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Abstract
This paper reviews the advancements in deep learning for hepatic vascular segmentation and its clinical implications in the
holistic management of hepatocellular carcinoma (HCC). The key to the diagnosis and treatment of HCC lies in imaging
examinations, with the challenge in liver surgery being the precise assessment of Hepatic vasculature. In this regard,
deep learning methods, including convolutional neural networksamong various other approaches, have significantly
improved accuracy and speed. The review synthesizes findings from 30 studies, covering aspects such as network architec-
tures, applications, supervision techniques, evaluation metrics, and motivations. Furthermore, we also examine the chal-
lenges and future prospects of deep learning technologies in enhancing the comprehensive diagnosis and treatment of
HCC, discussing anticipated breakthroughs that could transform patient management. By combining clinical needs with
technological advancements, deep learning is expected to make greater breakthroughs in the field of hepatic vascular seg-
mentation, thereby providing stronger support for the diagnosis and treatment of HCC.
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Introduction
Hepatocellular carcinoma (HCC) ranks as the sixth most
prevalent cancer globally and the third leading cause of
cancer-related mortality.1 Given the intricate vascular
network within the liver and the risk of vascular injury
and tumor seeding associated with histopathological
biopsy,2 imaging findings serve as crucial data for patient
screening, diagnosis, and therapeutic guidance. The treat-
ment modality for liver cancer involves a systematic
approach comprising both surgical intervention and
medical anti-tumor therapy.3 The refinement of its treat-
ment regimen necessitates a detailed interpretation and ana-
lysis of the patient’s radiological data, encompassing tumor
localization, vascular assessment, volume measurement,
and watershed analysis, among other steps, with vascular
assessment serving as the foundation for completing a
series of procedures. The hepatic vasculature, comprising
the hepatic veins, portal vein (PV), and hepatic artery,
with the latter two typically running in close proximity,

determines the hepatic vascular drainage, along with the
hepatic veins, which forms the basis of accurate segmenta-
tion of modern liver therapy.4 The spatial relationship
between vessels and tumors, the involvement of hepatic
vascular territories by tumors, and the remaining healthy
vascular territories govern the selection of treatment
approaches, scope, and pathways. Meanwhile, during
anti-tumor drug therapy, the dynamic changes in the
spatial relationship between the tumor and blood vessels
are of particular concern to clinicians. However, manual
extraction and interpretation of vascular information from
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multi-dimensional, multi-perspective, multi-temporal, and
multi-modal imaging data are challenging, subjective, and
lack reproducibility for further analysis.5,6 Hence,
computer-based hepatic vascular segmentation has
emerged as a solution.

Image segmentation is the process of dividing the entire
image into several regions with similar properties, essen-
tially separating objects from the background within the
image.7 Hepatic vascular segmentation specifically
involves separating the target vessels from the background.
However, abdominal medical images are characterized by
high resolution, high dimensionality, complex tissue struc-
tures, multimodality, noise, artifacts, and difficulties in
standardization, posing challenges for this segmentation
task. Traditional image processing, computer vision, and
machine learning segmentation methods, including thresh-
olding,8 region growing,9 and edge detection,10 primarily
rely on features of vascular pixels and vessel boundaries.
However, these traditional methods exhibit limitations
when dealing with complex vascular structure data and
large datasets. With the rapid advancement of deep learn-
ing, deep learning-based image segmentation methods
have achieved significant success in the field of hepatic vas-
cular segmentation.11 Compared to traditional machine
learning and computer vision methods, deep learning
demonstrates advantages in segmentation accuracy
(ACC), speed, multimodal and multi-tasking, and big data
processing.

To comprehensively summarize various methodologies,
we conducted searches on Google Scholar and Web of
Science using the keywords “liver vessel segmentation,”
“hepatic vascular segmentation,” and “deep learning” to
retrieve the latest literature. The original search yielded
293 studies. We screened 30 studies, excluding
non-English articles, studies outside the scope of deep
learning-based segmentation, studies not related to liver
vessel segmentation, and duplicate articles from the same
research. Inclusion criteria encompass recent research
work (2015–2024), methods tested and validated, articles
written in English, papers specifically addressing liver
vessel segmentation, and those employing deep learning
methods, ensuring that all results presented are validated.
Due to advancements in imaging technology, a large
number of early stage and small HCC cases have been
detected. In these cases, the liver images are almost indistin-
guishable from those of healthy individuals, lacking the
imaging characteristics of liver cirrhosis or other chronic
liver damage, and the lesions occupy an extremely small
proportion of the entire background in terms of pixels and
voxels. However, there is a lack of publicly and privately
available datasets for small and early stage HCCs. In
response to this clinical reality, we incorporated data from
both HCC patients and healthy individuals in our study
on hepatic vascular segmentation. We focused on segmen-
tation performance in both scenarios with liver cirrhosis and

chronic liver damage and with minimal background noise,
thus enriching our investigation. Unlike existing reviews,
this review not only reviews the latest developments,
advantages, and limitations of liver vessel segmentation
from the perspective of deep learning, compares and sum-
marizes relevant methods, but also provides further insights
from a clinical application standpoint. Additionally, it sum-
marizes the challenges and prospects of deep learning
methods in liver vessel image segmentation tasks. The
structure of this paper is as follows: In the second section,
we will provide an overview of deep learning technologies.
The third section will review the progress of deep learning
in liver vessel segmentation research. In the fourth section,
we will discuss the requirements and applicability of deep
learning-based liver vessel segmentation methods from
the perspective of systematic diagnosis and treatment of
HCC. Lastly, We will summarize the full text and put
forward the prospect.

Overview of deep learning
Deep learning, as a popular research direction in the field of
artificial intelligence, simulates the learning mechanism of
the brain to automatically extract features from a large
amount of data. It is based on deep neural networks com-
posed of multiple neurons, which process information
through complex connections.12 Deep learning enables
the realization of complete image processing workflows,
especially as the number of network layers increases. In
computer vision, deep learning is widely applied to tasks
such as image recognition, restoration, segmentation, etc.,
demonstrating outstanding performance. Convolutional
neural networks (CNNs) are a landmark model in deep
learning, combining deep learning and image processing
techniques to achieve significant advancements in image
analysis. CNNs reduce the number of parameters and
improve training efficiency through weight sharing and
spatial relationships, making them a supervised learning
model.13 Since the concept of visual receptive fields was
proposed by Hubel and Wiesel14 in 1962, through
Fukushima’s15 introduction of the neural cognitive
machine based on receptive fields in 1980, to LeCun
et al.’s16 introduction of LeNet5 using the backpropagation
algorithm in 1998, CNNs have undergone a process from
theoretical exploration to experimental development. The
introduction of AlexNet17 marked a breakthrough for
CNNs in the ImageNet competition, solidifying their core
position in computer vision research and continuously
driving further research in the field. We summarize the fun-
damentals in the aspects shown in Figure 1. These are also
advantages of deep learning. In the field of complex
medical image segmentation, including hepatic vascular
segmentation, deep learning is gradually replacing trad-
itional machine learning methods and has become the main-
stream of research.
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Application of deep learning in hepatic vascular
segmentation
Assessing hepatic vasculature is fundamental and critical
for refining HCC treatment, and hepatic vascular segmenta-
tion serves as an efficient approach to acquiring vascular
information. Therefore, research on hepatic vessel segmen-
tation has become one of the bridges and links facilitating
the translation of deep learning technologies into clinical
practice. In this section, we will focus on the problem of
hepatic vascular segmentation and analyze it from the fol-
lowing perspectives, summarizing the existing research
achievements of deep learning in this field. We summarize
the basic information of the 30 included studies in Table 1.

Motivations for liver vessel segmentation

We summarized the 30 studies included in this paper from a
novel perspective. Currently, the motivation for hepatic
vascular segmentation primarily focuses on addressing the
challenges of low vessel contrast and complex morphology
using specialized techniques and algorithms across different
modalities, angles, and phases of datasets. We further cat-
egorize this motivation into six aspects: improving segmen-
tation ACC, automation, and standardization, addressing
challenges in small vessel segmentation, multi-modal and

multi-task learning, practicality of new datasets, and real-
time or near-real-time analysis. These aspects are summar-
ized in Table 2. It is evident that the current motivation
behind hepatic vessel research is primarily focused on
addressing graphical and image-related issues through algo-
rithms and technologies, including segmentation ACC and
processing efficiency, rather than being driven by clinical
problems and demands. The motivation for hepatic vascular
segmentation should encompass a broader spectrum of clin-
ical needs, which is also crucial for achieving clinical trans-
lation. We will further elaborate on the section titled
“Potential clinical translation of hepatic vascular segmenta-
tion in HCC.”

Network type: Platform for addressing hepatic
vascular segmentation issues

In deep learning, network structure refers to a series of algo-
rithmic components and their connections that constitute
the deep learning model. These components typically
include layers (such as convolutional layers, recurrent
layers, fully connected layers, etc.), nodes, weights, activa-
tion functions, etc. For research on hepatic vascular seg-
mentation, the network structure serves as the algorithmic
framework of the model, defining how data is processed

Figure 1. Different components of a typical deep learning pipeline.
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Table 1. Basic information of hepatic vascular segmentation research based on deep learning.

Reference Year Network type Modalities

Huang et al.18 2018 3D U-Net CT

Kitrungrotsakul et al.19 2019 VesselNet MRI

Thomson et al.20 2019 3D U-Net US

Zhang et al.21 2020 GAT+CNN CT

Zhao et al.22 2020 RetinaNet+U-Net+LSTM US

Yan et al.23 2021 LVSNet CT

Yang et al.24 2021 V-Net CT

Xu et al.25 2021 U-Net+MTCL CT

Brown et al.26 2021 2D U-Net LUS

Affane et al.27 2021 MultiRes U-Net CT

Su et al.28 2021 Dense V-Net CT

Meng et al.29 2021 TransFusionNet CT

Baek et al.30 2022 3D U-Net PCD-CT

Kuang et al.31 2022 VRA-Net CT

Hao et al.32 2022 HPM-Net CT

Li et al.33 2022 CT

Li et al.34 2022 GAT+CNN CT

Li et al.35 2022 U-Net CT

Zbinden et al.36 2022 nnU-Net MRI

Ali et al.37 2022 nnU-Net CT

Svobodova et al.38 2022 3D V-Net CT

Yuan et al.39 2023 AFF-Net CT

Wanget al.40 2023 TransFusionNet CT

Zhou et al.41 2023 U-Net CT

Tong et al.42 2023 SDA-UNet CT

Wu et al.43 2023 IBIMHAV-Net CT

Yu et al.44 2023 RESIDUAL U-Net CT

(continued)
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Table 1. Continued.

