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Abstract

Yersinia pestis forms a biofilm in the foregut of its flea vector that promotes transmission by flea bite. As in many bacteria,
biofilm formation in Y. pestis is controlled by intracellular levels of the bacterial second messenger c-di-GMP. Two Y. pestis
diguanylate cyclase (DGC) enzymes, encoded by hmsT and y3730, and one phosphodiesterase (PDE), encoded by hmsP,
have been shown to control biofilm production in vitro via their opposing c-di-GMP synthesis and degradation activities,
respectively. In this study, we provide further evidence that hmsT, hmsP, and y3730 are the only three genes involved in c-
di-GMP metabolism in Y. pestis and evaluated the two DGCs for their comparative roles in biofilm formation in vitro and in
the flea vector. As with HmsT, the DGC activity of Y3730 depended on a catalytic GGDEF domain, but the relative
contribution of the two enzymes to the biofilm phenotype was influenced strongly by the environmental niche. Deletion of
y3730 had a very minor effect on in vitro biofilm formation, but resulted in greatly reduced biofilm formation in the flea. In
contrast, the predominant effect of hmsT was on in vitro biofilm formation. DGC activity was also required for the Hms-
independent autoaggregation phenotype of Y. pestis, but was not required for virulence in a mouse model of bubonic
plague. Our results confirm that only one PDE (HmsP) and two DGCs (HmsT and Y3730) control c-di-GMP levels in Y. pestis,
indicate that hmsT and y3730 are regulated post-transcriptionally to differentially control biofilm formation in vitro and in
the flea vector, and identify a second c-di-GMP-regulated phenotype in Y. pestis.
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Introduction

Yersinia pestis, the cause of plague, is a Gram-negative bacterium

that is transmitted to mammals by infected fleas. It evolved from

the enteric pathogen Yersinia pseudotuberculosis within the past

20,000 years [1]. During its life cycle, Y. pestis colonizes the flea

midgut and can form a biofilm in the proventricular valve in the

foregut. Growth and consolidation of the biofilm within the

proventriculus interferes with or completely blocks normal blood

feeding, resulting in regurgitation of bacteria and transmission.

Fleas with a blocked proventriculus make prolonged, repeated

attempts to feed, enhancing the transmission of the bacteria.

Unblocked fleas are also capable of spreading disease by early-

phase transmission during the first few days after becoming

infected [2,3], but only blocked or partially blocked fleas can

transmit disease after the early phase. Thus, the ability to produce

a proventricular biofilm is believed to be crucial for long-term

enzootic persistence of Y. pestis [3,4].

When grown at #28uC on agar media containing haemin or

Congo red (CR), Y. pestis adsorbs the dye and forms greenish-

brown or red ‘pigmented’ colonies, respectively. The pigmentation

(Pgm+) phenotype of Y. pestis correlates well, although not

perfectly, with biofilm formation [5,6]. Biofilm formation in the

flea and in vitro is characterized by a dense aggregate of bacteria

embedded within an extracellular matrix (ECM). Y. pestis biofilm

and Pgm phenotypes require the hmsHFRS operon, which is

responsible for biosynthesis of the ECM polysaccharide [7–9].

As in many other bacteria, ECM production and biofilm

development in Y. pestis is controlled by bis-(39-59)-cyclic dimeric

GMP (c-di-GMP), a soluble molecule that functions as a

ubiquitous second messenger in bacteria [5,6,10]. c-di-GMP

stimulates the biosynthesis of adhesin and ECM components

and controls the switch between the free-living planktonic and

sedentary biofilm-associated lifestyles of many bacteria [11]. c-di-

GMP is synthesized by diguanylate cyclase (DGC) enzymes that

contain a GGDEF domain and is hydrolyzed by phosphodiester-

ase (PDE) enzymes that contain an EAL or HD-GYP domain [12–

14]. Bioinformatic analyses indicate that GGDEF and EAL/HD-

GYP domain genes are often highly abundant in bacterial

genomes [15]. This redundancy suggests that intracellular levels
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of c-di-GMP may reflect the cumulative activities of a complex

composite of different GGDEF and EAL/HD-GYP family

member pairs.

In this study, we evaluated the role of the ten known or putative

DGC- and PDE-encoding genes of Y. pestis in regulation of the

biofilm phenotype, and show that the two DGCs of Y. pestis make

different, environment-dependent contributions to biofilm forma-

tion. The DGC encoded by the Y. pestis hmsT gene is sufficient for

normal in vitro biofilm formation, whereas the DGC encoded by

the y3730 gene has very little effect on in vitro biofilm formation but

has the major role in producing proventricular-blocking biofilm in

the flea. We also identify autoaggregation as a second c-di-GMP-

controlled phenotype in Y. pestis that is unrelated to biofilm

exopolysaccharide production.

