ILC proposed approach heuristic-based approach batch-to-batch ILC proposed approach

batch 1 0.8492 0.8492 0.8492 0.8346 0.8346 0.8346
batch 2 0.8526 0.8574 0.8573 0.8378 0.8471 0.8422
batch 3 0.8539 0.8649 0.8686 0.8408 0.8592 0.8540
batch 4 0.859 0.8720 0.8812 0.8438 0.8595 0.8647
batch 5 0.862 0.8785 0.8466 0.8614 0.8748
batch 6 0.865 0.8847 0.8494 0.8658 0.8802
batch 7 0.8678 0.8521 0.8715
batch 8 0.8706 0.8547 0.8715
batch 9 0.8733 0.8573 0.8814
batch 10 0.8759 0.8598
batch 11 0.8785 0.8622
batch 12 0.881 0.8646
batch 13 0.8646
batch 14 0.8691
batch 15 0.8713
batch 16 0.8734
batch 17 0.8755
batch 18 0.8775
batch 19 0.8794
batch 20 0.8813

Figure 2. Optimized FAME concentration profile for different batches
(case study 1).

Figure 3. Optimized reactor temperature profiles for different batches (case study 1).
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explicit function of parameters and reference vectors a priori,
which can be obtained offline.51

Case Study 1: Uncertainty in Ea d3
. In this case study, we

have introduced a disturbance of 2% increase in the Ea d3

(activation energy) in the batch transesterification model
while injecting the nominal reactor temperature profile (Trs),
due to which there is a drop in the FAME concentration from
0.8948 to 0.8492 kmol/m3 at tf due to plant-model mismatch.
To overcome this problem, we employ the combination of
batch-to-batch ILC and eMPC. The data thus obtained are
saved in a historical database, which is used to construct the
LTVP model, Gk.

The lower and upper bound for reactor temperature change
(ΔUk+1) between two consecutive batches were kept as 0 to 15

K, respectively. The QPP was solved using quadprog in
MATLAB to obtain the reactor temperature profile.44

Parameters selected to carry out the batch-to-batch ILC can
be listed asQ = diag(0.5I5×5, 0.7I6×6, 2I4×4), R = (10e− 7)I and β
= 0.9.

The reactor temperature obtained after solving QPP is given
as the set-point for the next layer, (eMPC). In this step, we solve
the constrained MPC objective problem as a mpQP with the
help of the MPT3 toolbox in MATLAB to obtain the optimized
reactor temperature profile. Here, we have also introduced noise
in the reactor temperature measurement. After implementation
of eMPC, six critical regions were formed when sampling time
was 30 s. Moreover, computational time has been reduced from
7 s for MPC to 2.6 s for eMPC, as seen from Table 6.

By the proposed approach, FAME endpoint concentration
has been improved from 0.8492 kmol/m3 for batch 1 to 0.884
kmol/m3 for batch 4 (see Figure 2). The reactor temperature
tracking obtained by solving mpQP is shown in Figure 4. It is
observed from Figure 4 that with each batch, tracking the

Figure 4. Reactor temperature tracking profiles using eMPC for different batches (case study 1).

Figure 5. Coolant flowrate profiles for different batches (case study 1).

Table 6. MPC and eMPC: Computational Savings

computational time of MPC 7 s
computational time of eMPC 2.6 s
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performance of reactor temperature has been improved.
Coolant flow rate that achieves the reference temperature
profile is shown in Figure 5. These optimized reactor
temperature profiles result in the FAME concentration profile,
as shown in Figure 3, obtained by simulating the batch
transesterification plant represented by eqs 41−46. The value
of endpoint error, the difference between reference and
optimized endpoint FAME concentration, has been dropped
from 0.0456 for batch 1 to 0.0136 for batch 4, which can be
shown in Tables 3−5. Similarly, RMSE values have been
reduced from 0.0506 for batch 1 to 0.0302 for batch 4. The
values for endpoint tracking error of FAME concentration,
RMSE, and endpoint concentration for different batches have
been tabulated in Tables 3−5. Further, the adoption of eMPC
makes the computation of the solution significantly faster
compared to normal MPC, as indicated in Table 6.

A comparative study has been performed between heuristic,
constrained batch-to-batch ILC and the abovementioned
approach (combination of batch-to-batch ILC and eMPC).

The heuristic-based approach is the best method available to
plant engineers to handle plant-model mismatch under
uncertainties. It is observed that while the heuristic-based
approach took 12 batches, only 6 batches were needed for
constrained batch-to-batch ILC only for convergence. However,
both responses were slower than the proposed ILC-eMPC,
which took 4 batches for convergence (see Tables 3−5). This
shows that the proposed arrangement is much better than
heuristic-based approach and constrained batch-to-batch ILC
approach as the former achieved convergence at a lower number
of batches. It is also observed that root-mean-square error
(RMSE) of ek showed faster tracking performance of proposed
arrangement as compared to the heuristic-based approach.
Case Study 2: Uncertainty in TG Inlet Concentration.

The proposed approach has also been applied to the same plant
model with an introduction of a 3 percent decrease in the TG
inlet concentration and a 2 percent increase in Ea d3

. For carrying
out batch-to-batch ILC, it was assumed that disturbance in TG
inlet concentration and increase in Ead3

occurred in 32nd batch as

Figure 6. Optimized FAME concentration profile for different batches (case study 2).

Figure 7. Optimized reactor temperature profiles for different batches (case study 2).
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a fixed parametric uncertainty and it remains fixed for further
batch operations. FAME end-point concentration was reduced
from 0.8948 to 0.8346 kmol/m3 due to plant-model mismatch.
Following the same algorithm, it was observed that we were able
to achieve the desired convergence at 6th batch as shown in
Figure 6. This proposed approach was compared with the
heuristic-based approach and constrained batch-to-batch ILC
approach. It was observed that convergence was achieved at 20th
batch for the heuristic-based approach and 9th batch for the
constrained batch-to-batch ILC approach, as shown in Tables
3−5. Coolant flowrate for this case study is shown in Figure 8.
Optimized FAME concentration and corresponding optimized
reactor temperature profile are shown in Figures 6 and 7,
respectively. The tracking performance of reactor temperature is
shown in Figure 9. Moreover, RMSE tracking performance was
much better for the proposed approach as compared to the
heuristic-based approach and constrained batch-to-batch ILC
approach.

■ CONCLUSIONS
In this work, we have used a combination of batch-to-batch ILC
and eMPC for optimizing FAME concentration in batch
transesterification. A six-state model of batch transesterification,
with two case studies, disturbance in Ead3

(case study 1) and
disturbance in both Ea d3

and TG inlet concentration (case study
2) has been used for batch-to-batch ILC to obtain the reactor
temperature set-point trajectory for the next layer, eMPC. It is
observed that with the progress of each batch, tracking
performance is improved, which provides an added advantage
of this arrangement. Moreover, eMPC also reduces the
computational time as compared to MPC. The main purpose
of this decoupling is that fluctuations in the rate of reaction are
taken care of by the eMPC part and disturbance in heat transfer
coefficient is taken care by batch-to-batch ILC, complementing
each other. The proposed approach results were also compared
with the heuristic-based approach and constrained batch-to-
batch ILC approach. The proposed approach was much superior

Figure 8. Coolant flowrate for different batches (case study 2).

Figure 9. Reactor temperature tracking profiles using eMPC for different batches (case study 2).
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and cost-efficient than the heuristic-based approach and
constrained batch-to-batch ILC approach.
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