Reference Year Network type Modalities

Alirr et al.45 2023 U-Net CT

Cheema et al.46 2023 GAN-cAED PET-CT, CTA

Sobotka et al.47 2024 Y-Net MRI

2D: two-dimensional; 3D: three-dimensional; AFF-Net: adaptive feature fusion network; LSTM: long short-term memory; BCLSTM: bidirectional convolutional
LSTM; CNN: convolutional neural network; CT: computed tomography; CTA: CT angiography; GAN-cAED: generative adversarial network-convolutional
autoencoder; GAT: graph attention network; HPM-Net: hierarchical progressive multiscale network; IBIMHAV-Net: inductive biased multi-head attention
vessel net; US: ultrasound; LUS: laparoscopic US; MRI: magnetic resonance imaging; MRI: magnetic resonance imaging; MTCL: mean-teacher-assisted
confident learning; nnU-Net: neural networks for U-Net; PCD: photon-counting detector; PET: positron emission tomograpy.

Table 2. Motivation for hepatic vascular segmentation research based on deep learning.

Reference Motivation

Zhao et al.22 Improving segmentation accuracy and overcome ultrasonic noise

Kitrungrotsakul et al.19 Automation and solving the small blood vessel segmentation problem

Yang et al.24 Automation and solving small blood vessel segmentation problems

Kuang et al.31 Multi-modal and multi-task learning

Sobotka et al.47 Multi-modal and multi-task learning

Brown et al.26 Automation and standardization, multi-modal and multi-task learning

Huang et al.18 Automate and improve segmentation accuracy

Affane et al.27 Improving segmentation accuracy

Thomson et al.20 Real-time and near-real-time analytics

Svobodova et al.38 Improving segmentation accuracy

Yuan et al.39 Solving the problem of small blood vessel segmentation

Su et al.28 Reducing training samples and improve training accuracy

Alirr et al.45 Automation and solving the small blood vessel segmentation

Cheema et al.46 The utility of the new dataset

Zhang et al.21 Solving the problem of small blood vessel, reducing artificial labels

Hao et al.32 Multi-task learning and improving segmentation accuracy

Wu et al.43 Multi-task learning and improving segmentation accuracy

Li et al.34 Improving segmentation accuracy and connectivity

(continued)
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through a series of computational layers and how key features
for liver vessel segmentation are extracted from inputmedical
imaging data. It also serves as a platform for researchers to
innovate, adapting to the problems and challenges encoun-
tered in hepatic vascular segmentation research by experi-
menting with different network architectures and parameter
adjustments. We will summarize the deep learning network
structures currently applied to hepatic vascular segmentation
models, guided by problems (Figure 2).

U-Net: The foundation of segmentation network architecture.
Ronneberger et al.48 designed a U-Net network for biomed-
ical imaging, which has been widely used in medical image
segmentation since its proposal. This method was intro-
duced at the MICCAI conference in 2015 and has been
cited over 4000 times. The name “U-Net” originates from
its U-shaped network structure, consisting of an encoding
path and a symmetric decoding path. The encoding path
is similar to traditional convolutional networks, gradually
reducing the spatial dimensions of feature maps while
increasing the feature depth through successive convolution
and pooling layers. The decoding path restores the spatial
dimensions of feature maps through upsampling and convo-
lution operations until the output reaches the same reso-
lution as the original image. A key feature of U-Net is the
introduction of skip connections in the expansive path,
which connect feature maps from the encoding path to
their corresponding feature maps in the decoding path.
This connection helps preserve and restore detailed

information about the image during upsampling, thereby
improving segmentation ACC. Convolutional layers in
U-Net typically use small kernels and are stacked repeat-
edly to capture local features. Nonlinear activation func-
tions are typically applied after convolutional layers. In
the decoding path, U-Net utilizes transpose convolution
for upsampling feature maps to restore their spatial dimen-
sions. Additional convolutional layers can be added during
upsampling to adjust and refine feature maps. Similarly,
U-Net is one of the most commonly used architectures for
hepatic vasculature segmentation. Taking Brown et al.’s26
study as an example, they applied U-Net to hepatic vascular
segmentation research, aiming to address the real-time
registration of vessels during laparoscopic liver resection
surgery by enhancing the training efficiency of multimodal
data and the automation of segmentation. They employed a
two-dimensional (2D) U-Net model to automatically
segment liver vessels in 2D laparoscopic ultrasound
(LUS) images and integrated it into a previously developed
untracked LUS-CT registration method to achieve fully
automatic initialization, thereby addressing the registration
problem of LUS to CT without tracking devices. Batch nor-
malization blocks were added to each layer to accelerate the
training process, reduce internal covariate shifts, and help
prevent overfitting. A differentiable Dice loss function
was utilized to train the network, measuring the similarity
between predicted segmentation and ground truth segmen-
tation. By optimizing the loss function, the model could
learn more accurate segmentation boundaries. Compared

Table 2. Continued.

Reference Motivation

Yan et al.23 Solving the problem of small blood vessel segmentation

Zbinden et al.36 Automatic segmentation

Ali et al.37 Multimodal and multitask learning to increase training set size

Xu et al.25 Effective use of low treatment labels

Zhou et al.41 To improve the segmentation accuracy

Tong et al.42 Improving segmentation accuracy

Li et al.33 Solving the problem of small blood vessel segmentation

Wang et al.40 Multitask learning improves segmentation accuracy

Baek et al.30 The utility of the new dataset

Yu et al.44 Automation and standardization to solve the lack of manual labeling

Li et al.35 Multitasking learning reduces label use

Meng et al.29 Multitask learning solves the problem of small vessel segmentation
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to traditional CNNs, U-Net compensates for the shortcom-
ings of CNNs’ feature extraction ability through its deep
network structure, enabling effective integration of global
and local information for precise image segmentation,
while maintaining good generalization ability and adapt-
ability to small datasets. Furthermore, the structure of
U-Net allows researchers to modify and extend it according
to specific tasks. This will be further elaborated in the fol-
lowing sections in conjunction with specific research.

Three-dimensional (3D) U-Net and VNet: Enhancement of
visualization, interactivity, and efficiency. With the advance-
ment of medical computed tomography (CT) and 3D
imaging technologies, the basic unit for hepatic vascular
segmentation has shifted from pixels to voxels. From the
perspective of images and graphics, voxels provide richer
spatial information in 3D space, facilitating the understand-
ing and segmentation of complex vascular structures, while
also aiding in capturing the spatial orientation and connect-
ivity of vessels more accurately. Utilizing voxels allows for
finer segmentation in 3D space, which is particularly useful
for identifying and distinguishing structures such as vessels
with small sizes and complex shapes. This differs from the
objective of natural image segmentation. From a clinical
application standpoint, voxel-level segmentation can
provide better visualization effects, with segmentation
results being more interpretable, thereby enabling possibil-
ities for treatment planning and disease detection. The 3D
U-Net and V-Net are two variants of the U-Net network
structure. The 3D U-Net replaces 2D convolution opera-
tions with 3D convolutions, directly handling 3D image
data. It maintains the symmetric structure of the U-Net
and enhances segmentation ACC by combining feature
maps of the encoder and decoder through skip connections.
The 3D U-Net integrates more contextual information
through 3D convolution layers, deepens the network

depth to expand the receptive field, captures image features
from multiple perspectives, and assigns higher weights to
labeled data through a weighted loss function, enabling
learning from sparse annotations, thereby reducing
manual labeling efforts and improving efficiency.
Leveraging this characteristic of the 3D U-Net, Huang
et al.18 proposed a 3D U-Net grid model for hepatic vascu-
lar segmentation, achieving automatic extraction of hepatic
vascular information under the premise of incomplete
hepatic vascular annotation. Similarly, the 3D U-Net can
perform multitasking and multimodal data training, inherit-
ing the advantages of the U-Net and extending these advan-
tages from pixels to voxels. Baek et al.30 introduced a 3D
U-Net model utilizing photon-counting detector CT
(PCD-CT) for extracting multi-energy information, enab-
ling collaborative training on PCD and CT data to
improve the ACC of hepatic vascular segmentation. The
V-Net is another variant network structure of the U-Net
designed for voxel processing, initially proposed by
Milletariet et al.49 The V-Net combines the characteristics
of 3D convolutions with the U-Net architecture. The
network structure mainly consists of two parts: the com-
pression path and the decompression path. The compres-
sion path gradually reduces the spatial dimensions of the
image through consecutive convolution layers and convolu-
tional pooling operations while increasing the number of
feature channels to extract deeper features. On the other
hand, the decompression path restores the spatial dimen-
sions of the image through upsampling and convolution
operations while reducing the number of feature channels
to achieve precise pixel-level prediction. Unlike the 3D
U-Net, V-Net firstly employs residual connections to facili-
tate gradient backpropagation, accelerating network con-
vergence while ensuring sufficient representation of
foreground voxels even in deep features, preserving
vessel features. Su et al.28 optimized this characteristic by

Figure 2. Main network type structure diagram.
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introducing dense connection blocks into V-Net, construct-
ing DV-Net, where each layer’s input includes not only the
output of the previous layer but also the outputs of all pre-
vious layers. This design enables the network to more
effectively reuse features from previous layers, aiding gra-
dient propagation, and improving the network’s perform-
ance and ability to fit nonlinear features. Additionally, to
better capture liver vessel features, a dual-branch dense
connection downsampling strategy is proposed, which
adds extra branches before downsampling to reduce the
size of feature maps through 1×x1×x1 convolutions and
adaptive max pooling operations, thereby preserving more
spatial information and detailed features. Secondly, V-Net
integrates the upsampled feature maps with the correspond-
ing feature maps of the encoder layers, effectively integrat-
ing multiscale feature information, and thereby improving
segmentation ACC and efficiency. This characteristic has
been applied and optimized by Yang et al.,24 who intro-
duced dilated convolutions and designed a cross-scale
dense connection in the decoder, enhancing the accuracy
and efficiency of liver vessel detail segmentation. Lastly,
V-Net replaces pooling operations with convolution opera-
tions, saving computational resources while retaining more
structural information, which is more effective for segment-
ing vessel areas with low contrast, a common and challen-
ging scenario in liver vessel images. Svobodova et al.38

combined this advantage of V-Net with the enhanced
Rank Orientation Responses of Path Operators filter to
improve the contrast of liver vessels.