Results

Effect of Y. pestis GGDEF-, EAL-, and HD-GYP- domain
genes on in vitro pigmentation and biofilm phenotypes

The Y. pestis KIM strain contains ten genes that are predicted to

encode GGDEF-domain (Pfam family PF00990), EAL-domain

(Pfam family PF00563), or HD-GYP-domain (Pfam family

PF0196) proteins (Table 1) [15–17]. To determine which of these

could potentially participate in proventricular biofilm formation in

the flea, we began by evaluating the effect each of these genes had

on in vitro biofilm formation. Each gene was individually deleted

from Y. pestis KIM6+. The resulting series of mutant strains was

first tested for pigmentation phenotype using a formulation of

Congo red agar better able to detect relative increases and

decreases in pigmentation than the classic Surgalla Congo red

agar plates [18]. The plates were incubated at 28uC, a

temperature at which the KIM6+ wild-type strain exhibits an

intermediate level of pigmentation (Fig. 1A). A known nonpig-

mented mutant deleted of hmsS was used as a negative control

(Fig. 1B). As expected, the hmsT mutant formed nonpigmented

colonies and the hmsP mutant formed hyperpigmented colonies

that were a much darker red than wild-type colonies (Fig. 1 A, C,

E). Deletion of the GGDEF domain gene y3730 resulted in a very

subtle decrease in pigmentation (Fig. 1D), but deletion of the other

seven genes of interest did not affect the CR phenotype (data not

shown).

The mutants were further tested for their ability to form biofilm

in microtiter plates at room temperature using a crystal violet

staining assay (Fig. 2A). Consistent with previous results [6],

deletion of hmsT abolished biofilm formation whereas deletion of

hmsP resulted in increased biofilm formation. In addition, deletion

of y3730 resulted in slightly reduced (not statistically significant)

biofilm formation, but deletion of the other seven genes did not

affect the ability to produce biofilm in this assay (Fig. 2A).

To further assess their function, the genes encoding DGC and

PDE domains were overexpressed in Y. pestis KIM6+ from a high-

copy plasmid vector. As expected, the strain that overexpressed

hmsP formed white colonies on the CR plates and the strain that

overexpressed hmsT formed hyperpigmented colonies (Fig. 1F, G).

The strain that overexpressed y3730 also formed hyperpigmented

colonies (Fig. 1H). However, overexpression of any of the other

seven genes in Y. pestis KIM6+ did not affect the CR phenotype

(data not shown). Complementary results were observed with the

microtiter plate biofilm assay, in which increased biofilm was

produced only in strains overexpressing hmsT or y3730 (Fig. 2B).

To further confirm that y3730, hmsT, and hmsP are the only c-

di-GMP-metabolizing genes involved in biofilm formation, we

constructed hmsT y3730 double mutant, hmsT hmsP double

mutant, and hmsT hmsP y3730 triple mutant strains of Y. pestis.

As predicted, the hmsT hmsP double mutant still formed red

colonies on CR plates (Fig. 1L) and strong biofilm in vitro (Fig. 2A),

whereas the triple deletion mutant formed white colonies on the

CR plate (Fig. 1Q) and no biofilm in vitro (Fig. 2A). Complemen-

tation of the hmsT, hmsT y3730 and hmsT hmsP y3730 mutants with

either hmsT or y3730 resulted in an equivalent increase in biofilm

formation (Fig. 1I-T; Fig. 2C; Fig. 3). However, a plasmid

containing a mutated y3730 allele (M- y3730) in which the

GGDEF-encoding domain was changed to a GGAAF-encoding

domain failed to complement y3730 or hmsT mutation (Fig. 1K,O;

Fig. 2C; Fig. 3). Transformation of the triple mutant with high-

copy number plasmids containing any of the other eight genes

encoding putative DGC and PDE proteins (Table 1) did not

change the biofilm-negative and nonpigmented phenotype of the

mutant (Fig. 2C and data not shown).

Finally, we assayed intracellular levels of c-di-GMP in the Y.

pestis hmsT y3730 hmsP triple mutant before and after it was

transformed with the p-y3730 plasmid. As predicted, no c-di-GMP

was detected in cell lysates of the triple mutant. Synthesis of c-di-

GMP was observed when the mutant was transformed with

plasmids containing y3730 or hmsT, but not with M-y3730

(Fig. S1).