U-Net variants: Module modifications. Adapting to various
problems and task objectives, and adjusting the components
of U-Net is a strategy. Therefore, a series of variant net-
works derived from U-Net have emerged, combining the
advantages of U-Net and specific components. A module
refers to a functional unit within a network, which can be
a convolutional layer, pooling layer, fully connected
layer, normalization layer, activation function, or any
other type of neural network layer. Network adjustments
can be made by adding or removing modules, changing
module types, adjusting module parameters, or modifying
module connections. The adjustment of the U-Net module
primarily focuses on optimizing the liver vessel segmenta-
tion model from two perspectives: training efficiency and
speed, and segmentation ACC. From a technical standpoint,
the optimization of training speed and efficiency holds sig-
nificant implications for conserving computational
resources. Meanwhile, from a clinical perspective, where
patients’ conditions are subject to rapid changes, attaining
real-time interactive segmentation results emerges as a crit-
ical component for clinical translation. For the former
aspect, Thomson et al.20 reduced the number of filters per
layer in the U-Net by one-eighth to avoid bottleneck phe-
nomena, aiming to improve the efficiency of interactive
3D vascular visualization between CT and ultrasound

images, providing a possibility for intraoperative naviga-
tion. Yu et al.44 proposed a novel 3D residual U-Net archi-
tecture by introducing residual blocks into the 3D U-Net to
improve training speed and enhance the representational
capacity of discriminative features. For the latter aspect,
Tong et al.42 introduced the multi-axis squeeze-excitation
module (MASE) and distribution correction module
(DCM) into the U-Net architecture. MASE performs
squeeze and excitation operations on coronal and sagittal
planes to restrict the activation region of the network only
to the dense area (DA) of hepatic veins, reducing back-
ground noise interference and enhancing attention to
hepatic vein features. DCM calculates and corrects the
coordinate distribution of hepatic veins at different segmen-
tation mask scales through a deep supervision strategy to
improve segmentation ACC. Alirr et al.45 incorporated
consistency-enhanced diffusion filtering and vascular filter-
ing methods into U-Net to improve vascular contrast and
intensity uniformity, while introducing an improved
residual block called ResDense block, which passes infor-
mation between residual blocks using connections rather
than summation, helping to retain more information
between different layers of the network. Zhou et al.41

designed a sequence-based context-aware correlation
network by adding a slice-level attention module (SAM)
to U-Net. SAM bridges the feature differences between
the encoder and decoder by fusing high- and low-
dimensional features in different spatial and channel dimen-
sions, enhancing the model’s ability to capture details of
intrahepatic vessels. Feature maps are fused through
element-wise addition, multi-fusion blocks, element-wise
multiplication, and concatenation operations to enhance
the structural details of intrahepatic vessels in both spatial
and channel domains.

U-Net variants: Branch network architecture modifications. A
branch structure refers to the presence of multiple parallel
paths within a network, which can process different features
or data streams. Adjustments to the branch structure include
methods such as adding or removing branches, adjusting
branch depth, merging or splitting branches, and establish-
ing cross-branch connections. The adjustments to the U-Net
branch network primarily aim to meet two objectives for
liver vessel segmentation models as follows: firstly, to
enhance the utilization efficiency of labels and the predic-
tion of vessel segmentation results; secondly, to better
adapt to the requirements of multitasking and multiscale
liver vessel segmentation. Labels refer to annotations of dif-
ferent regions in images. When training deep learning
models for liver vessel segmentation, these annotations
inform the model about which pixels belong to specific
structures or objects. Labels can guide the model in learning
features and optimizing model parameters by comparing
predicted results with actual labels. Obtaining high-quality
labeled data is often challenging, as it requires clinicians to
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invest a significant amount of effort and cost to complete
pixel-level or voxel-level annotations, which is unrealistic
for clinical practice. Therefore, efficient utilization of
limited labels is an important direction. Liver vessel
medical imaging spans a wide range, with tens or even hun-
dreds of cross-sectional layers, varying vascular features in
different enhanced phases of imaging data, and its own
complex structure. Training multi-task, multi-scale, and
multi-modal segmentation models aligns with this scenario.
For the former aspect, Zhao et al.22 concatenated two add-
itional network models to U-Net, proposing a deep neural
network structure combining RetinaNet, U-Net, and long
short-term memory (LSTM) networks. This structure first
enhances data with histogram equalization for data augmen-
tation and preprocessing, then extracts regions of interest
(ROIs) using RetinaNet, utilizes U-Net to extract features
of ROIs and performs deconvolution operations to
achieve automatic vessel segmentation, and finally uses
the LSTM network to predict vessel information in subse-
quent images. Xu et al.25 introduced a self-confidence
learning framework (mean-teacher-assisted confident learn-
ing (MTCL)) into U-Net, where the model utilizes expo-
nential moving averages to update the weights of the
teacher model. The teacher model guides the student
model by providing consistency loss, enabling the student
model to maintain stable predictions in the presence of
input perturbations, thereby improving the model’s general-
ization ability. The model also adapts confident learning
technology to identify and handle noisy labels in low-
quality annotated data. By estimating the joint distribution
between noisy labels and true labels and using the teacher
model as a third party to identify label noise, the model
can reduce the negative impact of noisy labels on the learn-
ing process. The smoothly self-denoising module gradually
improves noisy labels through soft correction, transforming
noisy labels from a burden into valuable data, and providing
beneficial guidance for the model. For the latter aspect,
Affane et al.27 introduced the MultiRes U-Net into liver
vasculature segmentation research, which enhances the
model’s multi-scale feature learning ability based on
U-Net by adding multiple resolution paths, enabling it to
handle image information at different scales simultan-
eously. This multi-scale structure helps the network
capture finer image features, thereby improving segmenta-
tion ACC. Hao et al.32 proposed a dual-branch progressive
(DBP) 3D U-Net for liver vasculature segmentation, redu-
cing the loss of detailed information during network down-
sampling by using a DBP downsampling strategy. This
network structure achieves feature learning of liver vascula-
ture at different scales through internal and external pro-
gressive learning strategies. The internal progressive
learning strategy gradually expands the network depth
from shallow networks to deep networks to obtain receivers
of different sizes for learning different levels of semantic
information. The external progressive learning strategy

complements and fuses local and global information by
transferring and merging feature maps between different
stages of training. Similarly, following the hierarchical
structure, Li et al.35 divided the network structure based
on the overall vessels and sub-type vessels. This design
allows the network to simultaneously complete these two
sub-tasks and reduce feature sharing and error accumulation
by combining feature maps from encoding layers in the
output layer to predict overall vessels and sub-type vessels.

U-Net variants: nnU-Net). The nnU-Net is an open-source
medical image segmentation framework, with “neural net-
works for U-Net” as its full name.50 This framework is
based on the popular U-Net architecture, which employs a
modular design philosophy, allowing users to customize
and configure the network according to specific application
requirements to provide higher flexibility and automation.
The nnU-Net, developed by Isensee GmbH,50 aims to sim-
plify the process of medical image segmentation tasks,
enabling researchers and developers to train and deploy
customized segmentation models on their own datasets
effortlessly. The nnU-Net demonstrates strong generaliza-
tion capabilities for various medical image segmentation
tasks due to its adaptability, suitability for multimodal
data, and flexibility in hyperparameter tuning. Similarly,
in liver vessel segmentation research, nnU-Net has exhib-
ited generalization capabilities across different tasks.
Zbinden et al.36 introduced nnU-Net into the study of
liver vessel segmentation, focusing on magnetic resonance
imaging (MRI) liver datasets, aiming to evaluate the effect-
iveness of automatically segmenting the liver and its vessels
acquired from non-contrast-enhanced T1 Vibe Dixon. In
this study, nnU-Net provides an end-to-end automated
machine learning pipeline, meaning the entire process
from data preprocessing to model training, post-processing,
and evaluation is automated, reducing manual intervention
and improving efficiency. It can handle both single-modal
and multi-modal input data, including single-modal inputs
such as in-phase, opposed-phase, water, and fat reconstruc-
tion, and attempts to segment these different types of
images as multi-modal inputs to evaluate the impact of dif-
ferent inputs on segmentation performance. Ali et al.37 con-
figured the FuSe loss module in nnU-Net, allowing the
model to learn from different annotation protocols, regard-
less of the overlap between categories. This design enables
nnU-Net to effectively handle partially annotated data,
thereby expanding the dataset available for training. To
some extent, it provides a solution to the problem of simul-
taneous segmentation of the liver, lesions, and vessels,
which cannot be achieved due to the lack of datasets with
large-scale joint annotations and the absence of multi-class
models. Yuan et al.39 added three components based on
nnU-Net: the adaptive feature fusion (AFC) module,
enhanced assistance (EA) module, and global information
supervision (GIS) module. AFC guides the effective
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fusion of high-level features and low-level features through
spatial attention weight maps. The high-level features gen-
erate spatial attention weight maps, which are generated by
the spatial attention module (SAM) using average pooling
and max pooling to obtain different pooling features, then
processed through 1 × 1 × 1 convolution and sigmoid acti-
vation functions. The attention weight maps are multiplied
with low-level features to obtain weighted low-level fea-
tures, which are then concatenated with high-level features
to form adaptive context features fusion. EA inputs the liver
mask image and enhanced vessel image into two branches
of the model network, sharing the same network weight
parameters. Through the optimization of network para-
meters and proposed supervision loss functions, the infor-
mation from the enhanced vessel image can be fully
utilized to assist the network in perceiving robust vessel
signals, thereby generating accurate vessel segmentation
results. The GIS module takes the original liver image as
input, captures edge vessel information, and generates seg-
mentation results containing intrahepatic and extrahepatic
vessels. The network branch of this module does not
share network parameters with the other two branches. By
cropping with the liver mask GTliver, segmentation
results with more liver edge information are generated.

Generative adversarial networks (GANs): Dataset capacity and
diversity expansion. GANs are a type of deep learning archi-
tecture consisting of two competing neural networks,
namely the Generator and the Discriminator. The
Generator aims to generate data that closely resembles the
real data distribution, while the Discriminator’s objective
is to differentiate between generated data and real data.
These two networks mutually confront each other during
training, thereby improving the quality of the generated
data. Combining the requirements of semantic segmenta-
tion and the characteristics of GANs, Luc et al.51 trained
a convolutional semantic segmentation network and an
adversarial network. In the field of liver vessel segmenta-
tion, the goal of GANs is to expand the dataset capacity
by generating synthetic images through adversarial gener-
ation. The synergistic training of high-quality synthetic
and real image data enhances the robustness of segmenta-
tion models. Cheema et al.46 applied an improved
GAN-convolutional autoencoder (GAN-cAED) model to
liver vessel segmentation research. The network structure
consists of two core components: the GAN component
for synthesizing fused images, and the cAED component
for liver vessel segmentation using CTA/synthetic positron
emission tomograpy-CT. The training objective of the
cAED network is to minimize reconstruction loss, that is,
the difference between input images and reconstructed
images. To achieve this, the network learns the probability
distribution of input data during training and optimizes it
through gradient descent and backpropagation algorithms.
In this way, cAED effectively utilizes realistic images

generated by GANs and the generation capability of the
cAED network, thereby achieving finer liver vessel seg-
mentation. Kuang et al.31 used an improved cycle-
consistent adversarial network to achieve segmentation
and domain adaptation of arterial and venous phase CT
images in liver-enhanced CT. The entire network structure
consists of two generators and four discriminators, aimed at
achieving global and local style transfer of small vessels
through adversarial training. The generators, named GAB
and GBA, are responsible for converting arterial phase
CT images into venous phase CT images and vice versa
while preserving vessel details and achieving image trans-
formation between the two domains. Four discriminators,
where DA and DB distinguish real arterial and venous
phase CT images, while LDA and LDB focus on local vas-
cular information to ensure effective preservation of gener-
ated small vessels during domain transformation. The goal
is to achieve segmentation of the entire vascular system on
single-phase CT images, ignoring displacement and
deformation of vessels in different phases, while reflecting
the states of arterial and venous vessels.

GAT+CNN: Optimization of connectivity, spatial features, and
edge features. The network architecture combining graph
attention networks (GAT) with CNN is an advanced deep
learning model. GAT is an important concept in graph
neural networks (GNNs), while CNN is the most commonly
used architecture in the field of image segmentation.52 This
joint network architecture connects GNN with CNN, com-
bining the advantages of graph attention mechanisms and
CNNs to handle both graph-structured and grid-like data.
The data processed by GNN consists of nodes and edges.
Typically, an adjacency matrix is used to represent the
graph structure, capturing the correlations between nodes
and edges in the graph.53 The GAT layer assigns different
weights to neighbors of each node through attention
mechanisms, allowing the model to focus on the most
important node features, effectively capturing complex rela-
tionships between nodes. CNN layers are typically used to
process grid-like data, such as images. They extract local
features through convolution operations, capturing hier-
archical structures and local patterns in space. Such a com-
bination allows the network to simultaneously handle
graph-structured data and associated grid-like data, enhan-
cing the model’s expressive power and applicability.
Vascular data conforms to these characteristics, making
the GAT+CNN network architecture a research direction
for liver vessel segmentation. From a clinical perspective,
the network structure of GAT+CNN offers advantages in
handling complex spatial structures of liver vessels.
Additionally, it provides a solution for clarifying the con-
nectivity of peripheral vessels and poorly filled vessels, as
well as determining the edge features of vessels. This is
because the topological configuration of the three sets of
hepatic vessels within the liver is precisely the grid data
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formed by the nodes that GAT excels at handling. In liver
vessel segmentation research, Zhang et al.21 initially gener-
ated liver vessel centerline heatmaps using full CNN and
initialized vessel graph models through image processing
algorithms. The initial tracking graph was transformed
into a dual graph, and for each node in the dual graph, fea-
tures were sampled from specific layers of the CNN. A
graph attention layer was used to compute the potential
representations for each node. Attention coefficients were
calculated by combining node features and weight
vectors, allocating an existence probability for each
branch segment. Finally, the output layer generated the
final output for each node by averaging the outputs of atten-
tion heads, namely the existence probability of each branch
segment. Based on the calculated probabilities, branch seg-
ments with confidence lower than a threshold were pruned
from the final reconstructed result to reduce false-positive
branches. Li et al.34 integrated GAT with lightweight 3D
U-Net using an efficient mechanism called “plug-in
mode.”GAT selectively uses information from neighboring
nodes through attention mechanisms to model the connect-
ivity of vessels. GAT, as a multitask branch, is integrated
into U-Net and is only used to supervise U-Net with con-
nectivity priors during training, without using GAT
during the inference stage, thus not increasing the hardware
and time costs compared to U-Net alone, improving model
efficiency. The advantages of the GAT+CNN network
architecture lie in its flexibility and adaptability, enhancing
computational efficiency, and improving performance in
multiple tasks, including node classification, image classifi-
cation, and image-graph matching, as it integrates two
powerful feature extraction mechanisms.

Transfomer+CNN: Integration of global and local vascular
features. The network architecture combining transformer
and CNNs offers complementary advantages in feature
extraction. The transformer was initially applied to natural
language models and natural image segmentation.
However, using the transformer alone for medical image
segmentation did not yield satisfactory results. The archi-
tecture of the transformer combined with CNNs emerged
because researchers aimed to leverage the strengths of
both models to enhance the performance of medical
image segmentation tasks. Transformers excel at capturing
global dependencies and long-range interactions,54 while
CNNs are proficient in capturing local spatial features.
CNN’s convolutional operations are effective in capturing
spatial patterns and local context in medical images.
Transformers are adept at modeling long-range dependen-
cies in sequences, which is beneficial for capturing anatom-
ical relationships and complex structures in liver vessel
networks. The combination of transformer and CNN
allows for flexible architecture design tailored to the spe-
cific requirements of liver vessel segmentation tasks.
Researchers can customize the network architecture by

adjusting the depth, width, and connectivity of both compo-
nents to achieve optimal performance. Wu et al.43 proposed
a robust end-to-end vessel segmentation network called
inductive biased multi-head attention vessel net
(IBIMHAV-Net), which combines 3D swin-transformer
with effective convolution and self-attention mechanisms
to improve the ACC of liver vessel segmentation. The
model adopts a 3D swin-transformer as the backbone
network, which can capture the global dependencies of
images. By transforming the input 3D volume data into
high-dimensional tensors, the model can learn hierarchical
object concepts at different scales. Meanwhile, the induct-
ive biased multi-head self-attention (IB-MSA) mechanism
is introduced. Different from traditional self-attention
mechanisms, IB-MSA improves the recognition ability of
liver vessel edges by learning the relative position embed-
ding of inductive bias. This mechanism helps the model
better understand and process complex vessel structures.
TransFusionNet is another form of a combination of trans-
former and CNN.55 Its basic network architecture includes a
transformer-based semantic feature extraction module,
local spatial feature extraction module, edge extraction
module, multi-scale feature fusing module, and multi-task
training strategy. These modules work together to extract
global semantic features and local spatial details of
images while considering edge information to achieve
more accurate segmentation results. Meng et al.29 first intro-
duced TransFusionNet into the field of liver vessel segmen-
tation. In this study, the transformer-based encoder in the
transformer semantic feature extraction module captures
the global contextual features of the image. The input
image is first processed through a feature extraction back-
bone network and then segmented into multiple small
blocks, each of which is transformed into an information
matrix through convolutional operations. Learnable pos-
ition embedding is used to enhance the transformer layer
to understand the positional information of each part of
the image. The local spatial feature extraction module
stacks multiple layers of SEBottleNet to extract local fea-
tures of the image, such as edges and fine vessels. The
squeeze and excitation module enhances the BottleNet
residual network, strengthening the interdependence
between feature map channels. In the edge extraction
module, the edges of CT images extracted by the Canny
algorithm are used as input to predict edge information
and integrate it into the segmentation network. The pre-
dicted class distribution map is output by combining the
features extracted by the above three modules. The multi-
scale feature fusion (MSFF) module processes different
feature maps through convolution and pooling operations
to achieve MSFF.

Other CNN network structures: The driving force behind
ongoing advancements. There are many variants of
CNN-based network architectures for liver vessel
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segmentation research. Kitrungrotsakul et al.19 proposed a
segmentation method based on CNN called VesselNet.
The network explores the 3D structure and improves recog-
nition performance by performing binary classification on
training patches extracted from three perspectives (sagittal,
coronal, and transverse planes). Yan et al.23 proposed
LVSNet, whose innovative features include the attention-
guided concatenation (AGC) module and the MSFF
block. The AGC module, located between the encoder
and decoder, is used for the effective fusion of features at
different levels. The MSFF block enhances the network’s
representation of features at different scales by dividing fea-
tures into multiple groups and exchanging information
between different groups to achieve MSFF. Li et al.33 pro-
posed a new deep learning network called bidirectional con-
volutional LSTM (BCLSTM), which is a hybrid neural
network architecture combining CNN and LSTM.
BCLSTM integrates convolutional layers into the trad-
itional LSTM structure to handle sequential data, while util-
izing bidirectional LSTM to capture both forward and
backward dependencies in sequences. It explores 3D
context in segmentation and edge prediction branches.
The 3D features from both branches are concatenated to
facilitate the learning of segmentation maps. Sobotka
et al.47 introduced the Y-net model to simultaneously
predict the segmentation target (vessel labels) and closely
related auxiliary imaging modalities (contrast-enhanced
imaging) for vessel segmentation in liver MRI without con-
trast enhancement. The Y-net structure consists of three
downsampling blocks and two upsampling blocks, each
downsampling block containing two 3 × 3 × 3 convolu-
tions, followed by ReLU and group normalization, and a
2 × 2 × 2 max-pooling operation. The upsampling path
uses nearest-neighbor interpolation and adopts a neural dis-
criminative dimension reduction layer for feature fusion.
This model is used for both liver vessel segmentation and
contrast-enhanced image generation. The development of
network architectures offers promising prospects and poten-
tial for liver vessel segmentation models.

Supervision: Learning pattern in hepatic vascular
segmentation

Supervised learning, unsupervised learning, and semi-
supervised learning are the three main learning patterns in
machine learning and deep learning, each with different sig-
nificance and application scenarios in liver vessel segmen-
tation methods based on deep learning. In supervised
learning, the model training requires a large amount of
annotated data, namely input data (such as CT scan
images) and corresponding output labels (the segmentation
results of liver vessels). For liver vessel segmentation,
supervised learning can provide accurate segmentation
results because the model learns directly from known

correct segmentations. The drawback of this approach is
the need for a large amount of high-quality annotated
data, which is often time-consuming and expensive.
Additionally, accurate annotation for medical images
requires the involvement of radiologists or experts.
Unsupervised learning does not rely on annotated data but
attempts to discover patterns and structures from the data
itself. In liver vessel segmentation, unsupervised learning
can be used to identify vessel structures in images.
However, due to the complexity of liver vessel structures
and the interference of artifacts and noise, and considering
the substantial amount of data required for unsupervised
training, obtaining liver image data is challenging.
Therefore, unsupervised learning is not mainstream in exist-
ing deep learning-based liver vessel segmentation research
but is generally used for preliminary vessel detection or as a
preprocessing step to assist subsequent supervised learning.
Kuang et al.31 applied unsupervised learning during the
GAN stage. Semi-supervised learning combines the charac-
teristics of supervised and unsupervised learning, using a
small amount of annotated data and a large amount of
unlabeled data for training. It can reduce the need for a
large amount of annotated data while utilizing unlabeled
data to improve the model’s generalization ability. It
helps the model learn useful feature representations from
unlabeled data and is currently an emerging hotspot in
liver vessel research. Li et al.,33 Xu et al.,25 and Sobotka
et al.47 applied semi-supervised learning in their research.

Evaluation metrics and performance

In tasks of liver vessel segmentation based on deep learn-
ing, evaluation metrics are crucial indicators used to quan-
tify the segmentation performance and represent an
important aspect of liver vessel segmentation tasks. These
metrics reflect the algorithm’s performance and the ACC
of the segmentation results. This paper will summarize
the evaluation metrics currently applied in research and
present them along with performance in Table 3.

Dice similarity coefficient (DSC) and F1 score. The DSC and
F1 score are similar statistical tools used to assess the simi-
larity or overlap between two samples, particularly in
medical image analysis for evaluating the ACC of image
segmentation. The value of DSC ranges from 0 to 1,
where a value closer to 1 indicates a higher degree of
overlap between two samples and thus a more accurate seg-
mentation result.

DSC = 2 × |A ∩ B|
|A| + |B| (1)

A represents the ground truth. B represents the segmented
region predicted by the algorithm. |A ∩ B| denotes the inter-
section of A and B, indicating the size of the overlapping
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Table 3. Performance for liver vessel segmentation research based on deep learning.