Differential effect of y3730 and hmsT mutation on Y.
pestis biofilm formation in fleas

The preceding results indicated that only the GGDEF domain

genes y3730 and hmsT have DGC function that potentially induces

proventricular biofilm formation. To investigate the role of y3730

during infection of the flea vector, the Y. pestis KIM6+ parent

strain and the y3730 and hmsT mutants were tested for their ability

to infect and produce biofilm-dependent proventricular blockage

in fleas (Table 2). Infection with Y. pestis KIM6+ resulted in

blockage of 38 to 45% of the fleas, consistent with previous results

[7]. Although the Y. pestis hmsT mutant forms nonpigmented

colonies (Fig. 1C) and little or no biofilm in vitro (Fig. 1C; Fig. 2A,

C; Fig. 3), it was still able to block 16 to 20% of infected fleas, a

reduction in blockage of about 50% (P,0.0001 by Fisher’s exact

test). In contrast, although deletion of y3730 had little effect on in

vitro pigmentation or biofilm-forming ability (Fig. 1D, Fig. 2A,

Fig. 3), proventricular blockage of fleas infected with the y3730

mutant was only 1 to 5%, a rate significantly lower than that of

fleas infected with KIM6+ wild-type or hmsT mutant (P,0.0001).

The blockage rates produced by the Y. pestis y3730 single mutant

and the hmsT y3730 double mutant were not significantly different

(P = 0.16), further indicating that y3730 has the predominant role

in biofilm formation in the flea. The severe defect in biofilm-

dependent proventricular blockage of the y3730 mutant could be

restored by complementation with either y3730 or hmsT on a high-

copy number plasmid; however, overexpression of the M-y3730

allele lacking the GGDEF domain did not complement the y3730

mutation (Table 2).

The infection rate and the mean bacterial load (CFU per flea) at

4 weeks (Table 2) were significantly lower in fleas infected with the

Y. pestis hmsT y3730 double mutant compared to fleas infected with

wild-type KIM6+ (P,0.05), consistent with previous reports that

lack of ability to form biofilm correlates with decreased persistence

in the flea [7,19]. The infection rate and bacterial load in fleas

infected with the y3730 mutant was not significantly different than

in fleas infected with wild-type or hmsT mutant Y. pestis (Table 2);

therefore the highly significant difference in biofilm-dependent

blockage produced by the y3730 mutant cannot be accounted for

by any decreased ability to produce a chronic infection in the flea

gut.

Regulation of Biofilm Formation in Y. pestis
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Figure 1. Pigmentation phenotype of Y. pestis strains on LB-Congo red agar. See text and Table 3 for description of the strains.
doi:10.1371/journal.pone.0019267.g001

Table 1. Known and putative DGC and PDE proteins in Y. pestis KIM6+.

Predicted function Gene No.a Gene name Motif
Y. pstbb

homologue
Comparison with Y. pstb
homologue

DGC y2559 - GGDEF YPTB1628 65% identityc

y3730 - GGDEF YPTB0592 100% identity

y3756 hmsT GGDEF YPTB0570 98% identity

PDE y1612 - ELL YPTB2605 99% identity

y2909 rtn EAL YPTB1308 93% identityc

y3841 - ELL YPTB3828 98% identity

y2472 - HI-GYP YPTB1709 30% identityc

DGC and/or PDE y3389 - GGDEF and EAL YPTB3308 92% identityc

y3832 hmsP SKTEF and EAL YPTB3836 99% identity

Other y0203 csrD LNSDI and EII YPTB3566 99% identity

aY. pestis KIM annotation number.
bY. pseuodotuberculosis IP32953 annotation number.
cDifference due to N-terminal truncation of the predicted Y. pestis protein.
doi:10.1371/journal.pone.0019267.t001
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Figure 2. Effect of Y. pestis GGDEF-, EAL-, and HD-GYP-domain genes on in vitro biofilm formation. A, B. Relative amounts of adherent
biofilm made by Y. pestis KIM6+ parent strain and isogenic derivatives deleted of (A) or overexpressing (B) one of the genes listed in Table 1. C.
Quantitation of biofilm made by the hmsT hmsP y3730 triple mutant strain overexpressing one of the genes listed in Table 1, or the mutated y3730
GGAAF allele. The mean and standard deviation of two or more independent experiments are indicated.
doi:10.1371/journal.pone.0019267.g002
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Transcription of y3730 and hmsT is upregulated in the
flea

Control of DGC and PDE expression at the transcriptional level

in different environments can be important for c-di-GMP

regulation in bacteria [10]. We compared transcript levels of

hmsT and y3730 in Y. pestis cells isolated from fleas, in vitro biofilms,

and planktonic cultures. The expression pattern of both genes was

similar in the three different growth conditions, with highest

expression detected in the flea (Fig. 4). The relative transcript level

of hmsT was even higher than that of y3730 in the flea, but this

difference was not statistically significant. Thus, differential

transcriptional regulation of hmsT and y3730 does not appear to

account for the predominant role of hmsT during in vitro growth or

the predominant role of y3730 in the flea.