Reference Dataset Performance

Zhao et al.22 CLUST 2015 Precision= 98.9%; mAP= 96.7%

Kitrungrotsakul et al.19 IRCAD, VASCUSYNTH DSC= 90.35 %; Sensitivity= 92.90 %

Precision= 0.842; VOE= 21.6%

Yang et al.24 3D-IRCADB DSC= 71.60 %; Sensitivity= 75.40%; Specificity= 98.50%;

Kuang et al.31 Private dataset DSCa = 0.8454; DSCv = 0.8087

Sobotka et al.47 Private dataset DSC= 0.506; Jaccard= 0.343; MAD= 3.929

Brown et al.26 Private dataset DSCmean ∈ [0.543, 0.706]

Huang et al.18 Slicer07, 3D-IRCADB DSCpre = 67.5%, DSCpost = 75.3%,

Affane et al.27 IRCAD DSCMultiResU-Net,Slab-based = 0.880

Thomson et al.20 Private dataset DSC3D = 0.740 ± 0.02; DSC2D = 0.781 ± 0.07

Svobodova et al.38 3D-IRCADB DSCproposed = 76.2%; Precisionproposed = 77.7%

Yuan et al.39 3D-IRCADB Sensitivity = 0.7312 ± 0.1190; DSC = 0.7224 ± 0.0504

Su et al.28 3D-IRCADB, MSD DSC = 75.46%; Sensitivity = 76.93%

Alirr et al.45 MSD DSC = 79.00%; Sensitivity = 82.20%; Specificity = 95.10%

Cheema et al.46 Private dataset DSC = 95.30% ± 0.6%

Zhang et al.21 Private dataset F1 = 0.8762 ± 0.0549

Hao et al.32 3D-IRCADB DSC = 75.18%; Sensitivity = 78.84%; Accuracy = 98.88%

Wu et al.43 3D-IRCADB DSC = 74.80%; Sensitivity = 77.50%

Li et al.34 3D-IRCADB, MSD DSC = 65.41% ± 1.32%; 95% HD = 8.04 ± 0.74

Yan et al.23 Private dataset △DSC = 0.029

Zbinden et al.36 Private dataset DSCportal veins = 0.634 ± 0.09; DSChepatic veins = 0.532 ± 0.12

Ali et al.37 IRCAD, LiTS DSC = 60.00%

Xu et al.25 3D-IRCADB, MSD DSC = 0.7245; Precision = 0.7570; ASD = 1.1718; HD = 7.2111

Zhou et al.41 Private dataset DSC = 0.845; Precision = 0.856; Sensitivity = 0.866; F1 = 0.87620.861

Tong et al.42 MSD DSCpublic = 71.37%; DSCprivate = 69.58%

Li et al.33 VesselNN, IRCAD, DeepVess DSCVessel = 0.789; DSCIRCAD = 0.68

Wang et al.40 LiTS, 3D-IRCADB IoU = 0.854

Baek et al.30 Private dataset DSC = 0.863 ± 0.043

(continued)
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region between the two areas. |A| and |B|, respectively,
denote the total area or volume of A and B.

The F1 score is used to measure the balance between
precision and recall in binary classification models. It is
the harmonic mean of precision and recall, serving as a
single evaluation metric that comprehensively considers
both precision and recall. The F1 score ranges from 0 to
1, with higher values indicating better classification per-
formance of the model. The expression is:

F1 = 2 ×
Precision × Recall
Precision+ Recall

(2)

The F1 score is particularly suitable for situations with class
imbalance because it simultaneously considers precision
and recall, enabling a more comprehensive assessment of
the model’s performance. When the model achieves a
good balance between precision and recall, the F1 score
tends to be higher.

The DSC and F1 scores are equivalent in certain situa-
tions. Specifically, when prediction results are converted
to binary form, the Dice coefficient and F1 score yield
the same results. Some variants of DSC can indeed be
derived from the F1 score. For instance, clDice,56 which
focuses on evaluating vascular connectivity, can be
defined as the harmonic mean of two measures, and the
harmonic mean is essentially the F1 score. However, in
some models, such as V-Net, where the evaluation
metric such as soft-Dice49 requires adjustments to
enhance the assessment performance for sample similar-
ity, DSC and F1 may differ due to their different
emphases.

Jaccard index and intersection over union. The Jaccard index
is a measure of the similarity between two sets, also known
as intersection over union (IoU). In fields such as medical
image segmentation, the Jaccard coefficient is commonly
used as an evaluation metric to quantify the overlap
between the segmentation result and the ground truth anno-
tation. The expression is:Jaccard coefficient = |A ∩ B|

|A ∪ B| (3)

A represents the set of ground truth annotations. B repre-
sents the set of predictions obtained by the segmentation

algorithm. |A ∩ B| denotes the size of the intersection of
sets A and B, which is the number of elements shared by
both sets. |A ∪ B| represents the size of the union of sets
A and B, that is, the total number of elements in both
sets. The Jaccard coefficient ranges from 0 to 1, where a
value closer to 1 indicates a higher degree of overlap
between the two sets and thus better consistency
between the segmentation result and the ground truth
annotation. The Jaccard coefficient provides a simple
and intuitive way to evaluate the performance of segmen-
tation algorithms, especially suitable for binary image seg-
mentation tasks where sets can be simplified to sets of
pixels.

Accuracy (ACC). ACC is a commonly used evaluation metric
in classification tasks, used to measure the correctness of
the model’s classification for all samples. It is defined as
the proportion of samples correctly classified out of the
total number of samples. The expression is:

Accuracy = T P+ T N
T P+ F P+ F N+ T N

(4)

TP denotes the true positive, indicating the number of
positive samples correctly identified as positive by the
model. TN represents the true negative, signifying the
number of negative samples correctly identified as nega-
tive by the model. FP represents the false positive, indi-
cating the number of negative samples incorrectly
identified as positive by the model. FN represents the
false negative, indicating the number of positive
samples incorrectly identified as negative by the model.
The ACC value ranges from 0 to 1, where a value
closer to 1 indicates better classification performance of
the model, meaning a higher proportion of correctly clas-
sified samples. In medical image segmentation, high
ACC implies that the model can effectively distinguish
between ROIs and non-interest regions.

Sensitivity. Sensitivity, also known as TP rate and recall, is a
critical metric for evaluating the performance of classifica-
tion models, particularly in fields such as medical image
segmentation and disease diagnosis. It measures the

Table 3. Continued.

Reference Dataset Performance

Yu et al.44 Private DSCHV = 71.7%; DSCPV = 76.5%

Li et al.35 IRCAD PrecisionPV = 98.9%; PrecisionHV = 99.7%

Meng et al.29 LiTS, 3D-IRCADB DSC = 0.899

DSC: dice similarity coefficient; MAD: mean absolute distance; mAP: mean average precision; VOE: volumetric overlap error; IoU: intersection over union; PV:
portal vein; HV: hepatic vein.
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model’s ability to correctly identify positive samples (such
as vascular regions). The expression is:

Sensitivity = TP
TP+ FN

(5)

Sensitivity values range from 0 to 1, with higher values
indicating a stronger ability of the model to recognize posi-
tive samples.

Specificity. Specificity, also known as TN rate, is a crucial
metric for evaluating the performance of classification
models, particularly in fields such as medical image seg-
mentation and disease diagnosis. It measures the model’s
ability to correctly identify negative samples (such as non-
lesion regions). The expression is:

Specificity = TN
TN+ FP

(6)

Specificity values range from 0 to 1, with higher values
indicating a stronger ability of the model to recognize nega-
tive samples. For example, in medical image segmentation,
if an algorithm has high specificity, nearly all true non-
lesion regions will be correctly identified, reducing the like-
lihood of misdiagnosis.

Precision. Precision is an important evaluation metric in
classification tasks, used to measure the proportion of true
positive samples among all samples predicted as positive
by the model. High precision means that among the
samples predicted as positive by the model, a higher propor-
tion is truly positive, that is, there are fewer false positives.
The expression is:

Precision = TP
TP+ FP

(7)

Precision values range from 0 to 1, with higher values indi-
cating higher correctness of positive class predictions in the
model’s results. In practical applications such as medical
image segmentation, precision can help us understand the
ACC of the model in predicting ROIs, thereby evaluating
the model’s performance.

Mean average precision (mAP). mAP is a commonly used
evaluation metric in the fields of object detection and infor-
mation retrieval, used to measure the overall performance
of the model for multiple classes or queries. mAP is
obtained by calculating the average of the area under the
curve for each class, which comprehensively considers
the precision performance of the model at different recall
levels.
mAP = 1

N

∑N
i=1

APi( ) (8)

N represents the total number of categories. APi is the
average precision for the ith category. The expression for

AP is:

APi = 1
11

∑11
k=1

APi(k) (9)

Here, APi(k) represents the precision value at recall levels
of k/11 (e.g. 1/11, 2/11, . . . , 1). This partition is designed
to ensure that AP contributes at different recall levels, rather
than just at specific points. mAP considers not only the
model’s detection ACC (through precision) but also its
detection capability (through recall). Additionally, by com-
puting AP at multiple recall levels, the model’s perform-
ance is comprehensively evaluated under different
circumstances.

Volumetric overlap error (VOE). VOE is an evaluation metric
used to assess the performance of medical image segmenta-
tion. VOE measures the error in volume overlap between
the segmentation result and the ground truth. It is calculated
by computing the ratio of the intersection to the union of the
segmentation result and the ground truth. A smaller VOE
value indicates higher consistency between the segmenta-
tion result and ground truth, indicating better segmentation
ACC. The expression is:

VOE = 1− V(A ∩ B)
V(A ∪ B)

(10)

A represents the ground truth. B represents the segmented
region predicted by the algorithm. V(A ∩ B) denotes the
volume of the intersection between A and B, which is the
volume of the overlapping region between the two areas.
V(A ∪ B) represents the volume of the union of A and B,
which is the total volume of the two areas.

Average surface distance. Average surface distance (ASD)
is a metric used to evaluate the quality of image segmenta-
tion and the performance of models, especially in the field
of medical image segmentation. The ASD between the pre-
dicted segmentation result and the ground truth is mea-
sured. Specifically, it calculates the surface distance
between the predicted segmentation boundary and the
ground truth boundary and takes the average of all these
distances. The expression is:

ASD = 1
N

∑N
i=1

d Pi, Qi( ) (11)

N represents the number of boundary points. Pi is the ith
surface point in the predicted segmentation result. Qi is
the ith corresponding surface point in the ground truth
annotation. d(Pi, Qi) is the surface distance between point
Pi and point Qi. A smaller ASD value indicates less
surface difference between the segmentation result and
the ground truth annotation, indicating higher segmentation
quality.
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Hausdorff distance (HD). HD is used to measure the
maximum distance between two sets, here employed to
assess the maximum inconsistency between the segmenta-
tion boundary and the ground truth boundary. The expres-
sion is:

HD(A, B) = max max
x∈A

d(x, B), max
y∈B

d(y, A)
( )

(12)

A and B are two sets of points. d(x, B) is the distance from
point x to the nearest point in set B. d(y, A) is the distance
from point y to the nearest point in set A. HD can be used
to quantify the maximum deviation between the segmenta-
tion boundary and the ground truth boundary. This aids in
evaluating the ACC of segmentation algorithms, especially
in terms of boundary localization.