DGC activity is required for the autoaggregation
phenotype of Y. pestis

Y. pestis autoaggregates during growth in liquid culture, and this

phenotype is not dependent on Hms-dependent ECM or biofilm

[20,21]. In a sedimentation assay to quantitate relative auto-

aggregation, the Y. pestis hmsS mutant aggregated in culture as

rapidly as wild type Y. pestis KIM6+ (Fig. 5), verifying that Hms-

dependent ECM is not required for the phenotype. To our

surprise, however, disruption of both hmsT and y3730, but not

either one alone, resulted in loss of autoaggregation in Y. pestis

(Fig. 5). The autoaggregation phenotype of the double mutant

Figure 3. Relative amount of in vitro biofilm made by the Y.
pestis y3730, hmsT, and y3730 hmsT mutant strains after
transformation with the empty plasmid vector, (white bars)
or the plasmid containing wild-type y3730 (hatched bars),
mutated y3730 (grey bars), or hmsT (black bars). The mean and
standard deviation of two or more independent experiments are
indicated.
doi:10.1371/journal.pone.0019267.g003

Table 2. Infection and blockage of fleas by Y. pestis strains.

Strain Y. pestis CFU/fleaa at:
Fleas infected
at 28 days Blockage rate

Fleas
(n)

0 day 28 days

KIM6+ wild type 8.2610465.56104

1.8610561.36105
4.8610562.46105

6.0610563.46105
100%
65%

38%
45%

106
113

KIM6+ DhmsT 5.1610462.86104

9.2610464.96104
3.1610561.36105

6.3610563.36105
90%
80%

20%
16%

106
119

KIM6+ DhmsT (p-hmsT) 1.0610567.76104

1.2610561.46105
7.7610564.56105

5.8610564.26105
95%
90%

46%
31%

105
90

KIM6+ Dy3730 5.8610467.36104

4.6610464.16104
2.9610563.16105

3.2610563.46105
70%
70%

1%
5%

88
108

KIM6+ Dy3730 (p-y3730) 4.2610464.06104

1.5610560.86105
6.4610563.76105

7.2610562.46105
50%
100%

37%
47%

106
106

KIM6+ Dy3730 (p-M-y3730) 3.3610562.26105

4.6610462.06104
4.4610563.26105

4.3610562.76105
95%
95%

8%
6%

108
107

KIM6+ Dy3730 (p-hmsT) 2.7610561.86105

1.5610560.86105
8.8610562.26105

8.5610563.06105
95%
90%

42%
36%

101
110

KIM6+ DhmsTDy3730 1.6610561.56105

2.0610461.96104
2.7610563.96105

3.6610464.46104
90%
24%

0%
2%

107
109

KIM6+ DhmsTDy3730 (p-y3730) 6.2610465.96104

1.7610461.26104
5.0610563.66105

5.4610563.06105
70%
85%

24%
33%

108
111

The results of two experiments with each bacterial strain are shown.
aMean6SD.
doi:10.1371/journal.pone.0019267.t002

Figure 4. Expression of Y. pestis y3730 and hmsT in vitro and in
the flea. Relative amounts of y3730 and hmsT mRNA expressed in fleas
(black bars), in vitro biofilm cultures (grey bars) and in vitro planktonic
cultures (white bars) are shown. The mean and SD of three independent
experiments is indicated. *P,0.05 by t-test.
doi:10.1371/journal.pone.0019267.g004
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could be restored by complementation with either y3730 or hmsT,

but not M-y3730. These results suggest that c-di-GMP is involved

in the autoaggregation of Y. pestis in an ECM-independent

manner.

Cyclic-di-GMP signaling pathways are known to control the

expression of virulence factors, and autoaggregation is reported to

be important for virulence in some bacteria [22–24]. Therefore,

we also tested the effect of complete loss of Y. pestis c-di-GMP

synthetic ability on virulence in a murine model of plague. No

significant difference in mortality or time to disease onset was

observed in mice injected with the virulent Y. pestis KIM6+ (pCD1-

kan) strain or with an isogenic hmsT y3730 (pCD1-kan) double

mutant, indicating that loss of DGC activity does not decrease the

virulence of Y. pestis for mice (Fig. S2).

Discussion

The biofilm phenotype is important in maintaining flea to

mammal transmission cycles of plague, because growth as a

biofilm enhances Y. pestis colonization of the flea and transmission

by fleabite. Y. pestis also grows as a biofilm in vitro in a temperature-

dependent fashion. At temperatures at or below 28uC (corre-

sponding to the ambient temperatures experienced in the flea

vector), the ECM required for the pigmentation and biofilm

phenotypes is synthesized by the hsmHFRS genes, but at 37uC
(corresponding to the mammalian host body temperature), ECM

and biofilm are not produced. To date, two mechanisms have

been identified that control biofilm development in Y. pestis. As in

many bacteria, the second messenger c-di-GMP promotes biofilm

development by activating the synthesis of the ECM. Additionally,

posttranscriptional regulation by proteolysis of HmsH, HmsR, and

HmsT at 37uC is responsible for the lack of biofilm development at

high growth temperatures [25].

When we initiated our study, only two enzymes involved in c-di-

GMP metabolism, HmsT, a GGDEF-domain diguanylate cyclase,

and HmsP, a EAL-domain phosphodiesterase had been charac-

terized in Y. pestis [6,25–27]. A very recent study has identified

y3730 as a second DGC gene, also as part of a systematic

evaluation of all ten GGDEF-, EAL-, and HD/GYP domain-

encoding genes of Y. pestis [28]. This study also demonstrated that

HmsT, HmsP, and Y3730 were the only functional c-di-GMP-

metabolizing enzymes in Y. pestis, but that y3730 had little effect on

the in vitro biofilm phenotype [28]. We have independently

confirmed these results, using a somewhat different strategy. We

systematically i) deleted and ii) overexpressed all Y. pestis genes that

were predicted to encode proteins potentially involved in the

metabolism of c-di-GMP and examined the effect on biofilm-

related phenotypes. Consistent with the recent study, we also

identified y3730 as the only other Y. pestis gene besides hmsT and

hmsP that is required for pigmentation and biofilm phenotypes and

provide confirmatory data that y3730, like hmsT, encodes a

functional GGDEF-domain DGC that synthesizes c-di-GMP.

A striking difference was seen in the relative roles of the two Y.

pestis DGCs on biofilm formation in vitro and in the flea. Deletion of

hmsT alone virtually eliminated in vitro pigmentation and biofilm

phenotypes (Fig. 1C, Fig. 2A, C; Fig. 3), consistent with previous

reports [6,25,27]. Deletion of y3730, however, resulted in at most a

very subtle decrease in in vitro pigmentation and biofilm (Fig. 1D,

Fig. 2A), which probably is why y3730 was not discovered in

previous random mutagenesis - in vitro screening strategies [27]. In

contrast, y3730 deletion had the major effect on in vivo biofilm

formation in the flea (Table 2). Differential regulation of hmsT and

y3730 transcription does not appear to account for the different in

vitro and in vivo phenotypes, because the two genes were transcribed

equivalently in both environments, with the expression of both

being upregulated in the flea (Fig. 4). One common means by

which the enzymatic activity of GGDEF and EAL domain

proteins is differentially modulated is via the presence or absence

of additional signal input domains [10]. Interestingly, y3730, but

not hmsT, encodes a HAMP signaling domain in addition to

GGDEF, signal peptide and two widely-spaced transmembrane

domains. This pattern is typical of tripartite proteins in which a

periplasmic input region responds to an environmental signal that

is transduced via the HAMP signal converter to activate a

cytoplasmic output domain, in this case GGDEF [29,30]. Thus,

Y3730 may use c-di-GMP as a second messenger to link a specific

environmental signal detected only in the flea to the appropriate

physiological response– development of a biofilm. If so, the

inducing environmental signal presumably is not present or much

weaker in vitro, where phenotypes dependent on the DGC activity

of Y3730 are not detected unless y3730 is highly overexpressed or

hmsP is deleted. This is consistent with the finding that HmsT is

responsible for 75–80% of the intracellular c-di-GMP synthesized

by culture-grown Y. pestis [28]. Differential stability, localization,

or protein-protein interactions of Y3730 and HmsT in the two

environments could also contribute to differential activity of the

two DGCs in vitro and in the flea. For example, direct interaction

among HmsT, HmsP, and other Hms proteins in the inner

membrane of Y. pestis has been demonstrated to be important for

regulation of biofilm production in vitro [31].

Seven other Y. pestis genes predicted to encode GGDEF-, EAL-, or

HD-GYP- domain proteins were also analyzed, but none of them

had any effect on pigmentation or biofilm phenotypes (Fig. 2). One

of them, y0203, contains degenerate GGDEF and EAL domains and

is an ortholog of csrD, which is not involved in c-di-GMP metabolism

but controls the degradation of CsrB/CsrC RNAs in E. coli [32].

y1612 and y3841 encode an ELL rather than an EAL domain, and

the other four have an N-terminal truncation compared to their Y.

pseudotuberculosis orthologs (Table 1). Of these, y2909, y3389, and

y2559 have been shown to be pseudogenes in Y. pestis [28].

In summary, our results confirm that only three c-di-GMP

metabolizing proteins– two DGCs (HmsT and Y3730) and one

Figure 5. y3730 and hmsT are required for Y. pestis autoag-
gregation. The % sedimentation of bacterial growth in liquid cultures
was determined by spectrophotometry after 1, 2, and 12 hours of stasis
(white, grey, and black bars, respectively). The mean and SD of two
independent experiments performed in duplicate are indicated.
doi:10.1371/journal.pone.0019267.g005
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PDE (HmsP) are involved in regulation of biofilm formation in Y.

pestis, and demonstrate that the role of Y3730 in biofilm

production is much greater in the flea than in culture media.