Mean absolute distance (MAD). MAD calculates the average
distance from points on the segmentation boundary to the
nearest points on the ground truth boundary. It is used to
assess the average inconsistency between the segmentation
boundary and the ground truth boundary. The expression is:

MAD = 1
N

∑N
i=1

xi − yi
∣∣ ∣∣ (13)

N is the number of points in sets A and B (assuming the two
point sets are of the same size). xi is the coordinate of the ith
point in set A. yi is the coordinate of the ith point in set B.
| · | denotes the absolute value. This can be used to quantify
the ACC of segmentation algorithms. A smaller MAD
value indicates a smaller difference between the segmenta-
tion result and the ground truth annotation, meaning a
closer alignment between the segmentation boundary and
the ground truth boundary.

Clinically relevant evaluation metrics. Traditional evaluation
metrics focus on sample similarity and do not differentiate
between pixels that belong to the same hepatic vessel. In
different clinical scenarios, the importance of vessel
pixels varies by location. For example, in the surgical treat-
ment of HCC, identifying the terminal branches of vessels
is more critical than the main vessels. Although there are
many branches in hepatic vessels, their pixel proportion is
small. Traditional metrics are inadequate for effectively
assessing the segmentation performance of liver vascular
models on branching vessels. Researchers are increasingly
aware of this issue. In current studies related to liver
vessel segmentation, some researchers have focused on
designing evaluation metrics that are tailored to clinical
characteristics. For example, Cheema et al.46 proposed the
branching level identification rate as an evaluation metric,
aiming to quantify and evaluate the performance of
models in identifying major vessel branches of the liver,

serving surgical interventions. The expression is:

BLRR(i, j, k) =
LHV, MHV, RHV if cv(i, j, k) ≤ 0.70

LPV, MPV, RPV if cv(i, j, k) ≥ 0.50

others if cv(i, j, k) ∈ (0.50, 0.70)

⎧⎪⎨
⎪⎩

(14)

cv(i, j, k) is a connectivity-based metric used to assess the
segmentation quality of vessel (i, j, k). LHV, MHV, and
RHV represent the left, middle, and right hepatic veins,
respectively. LPV, MPV, and RPV represent the left,
middle, and right PVs, respectively. The value of
cv(i, j, k) is determined based on specific threshold α,
which is used to distinguish different vessel branches.
BLRR focuses on assessing the identification rate of
major branches of the main blood vessels. It constructs a
variant of DSC using the threshold α to incorporate the
granularity of branch detection. However, BLRR is not sen-
sitive to small blood vessel branches. Wu et al.43 proposed
the branches detected (BD)/tree-length detected (TD) index
to quantify global/local hepatic vascular feature segmenta-
tion. The computation of BD and TD is typically based
on centerline measurements and can be performed as
follows: extract vessel centerlines from both segmentation
results and ground truth annotations, calculate the number
of vessel branches in the segmentation result (BD), calcu-
late the total length of vessel trees in the segmentation
result (TD). The greater the number of vessel branches
per unit length, the better the segmentation performance
for hepatic vascular branches. The BD/TD index can help
researchers and clinicians understand the performance of
segmentation models in handling hepatic vessels, especially
in identifying vessel branches and vascular tree structures.
By optimizing these metrics, the ACC of hepatic vessel seg-
mentation can be improved, thereby providing better
support for clinical surgical planning and treatment.

Potential clinical translation of hepatic vascular
segmentation in HCC
In a broad sense, image segmentation refers to dividing an
image into several non-overlapping regions, each posses-
sing similar properties such as grayscale, color, texture,
etc.57 The purpose of image segmentation is to simplify
or alter the representation of the image, making the segmen-
ted regions easier to analyze and understand. Medical image
segmentation is a critical task for clinical diagnosis and
research, for dealing with highly imbalanced data remains
a significant challenge in this domain.58 Liver vessel seg-
mentation is a specific application scenario in the field of
image segmentation, which focuses on identifying and separ-
ating the vascular structures within the liver from medical
images. Liver vessel segmentation is a task at the intersection
of medicine and computer science. Currently, research
methods mostly target computer-related challenges and
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requirements, emphasizing segmentation ACC and efficiency,
while neglecting the analysis and understanding of the seg-
mented regions. Eisenmann et al.59 conducted a multicenter
study incorporating 80 biomedical image segmentation chal-
lenges, where they found that the majority of researchers’
efforts primarily focused on fitting past evaluation metrics
rather than addressing underlying domain issues. Challenge
organizers should pay more attention to ensuring that actual
biomedical needs are reflected in their competition designs.
Addressing clinical domain issues is crucial to realizing the
value of liver vessel segmentation. In this section, we will inte-
grate the comprehensive diagnostic and treatment patterns of
HCC (Figure 3) and clinical practice experience to summarize
and discuss the demands and challenges of deep learning-
based liver vessel segmentation methods in specific clinical
scenarios. We aim for this discussion to facilitate the gradual
transition of deep learning-based liver vessel segmentation
research from the laboratory stage to clinical application,
achieving clinical translation.

Systematic treament

The systematic treatment of HCC is a multidisciplinary,
multimodal treatment regimen aimed at achieving optimal
therapeutic outcomes through various treatment modalities.3

Within this framework, internal medicine treatment for HCC
mainly includes supportive treatment and anti-tumor treat-
ment. Supportive treatment aims to maintain the patient’s
condition, treat side effects, and improve the quality of life
throughout the course of systemic treatment.60 Anti-tumor

treatment encompasses chemotherapy, targeted therapy,
and immunotherapy.1 Sorafenib is the first multi-target tyro-
sine kinase inhibitor confirmed to improve the survival of
patients with advanced liver cancer.61 Regarding vascular
assessment, deep learning-based liver vascular segmentation
methods have the potential to be translational throughout the
systematic treatment of liver cancer. In terms of diagnosis,
achieving visualization and quantification of the spatial rela-
tionship between tumors and blood vessels through high-
precision vascular segmentation, including whether tumors
invade blood vessels,62 is crucial for evaluating tumor
grading and selecting first-line treatments.63 During the treat-
ment process, liver vascular segmentation technology can be
used to monitor changes in tumor blood vessels,64 evaluate
the effectiveness of medical treatments such as targeted
drugs or immunotherapy, and adjust treatment plans in a
timely manner (Figure 4). Furthermore, research based on
vascular segmentation, including predicting PV cavernous
transformation65,66 and PV pressure67 to reflect liver condi-
tion, has guiding significance for subsequent treatment selec-
tion. It is noteworthy that comprehensive treatment for HCC
is not conducted in isolation. Guided by the internal medicine
concept, various invasive technologies are combined to form
individualized comprehensive treatment plans. Further dis-
cussion will continue in the following sections.

Ablation

Ablation therapy is an invasive local treatment method aimed
at directly destroying tumor tissue while minimizing damage

Figure 3. Systematic clinical procedures for HCC (based on the BCLC staging of HCC). HCC: hepatocellular carcinoma; BCLC: Barcelona
clinic liver cancer.
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to surrounding normal liver tissue.68 The main categories
include radiofrequency ablation (RFA), microwave ablation,
cryotherapy, alcohol ablation, and laser ablation.68–72 The
challenges and focus of ablation therapy for HCC mainly
revolve around the spatial relationship between tumors and
blood vessels. Some tumors are located deep within the
liver or adjacent to major blood vessels, making localization
difficult and increasing the risk of vascular injury. The blood
vessels around the tumor may cause energy loss, leading to
the heat sink effect, which can affect treatment efficacy.
Additionally, the selection of the ablation needle treatment
path and the monitoring of treatment efficacy are important
aspects. In this clinical scenario, the translation of liver vas-
cular segmentation research is primarily based on multi-
modal tasks combining ultrasound data with CT or MRI
data73 (Figure 5). Progress has been made in the segmenta-
tion of large blood vessels and the basic localization of
tumors, which can provide guidance for ablation therapy in
some clinical scenarios. However, there is still a need to
improve the ACC and registration of small blood vessel seg-
mentation in multimodal datasets, especially the handling of
peri-tumoral small blood vessels, which affects the delinea-
tion of treatment target areas. This is also one of the
reasons why the applicability of ablation therapy is limited.

Transarterial chemoembolization (TACE

TACE is a minimally invasive interventional treatment
method used for treating HCC. It involves the direct injec-
tion of chemotherapy drugs into the hepatic artery, com-
bined with the use of embolic agents to block tumor
blood flow, thereby reducing tumor blood supply and
increasing the concentration of chemotherapy drugs in the
tumor area.74 This method enhances the cytotoxic effects
of drugs on tumor cells while minimizing damage to
normal liver cells. It is often integrated as part of

comprehensive therapy for HCC, combined with other
treatments such as radiotherapy, targeted therapy, or
immunotherapy. Additionally, it serves as a bridge to surgi-
cal treatment. It involves the study of multimodal data from
CT contrast-enhanced images and digital subtraction angi-
ography (DSA) data, with the task goal being the segmen-
tation of hepatic arterial vessels. As shown in Figure 6,
DSA data reveals all arterial vessels filled with contrast
agents, while CT data, when adjusted to match the same
plane, can only achieve segmentation of arterial data at
that level. The reason for this phenomenon lies in the differ-
ent imaging principles of the two modalities. DSA imaging
compresses all 3D imaging information into a 2D plane.
The requirements for vascular localization and ACC in
TACE are stricter. CT datasets retain spatial information
about liver vessels, while DSA datasets have advantages
in the ACC segmentation of small vessels and real-time per-
formance.75 Integrating the advantages of both modalities
to achieve hepatic arterial vessel segmentation in this scen-
ario is a future requirement and challenge (Figure 6).

Radiotherapy

Radiation therapy is a treatment method that utilizes radi-
ation to damage tumor cells’ DNA, inhibiting tumor
growth and reproduction.77 Radiation therapy can be
broadly categorized into two main types: external beam
radiation therapy (EBRT) and internal radiation therapy
(IRT).78 Stereotactic body radiation therapy (SBRT) in
EBRT and selective IRT (SIRT) in IRT play significant
roles in the systemic treatment of HCC. Inaccurate radiation
therapy can lead to damage to liver tissues. Simultaneously,
liver function issues caused by damage to normal liver bile
ducts are also known as central liver toxicity. SBRT is used
to deliver high doses of radiation in a highly targeted
manner and rapidly decrease the dosage away from the

Figure 4. In an example of systematic treatment, for advanced HCC patients, the integration and registration of hepatic vascular
segmentation and tumor segmentation from CT data during the treatment process allows for the visual assessment of radiological efficacy.
HCC: hepatocellular carcinoma; CT: computed tomography

18 DIGITAL HEALTH



center of the radiation zone, preserving much of the adja-
cent liver parenchyma while delivering therapeutic doses
to the tumor.79 SIRT, on the other hand, aims to locally
irradiate tumors by inserting small radioactive beads.
Since liver tumors are primarily supplied by arterial
blood, these beads are inserted by passing a catheter
through the hepatic artery into the tumor-feeding arter-
ies.80,81 In SBRT, PV segmentation is a major task
because the planning of the target area relies on the anatom-
ical position of the PV, which represents the location of
most intrahepatic ducts. Additionally, PV thrombosis is
an indication of SBRT, and precise identification of the
PV during treatment is crucial for completing this task
(Figure 7).82 In SIRT, hepatic artery segmentation is key,
but it is challenging due to the small proportion of pixels
and voxels occupied by the hepatic artery in the entire
liver, its small diameter, and rich variability.83 The
translation-related research on liver vessel segmentation
also provides possibilities for adaptive planning of radiation
therapy target areas and improving ACC. At the same time,

it has a guiding significance for radiation dose evaluation
and displacement correction during treatment.84

Minor hepatectomy

Modern minor hepatectomy commonly deals with liver
subsegments and cone units, constructing the pre-resection
range by piecing together the domains where tumors affect
vessels.85 Hepatic cone units are the smallest anatomical
units divided according to the liver’s PV system.86 Each
liver segment consists of six to eight cone units, a division
method more aligned with the liver’s vascular supply and
anatomical structure, aiding in precise liver resection.87 In
this scenario, directions for clinical translation of hepatic
vascular segmentation research lie in interpretable, accurate
segmentation, especially in the credible segmentation and
combing analysis of PV small vessels.88 The goal of
minor hepatectomy is to minimize normal liver damage
while completing anatomical liver resection.89 Particularly
when tumors grow around the liver, surgical approaches

Figure 5. Xing et al. provided a liver vessel segmentation model for RFA based on the nnU-Net network architecture and multimodal
datasets of 3D US and CT/MRI. The above figure shows the schemas of this study, from graph input, vessel segmentation, and model
reconstruction to registration.73 RFA: radiofrequency ablation; CT: computed tomography; MRI: magnetic resonance imaging; nnU-Net:
neural networks for U-Net; 3D US: three-dimensional ultrasound.

Figure 6. Comparison between the segmentation results of hepatic artery vessels in the TACE scene and the actual DSA interface.
Meanwhile, we take paired CT and DSA data as inputs, transfer and reproduce Patel et al.’s76 method of co-training CT and DSA, and
reconstruct the outputs. TACE: transarterial chemoembolization; DSA: digital subtraction angiography; CT: computed tomography.
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involving intrahepatic and extrahepatic anatomy cannot be
fully applicable, and liver parenchymal approaches better fit
surgical objectives.90 Achieving liver parenchymal
approaches relies on high-precision segmentation and
combing analysis of liver small vessels, especially PV
vessels. High-precision segmentation of PV small vessels
is also a significant motivator in current liver vessel seg-
mentation research, which is not elaborated here.91 With
the optimization of model structures and algorithms,
numerous small branches of the PV have been recon-
structed. However, for clinical doctors, the efficiency of
clinical decision-making is low when facing an uncombed
vascular tree.92 Artificially classifying segmentation
results undoubtedly increases the possibility of errors and
consumes a considerable amount of manpower.6

Moreover, if such segmentation results are matched to real-
time surgical navigation systems, uncombed and unlabeled
results become a disturbance, as surgical teams cannot
obtain critical information in real time. Organized PV seg-
mentation results can better assist doctors in completing
pre-resection plans and adjusting real-time surgical deci-
sions, which is of great significance (Figure 8). Through
the combing analysis of segmentation results, including
but not limited to the classification of PV branches and
hepatic pedicles, the spatial relationship between tumors

and vascular trees, as well as the position of cone units,
can be efficiently determined. Additionally, PV vessels of
different positions and classifications have different mean-
ings and weights in different scenarios and should not be
simply segmented. Therefore, evaluation metrics based on
PV model interpretation and classification are crucial for
assessing the clinical performance of segmentation
models and the applicability of minor hepatectomy.
Moreover, visual studies on PV segmentation results after
automatic combing analysis are also a direction for
development.

Major hepatectomy

Major hepatectomy is a scenario contrasted with minor
hepatectomy. It is typically defined as surgery involving
the resection of three or more liver segments.93 This
includes combined resection of liver segments and lobes,
hemihepatectomy, and extended hemihepatectomy,
among others. In such scenarios, clinicians are most con-
cerned about two issues: the remaining functional liver
volume of the patient94 and the avoidance of important
ducts, especially the hepatic veins. Directions for clinical
translation of hepatic vascular segmentation research lie
in the precise segmentation and analysis of hepatic veins,

Figure 7. The figure is taken from the study of hepatic vessel segmentation applied to SBRT by Ibragimov et al.82 Individual CNNs are
applied on each orthogonal cross-section of the CT image in order to generate three PVs enhancement maps. The maps are then averaged
to form the resulting PV to preserve as much vascular information as possible from every angle. SBRT: stereotactic body radiation therapy;
CNN: convolutional neural network; CT: computed tomography; PV: portal vein.
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and in using high-precision segmentation results of import-
ant structures in hepatic veins to guide and organize the
entire segmentation structure. For major hepatectomy, due
to the large incision, the lack of assessment of important
ducts in the pre-resection area can result in significant
intraoperative bleeding, postoperative bile leaks, and
lymphatic leaks,93 all of which can affect short-term and
long-term survival.95,96 Additionally, the volume of the
remaining functional liver affects the occurrence of post-
operative liver failure in patients.94 It is important to note
that we emphasize functional liver volume rather than
actual liver volume.97 Well-functioning liver tissue includes
intact inflow and outflow pathways.98 Inflow pathways gen-
erally refer to the PV and hepatic artery territories. Due to
the large resection range, the surgical strategy for the PV
and hepatic artery involves graded occlusion starting from
the hepatic hilum, whether through an intra-sheath anatom-
ical approach or an extra-sheath structural approach. As
most of the occluded PVs are primary or secondary
branches, liver vascular segmentation models are mature
in recognizing this type of vessel. The outflow pathway is
the hepatic vein. Damage to the hepatic vein branches of
the remaining liver tissue during surgery can lead to
obstruction of the hepatic tissue reflux area, causing con-
gestion, which in turn affects liver function.98 It also
makes the estimation of the remaining functional liver
volume inaccurate, increasing the risk of postoperative
liver failure. Therefore, the key to assessing the remaining
functional liver volume lies in the comprehensive evalu-
ation of the hepatic vein and PV vessels. In plain data
and contrast-enhanced CT data, the contrast between the
hepatic vein and the background is lower than that of the
PV, making high-precision segmentation of hepatic vein
small vessels difficult. Unlike the PV, which is a tree-like
structure branching out gradually from the first hepatic

hilum, the hepatic vein, although originating from the infer-
ior vena cava, has a complex morphology and drainage
pattern. It is necessary to use the segmentation results of
important structures in the hepatic vein to guide and organ-
ize the complex overall segmentation results. The difficulty
of completing this task is also greater than that of the PV.
This is reflected in two aspects: firstly, the annotation of
inherent anatomical points of the hepatic vein, including
point B,99 which indicates the position of the main trunk
of the hepatic vein; secondly, the annotation of physio-
logical hepatic fissure veins. Physiological liver fissures
are avascular zones of each anatomical unit, generally tra-
versed only by branches of the hepatic vein,100 making
them ideal surgical resection surfaces. Among them, the
umbilical fissure and the anterior fissure vein are important
boundaries between the right anterior and posterior seg-
ments of the liver and segments IVa and IVb of the left
medial lobe.99 Through the spatial positioning relationship
analysis and interpretation of the segmentation results of the
PV and hepatic vein, accurate segmentation of the fissure
veins is achieved, realizing the determination of the position
of the physiological liver fissure(Figure 9). Similarly, the
detection and effective annotation of the above positions
in major hepatectomy are also indicators for assessing the
applicability and performance of the model in this scenario.

Liver transplantation

Liver transplantation is an effective treatment for end-stage
liver disease and liver failure; at the same time, it is also the
most complex embodiment of internal medicine treatment
and surgical technology, and the most representative of
the mode of systematic treatment. Common methods of
liver transplantation include whole liver orthotopic liver
transplantation, living donor liver transplantation, and

Figure 8. The preoperative planning process for minor hepatectomy includes high-precision hepatic vascular segmentation including
small vessel branches, hepatic vascular classification, hepatic segment delineation based on portal vein territory, and selection of the
resection margin.
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split liver transplantation.101 Assessment and reconstruc-
tion of hepatic vasculature are crucial steps in the process
of liver transplantation. Vascular complications associated
with liver transplantation are significant contributors to
adverse outcomes. Evaluation involves assessing anatomical
and pathological variations of the vessels in both the donor
and recipient, including variations in arterial, portal venous,
and hepatic venous vasculature, and ensuring compatibility
of vascular structures to minimize risks such as intra-vascular
thrombosis, stenosis, and rupture.102 Dynamic monitoring of
the anastomotic sites is also essential to detect and manage
any adverse events promptly. Additionally, assessing PV
pressure in the donor and recipient liver is a critical task103

(Figure 10). These efforts represent the directions of clinical
translation in hepatic vascular segmentation research.
Currently, research is underway to establish predictive
models for liver transplantation outcomes using deep learn-
ing techniques, incorporating results from hepatic vascular
segmentation and related studies into these models represents
a promising direction for future development.104

Currently, most clinically used liver vessel segmentation
methods are semi-automatic, requiring significant manual
interaction, layer by layer, patient by patient, to complete
annotation.5 This process should be automated. Liver
vessel segmentation research based on deep learning
should aim to reduce the burden on clinicians, be compat-
ible with clinical workflows, provide intuitive and clear
interactive interfaces, adhere to clinical guidelines and stan-
dards, and ensure that its outputs meet the requirements of
clinical practice. By summarizing closely related clinical
scenarios, and analyzing and summarizing the needs and

challenges close to clinical practice, continuous clinical val-
idation and feedback are also necessary, leading to updates
and changes. This helps the model continually adapt to
changes in clinical needs and improves its practicality.

Technical challenges and prospects
In this section, we will summarize the limitations of the
current deep learning-based hepatic vascular segmentation
research from four perspectives, as well as the directions
and prospects for solving such problems.