We also discovered a second c-di-GMP-dependent phenotype in

Y. pestis– autoaggregation. This phenotype is independent of c-di-

GMP control of ECM production and may reflect the regulation

of non-ECM surface components involved in the biofilm lifestyle.

Although c-di-GMP levels are known to regulate the expression of

virulence factors and pathogenesis in other bacteria, loss of the two

DGCs did not significantly affect pathogenesis in a mouse model

of bubonic plague (Fig. S2), suggesting that c-di-GMP does not

control the expression of essential virulence factors in Y. pestis. This

is consistent with Bobrov et al. [28], who reported that loss of DGC

activity did not affect Y. pestis virulence in mouse models of both

bubonic and pneumonic plague; and that increased c-di-GMP

levels resulted in decreased virulence.

Y. pestis evolved from Y. pseudotuberculosis within the last 20,000

years, while Y. pseudotuberculosis and Y. enterocolitica diverged about

200 million years ago [1,33,34]. Y. enterocolitica has 25 genes

encoding proteins with GGDEF, EAL, or HD-GYP domains [33],

whereas Y. pseudotuberculosis has only ten [34]. Y. enterocolitica and Y.

pseudotuberculosis are both food- and water-borne enteric pathogens

with similar lifestyles, so it is an interesting question as to why so

many DGC and PDE enzymes have been lost in Y. pseudotuber-

culosis. A complex c-di-GMP signaling pathway network may be

beneficial for survival in the environment. For example, Y.

pseudotuberculosis can form biofilm in vitro and on the surface of

Caenorhabditis elegans nematodes, but not in fleas [35–37]. In

addition, Y. pseudotuberculosis, unlike Y. pestis, is motile in some

environmental conditions, a phenotype that is also often controlled

by c-di-GMP. With only three remaining functional DGC and

PDE genes, Y. pestis appears to have simplified c-di-GMP signaling

pathways even further, with the primary role of enhancing

transmissibility by controlling biofilm formation in the flea. It is

possible that loss of function of some DGCs and PDEs present in

the Y. pseudotuberculosis progenitor might have favored biofilm

formation in the flea, and thus mutational loss of these genes may

have been positively selected during the evolution of Y. pestis.

Materials and Methods

Bacterial strains and plasmids
The strains and plasmids used are shown in Table 3. The Y.

pestis KIM6+ strain was used in this study [38]. A series of mutant

KIM6+ strains in which one of each of the ten GGDEF, EAL, or

HD-GYP-encoding genes listed in Table 1 was individually

deleted and replaced with a chloramphenicol (cat) or kanamycin

(kan) resistance gene cassette was made using the l Red

recombination method [39–41]. The double hmsT y3730 and

triple hmsT y3730 hmsP mutant strains were made similarly by

consecutive replacement of the y3730 and hmsP genes with kan

and tetracycline resistance genes, respectively, in the DhmsT::cat

mutant strain.

Y. pestis strains overexpressing one of each of the ten GGDEF/

EAL/HD-GYP genes (Table 1) were made by first cloning a wild-

type copy of each gene, PCR-amplified from KIM6+ using specific

primers, into the high-copy number plasmids pUC18 or pCR2.1-

TOPO (Invitrogen). These plasmids were then individually

transformed into the KIM6+ parent strain by electroporation. A

mutated version of the y3730 gene in which the GGDEF-encoding

domain was replaced by a GGAAF-encoding domain (resulting in

Y3730 D331A, E332A) was prepared by site-specific mutagenesis

of the pUC18::y3730 plasmid (p-y3730) using mutagenic primers

[42]. The resulting plasmid (p-M-y3730) was used to transform

KIM6+. For virulence tests, the KIM6+ and Dy3730 DhmsT

strains were transformed with the pCD1 virulence plasmid from Y.

pestis KIM5 [43] containing a kan gene inserted into the yadA

pseudogene. Oligonucleotide primers used for construction of the

strains and plasmids are listed in supplemental Table S1. All

strains were verified by PCR, DNA sequencing, or plasmid

complementation, as appropriate.

Congo red (CR) pigmentation phenotype assays
The strains were streaked on LB agar (1% tryptone, 0.5% yeast

extract, 0.5% NaCl, 1.5% agar) supplemented with 0.01% Congo

red and colonies were observed visually for pigmentation

phenotype (adsorption of the Congo red dye) after growth for

two days at 28uC.

Microtiter plate biofilm assays
Bacteria were grown in LB broth supplemented with 4 mM

CaCl2 and 4 mM MgCl2 for 24 h at room temperature and

diluted to A600 0.02 in the same medium. 100 ml aliquots were

added to wells of 96-well polystyrene dishes, which were incubated

with shaking at 250 rpm for 24 h at room temperature. Media and

planktonic cells were removed, the wells were washed four times

with water, and the adherent biofilm was stained with 200 ml of

0.01% crystal violet for 15 min. The wells were washed four times

with water, bound dye was solubilized with 200 ml of 80% ethanol-

20% acetone, and the A600 was measured. Background absorbance

for uninoculated control wells was subtracted. The mean and SD

was calculated from three independent experiments with at least

three replicates.

Flea infections
Xenopsylla cheopis fleas were fed a single infectious blood meal

containing ,56108 Y. pestis CFU/ml using an artificial feeding

system [7,44]. A sample of 20 female fleas was collected

immediately after the infectious blood meal, placed at 280uC,

and subsequently used for CFU plate count determinations of the

average infectious dose per flea. An additional group of 88 to 119

fleas (approximately equal numbers of males and females) that

took an infectious blood meal was maintained at 21uC for four

weeks, during which time the fleas were fed twice-weekly on

uninfected mice. Immediately after each of these feedings, all fleas

were individually examined under a dissecting microscope to

determine how many were blocked by proventricular biofilm [7].

After 4 weeks, a sample of 20 surviving female fleas was collected

to determine the infection rate and average CFU per infected flea

by plate count. Two independent infection experiments were done

with each strain. Flea blockage rate and the infection rate at 4

weeks after infection with the different Y. pestis strains were

analyzed by two-tailed Fisher’s exact test, and differences in the

mean CFU per flea at 4 weeks were analyzed by one-way

ANOVA with Dunnett’s post-test, using GraphPad Prism

software.

Quantitative real time PCR
Total RNA of Y. pestis KIM6+ was isolated from cells isolated

from in vitro stationary phase planktonic cultures, in vitro biofilms,

and infected fleas by using the RNeasy Mini Kit (Qiagen). For the

in vitro samples, overnight Y. pestis cultures were diluted to A600 0.02

in 50 ml LB broth supplemented with 4 mM CalCl2 and 4 mM

MgCl2, and grown 24 h with shaking in 250 ml bottles at room

temperature. Planktonic cells in the supernatant and biofilm

growth adherent to the walls of the culture vessel were separately

collected for RNA purification. Y. pestis was recovered from
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pooled, dissected midguts of fleas two weeks after infection.

Residual DNA was removed from the RNA samples by treatment

with rDnase I (Ambion) and absence of DNA was confirmed by

PCR. cDNA was synthesized from the RNA and used for

quantitative PCR on an ABI Prism 7900 sequence detection

system (Taqman, Applied Biosytems). The reaction contained

oligonucleotide primers, probes and the Taqman universal PCR

master mix (Applied Biosystems). The quantity of mRNA for each

experimental gene was normalized relative to the quantity of the

reference gene crr (y1485), whose expression level is not affected by

in vivo or in vitro growth conditions [45]. The ratio of the

normalized mRNA quantity of y3730 and hmsT to crr was

calculated from three independent assays. Primers and probe sets

used are listed in supplemental material Table S1.

Detection of c-di-GMP
c-di-GMP was detected using high-performance liquid chroma-

tography (HPLC) as described previously [46,47]. Overnight

cultures of the Y. pestis DhmsTDy3730 DhmsP strain transformed

with different recombinant plasmids or with the empty plasmid

vector were diluted 1:30 into 40 ml of LB medium supplemented

with 100 mg/l carbenicillin and grown at 28uC for 8 to10 h with

shaking at 250 rpm. Formaldehyde (final concentration of 0.18%)

was added to cultures and cells were harvested by centrifugation at

3,000 g for 10 min at 4uC. The pellets were washed with 10 mL of

phosphate buffered saline (pH 7) with 0.18% formaldehyde and

recentrifuged. The bacterial pellets were resuspended in 1 ml of

deionized water and heated at 99uC for 15 min. 2 ml of 95%

ethanol were added and the lysate was centrifuged. Supernatants

were reextracted with 2 ml of 70% ethanol. Pooled supernatants

were evaporated, and pellets were dissolved in 100 ml of 0.15 M

triethyl ammonium acetate (TEAA, pH 5.0) and centrifuged

15 min at 160006 g. 20 mL of supernatant was fractionated using

an Agilent 1200 Series HPLC (Agilent) with a reverse-phase C18

column (Suplecosil LC-18T, 25064.6 mm, 5 mm; Supelco).

Separations were conducted in 0.15 M TEAA at a 1 mL/min flow

rate from 20 ml sample injections, using gradient elution with 0 to

15% acetonitrile with detection at 254 nm. Synthetic c-di-GMP

(BIOLOG Life Science Institute) was dissolved in 0.15 M TEAA

and used as a standard for peak identification and quantification.

Table 3. Strains and plasmids used in this study.

Strain or plasmid Genotype and/or description Reference or source

Y. pestis KIM6+ strains:

KIM6+ wild type [38]

DhmsS DhmsS::cat [40]

DhmsT DhmsT::cat This study

Dy3730 Dy3730::kan This study

DhmsP DhmsP::kan This study

Dy0203 Dy0203::kan This study

Dy1612 Dy1612::kan This study

Dy2472 Dy2472::kan This study

Dy2559 Dy2559::kan This study

Dy2909 Dy2909::kan This study

Dy3389 Dy3389::kan This study

Dy3841 Dy3841::kan This study

DhmsT Dy3730 DhmsT::cat Dy3730::kan This study

DhmsT DhmsP DhmsT::cat DhmsP::kan This study

DhmsT Dy3730 DhmsP DhmsT::cat Dy3730::kan DhmsP::tet This study

KIM6+ (pCD1-kan) KIM6+ with pCD1-kan This study

KIM6+ DhmsT Dy3730 (pCD1-kan) KIM6+ DhmsT::cat Dy3730::kan with pCD1-kan This study

Plasmids:

p-hmsT (pCBD26) hmsT in pCR2.1-TOPO [41]

p-y3730 y3730 in pUC18 This study

p-hmsP hmsP in pUC18 This study

p-y0203 y0203 in pCR2.1-TOPO This study

p-y1612 y1612 in pCR2.1-TOPO This study

p-y2472 y2472 in pUC18 This study

p-y2559 y2559 in pCR2.1-TOPO This study

p-y2909 y2909 in pCR2.1-TOPO This study

p-y3389 y3389 in pCR2.1-TOPO This study

p-y3841 y3841 in pCR2.1-TOPO This study

p-M-y3730 y3730 with mutated GGDEF domain (D331A,E332A) in pUC18 This study

pCD1-kan pCD1 virulence plasmid with kan cassette inserted into yadA This study

doi:10.1371/journal.pone.0019267.t003
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Autoaggregation assays
Y. pestis strains were grown overnight at 28uC with shaking at

250 rpm in 15 ml LB supplemented with appropriate antibiotic.

Cultures were vortexed, transferred to 15 ml tubes, and allowed to

sit undisturbed at room temperature. 1 ml of culture was removed

from the top of the tube at t = 0, 1, 2, and 12 h and the A600 was

determined. To calculate the percentage of sedimentation, the

A600 at different time points was divided by the A600 of the t = 0

sample.

Mouse infection assays
Y. pestis KIM6+ (pCD1::kan) and KIM6+ DhmsTDy3730

(pCD1::kan) strains were grown overnight without shaking in

BHI at 28uC and used to inoculate fresh BHI cultures that were

incubated overnight in the same conditions. Bacteria were

quantified by direct count and serially diluted in PBS. Female 6

to 8-week-old RML Swiss Webster mice were inoculated

subcutaneously with 100 CFU of Y. pestis, verified by plating the

inocula on blood agar. Mice were examined three times daily for

two weeks and euthanized upon signs of terminal plague [44].

Plague was verified by culture of Y. pestis from triturated

suspensions of spleens dissected from euthanized mice. All animal

experiments were approved by the Rocky Mountain Laboratories,

National Institute of Allergy and Infectious Diseases, National

Institutes of Health Animal Care and Use Committee (protocol

number 07-44) and were conducted in accordance with all

National Institutes of Health guidelines.

Supporting Information

Figure S1 Y. pestis y3730 encodes a c-di-GMP synthesizing

diguanylate cyclase (DGC) enzyme whose activity is dependent on

the GGDEF domain. A. HPLC profile of a solution of 0.4 nmol

synthetic c-di-GMP. B–H. HPLC quantification of intracellular

levels of c-di-GMP in the Y. pestis hmsT y3730 hmsP triple mutant

transformed with the empty plasmid vector (B, C) or with the

plasmid vector containing hmsT (D, E), y3730 (F, G) or the

mutated GGAAF allele of y3730 (H). Samples C, E, and G were

supplemented with 1 nmol synthetic c-di-GMP. Arrows indicate

the c-di-GMP peaks.

(TIF)

Figure S2 Loss of diguanylate cyclase (DGC) activity does not

significantly reduce Y. pestis virulence in a mouse model of bubonic

plague. Incidence of terminal disease in mice after subcutaneous

injection of 100 CFU of Y. pestis KIM6+ (pCD1-kan) (white boxes)

or KIM6+ DhmsT Dy3730 (pCD1-kan) (black circles) is shown. All

ten mice developed terminal plague after injection of the wild type

Y. pestis KIM6+, and 9 of 10 mice developed terminal plague

after injection of the DhmsT Dy3730 double mutant.

(TIF)

Table S1 Sequences of primers and probes used in this study.

(DOC)
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