Difficulty in data acquisition and annotation

Medical image data typically involves sensitive patient
information and is subject to strict privacy protection and
ethical regulations.105 This restricts the availability of
data, making it difficult for researchers to access large
and diverse medical image datasets, especially in cross-
institutional or international collaborations. Additionally,
the lack of a unified data-sharing platform and annotation
standards may hinder collaboration between different
research teams and the effective utilization of data
resources. Accurate liver vessel annotation requires radiol-
ogists with professional knowledge, which is not only time-
consuming but also costly. Moreover, there may be issues
of annotation consistency among different doctors, even if
the annotations are performed by experienced radiologists,
as different doctors may have different interpretations of
vessel boundaries.106 This inconsistency may affect the
learning and generalization ability of models. Due to the

Figure 9. Example of major hepatectomy: precise segmentation of the hepatic vein identifies the middle hepatic vein (yellow-marked
area), facilitating surgical planning by organizing and mapping the surgical pathway based on the segmentation results of the middle
hepatic vein. Simultaneously during the surgical procedure, the preservation of the functional liver volume of the right anterior segment is
achieved, transforming non-resectable hepatocellular carcinoma (HCC) into resectable HCC.
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diversity of liver diseases and patient physiological condi-
tions, obtaining a comprehensive dataset that represents
all possible scenarios is challenging. Biases in the dataset,
such as the overrepresentation of specific populations or
disease types, may lead to a decrease in the performance
of models in actual clinical applications. Therefore, to over-
come these limitations, researchers need to explore more
efficient data acquisition and annotation strategies, such
as using semi-supervised learning, weakly supervised learn-
ing, or unsupervised learning methods to reduce the
dependence on large amounts of annotated data,107 as
well as developing automated annotation tools to improve
annotation efficiency and consistency.106 At the same
time, promoting data sharing and establishing standardized
annotation workflows are also crucial for driving develop-
ment in this field.

Interpretability issues

Deep learning models, especially complex neural networks,
are often perceived as “black box” models because their
internal workings and decision-making processes are
opaque to humans.108 This means that doctors and research-
ers find it difficult to understand why the model makes spe-
cific segmentation decisions and what the basis for these
decisions is. In the medical field, the interpretability of
models is crucial for establishing trust between doctors
and patients. If doctors cannot understand the predictive
results of the model, they may be skeptical about its ACC
and reliability, which could hinder the model’s application
in clinical practice. Lack of interpretability makes error ana-
lysis and model improvement difficult when segmentation
results are incorrect. Understanding where and why the
model encounters problems is essential for optimizing
model performance and reducing future misdiagnoses. In
a medical environment, any diagnostic or treatment deci-
sion may involve legal liability and ethical considerations.

If the model’s decision-making process cannot be explained
and verified, determining responsibility and taking appro-
priate legal action in case of disputes will become
complex. The interpretability of deep learning models is
also important for medical education and training.
Medical students and young doctors need to understand
how the model works to better utilize these tools for diagno-
sis and treatment. To address this limitation, researchers are
exploring various methods to improve the interpretability of
deep learning models, including: Visualization techniques:
Making the model’s decision-making process more intuitive
through visualizing activation maps, feature maps, and atten-
tion mechanisms. Model simplification: Using simpler or
more transparent model structures, such as decision trees or
linear models, for easier understanding and interpretation.109

Interpretability frameworks: Developing dedicated interpret-
ability frameworks, such as local interpretable model-
agnostic explanations110 and Shapley additive explanations
,111 to explain model predictions. Interpretable feature selec-
tion: Selecting input features that have clear clinical signifi-
cance for model predictions, facilitating understanding for
doctors and researchers.

Resource requirements

Deep learning models, especially CNNs, typically demand
substantial computational resources for training. These
resources include high-performance graphical processing
units (GPUs), central process units, large amounts of
memory, and storage space. For research institutions and
hospitals, acquiring and maintaining these hardware
devices can incur significant costs. The training process
of deep learning models can be extremely time-consuming,
especially when using large networks and massive datasets.
Prolonged training times may slow down research progress,
affecting the rapid iteration and optimization of new
models. In clinical environments, particularly in surgical

Figure 10. Based on deep learning methods, combined with segmentation information of both donor and receptor hepatic vessels and
longitudinal clinical patient data, we achieve the reconstruction of vascular anatomical structures in liver transplant regions, as well as
monitoring and prediction of vessel compatibility and anastomosis conditions.
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navigation or real-time monitoring, models need to respond
quickly and provide accurate segmentation results.
Limitations in computational resources may prevent
models from running efficiently in real-time or
near-real-time environments. To deploy deep learning
models on devices with limited computational resources,
it may be necessary to compress and optimize the models,
using techniques such as knowledge distillation, network
pruning, and quantization. These optimizations may
reduce model performance or increase the complexity of
model design. To overcome this limitation, researchers
and developers are exploring various solutions, including:
Cloud computing and GPU sharing,112 model optimization
techniques, and developing lightweight models and opti-
mized algorithms to reduce the model’s demand for compu-
tational resources.113

Conclusion
This article systematically reviews the research on hepatic vas-
cular segmentation based on deep learning, from the basic
principles of deep learning technology to the current research
progress, elucidating aspects such as network architecture,
evaluation metrics, motivation, and supervision.
Additionally, a summary analysis was conducted on the
various clinical scenarios and limitations of the comprehensive
diagnosis and treatment of HCC, outlining the challenges and
requirements faced by liver vascular segmentation research
based on deep learning techniques. By combining clinical
needs with technological advancements, deep learning is
expected to make greater breakthroughs in the field of liver
vessel segmentation, thereby providing stronger support for
the diagnosis and treatment of HCC.
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91. Ciecholewski M and Kassjański M. Computational methods
for liver vessel segmentation in medical imaging: A review.
Sensors 2021; 21: 2027.

92. Kline TL, Zamir M and Ritman EL. Relating function to
branching geometry: A micro-ct study of the hepatic
artery, portal vein, and biliary tree. Cells Tissues Organs
2011; 194: 431–442.

93. Reddy SK, Barbas AS, Turley RS, et al. A standard defin-
ition of major hepatectomy: Resection of four or more
liver segments. HPB 2011; 13: 494–502.

94. Zhang J, Zhang P and Cao J. Safety and efficacy of precision
hepatectomy in the treatment of primary liver cancer. BMC
Surg 2023; 23: 241.

95. Furtado R, Yoshino O, Muralidharan V, et al. Hepatectomy
after bile duct injury: A systematic review. HPB 2022; 24:
161–168.

96. Okamura Y, Takeda S, Fujii T, et al. Prognostic significance
of postoperative complications after hepatectomy for hepato-
cellular carcinoma. J Surg Oncol 2011; 104: 814–821.

97. Pulitano C, Crawford M, Joseph D, et al. Preoperative
assessment of postoperative liver function: The import-
ance of residual liver volume. J Surg Oncol 2014; 110:
445–450.

98. Asenbaum U, Kaczirek K, Ba-Ssalamah A, et al.
Post-hepatectomy liver failure after major hepatic surgery:
Not only size matters. Eur Radiol 2018; 28: 4748–4756.

99. Cho A, Okazumi S, Miyazawa Y, et al. Proposal for a reclas-
sification of liver based anatomy on portal ramifications. Am
J Surg 2005; 189: 195–199.

100. Cao J, Wang H, Liang X, et al. Theory and technical practice
of anatomic liver resection based on portal territory for the

treatment of hepatocellular carcinoma. Chin J Dig Surg
2022; 12: 591–597.

101. Terrault NA, Francoz C, Berenguer M, et al. Liver trans-
plantation 2023: Status report, current and future challenges.
Clin Gastroenterol Hepatol 2023; 21: 2150–2166.

102. Piardi T, Lhuaire M, Bruno O, et al. Vascular complications
following liver transplantation: A literature review of
advances in 2015. World J Hepatol 2016; 8: 36.

103. Rela M, Rammohan A, Rajalingam R, et al. Portal hemo-
dynamics in liver resection and transplantation. Ann Surg
2024; 10–1097.

104. Bhat M, Rabindranath M, Chara BS, et al. Artificial intelli-
gence, machine learning, and deep learning in liver trans-
plantation. J Hepatol 2023; 78: 1216–1233.

105. Pesapane F, Volonté C, Codari M, et al. Artificial intelli-
gence as a medical device in radiology: Ethical and regula-
tory issues in Europe and the United States. Insights
Imaging 2018; 9: 745–753.

106. Marvasti NB, Yörük E and Acar B. Computer-aided medical
image annotation: Preliminary results with liver lesions in
CT. IEEE J Biomed Health Inform 2017; 22: 1561–1570.

107. Simmler N, Sager P, Andermatt P, et al. A survey of un-,
weakly-, and semi-supervised learning methods for noisy,
missing and partial labels in industrial vision applications.
In: 2021 8th Swiss conference on data science (SDS),
Lucerne, Switzerland, 2021, pp.26–31. IEEE.

108. Chakraborty S, Tomsett R, Raghavendra R, et al.
Interpretability of deep learning models: A survey of
results. In: 2017 IEEE smartworld, ubiquitous intelligence
& computing, advanced & trusted computed, scalable com-
puting & communications, cloud & big data computing,
Internet of people and smart city innovation (smartworld/
SCALCOM/UIC/ATC/CBDcom/IOP/SCI), San Francisco,
CA, USA, 2017, pp.1–6. IEEE.

109. Hong SR, Hullman J and Bertini E. Human factors in model
interpretability: Industry practices, challenges, and needs.
Proc ACM Hum-Comput Interact 2020; 4: 1–26.

110. Zafar MR and Khan NM. Dlime: A deterministic local inter-
pretable model-agnostic explanations approach for
computer-aided diagnosis systems. arXiv preprint
arXiv:1906.10263, 2019.

111. Nohara Y, Matsumoto K, Soejima H, et al. Explanation of
machine learning models using Shapley additive explanation
and application for real data in hospital. Comput Methods
Programs Biomed 2022; 214: 106584.

112. Diab KM, Rafique MM and Hefeeda M. Dynamic sharing of
GPUs in cloud systems. In: 2013 IEEE international sympo-
sium on parallel & distributed processing, workshops and
PhD forum, Cambridge, MA, USA, 2013, pp.947–9541.
IEEE.

113. Mao D, Sun H, Li X, et al. Real-time fruit detection using
deep neural networks on CPU (RTFD): An edge ai applica-
tion. Comput Electron Agric 2023; 204: 107517.

Zhang et al. 27


	 Introduction
	 Overview of deep learning
	 Application of deep learning in hepatic vascular segmentation
	 Motivations for liver vessel segmentation
	 Network type: Platform for addressing hepatic vascular segmentation issues
	 U-Net: The foundation of segmentation network architecture
	 Three-dimensional (3D) U-Net and VNet: Enhancement of visualization, interactivity, and efficiency
	 U-Net variants: Module modifications
	 U-Net variants: Branch network architecture modifications
	 U-Net variants: nnU-Net)
	 Generative adversarial networks (GANs): Dataset capacity and diversity expansion
	 GAT+CNN: Optimization of connectivity, spatial features, and edge features
	 Transfomer+CNN: Integration of global and local vascular features
	 Other CNN network structures: The driving force behind ongoing advancements

	 Supervision: Learning pattern in hepatic vascular segmentation
	 Evaluation metrics and performance
	 Dice similarity coefficient (DSC) and F1 score
	 Jaccard index and intersection over union
	 Accuracy (ACC)
	 Sensitivity
	 Specificity
	 Precision
	 Mean average precision (mAP)
	 Volumetric overlap error (VOE)
	 Average surface distance
	 Hausdorff distance (HD)
	 Mean absolute distance (MAD)
	 Clinically relevant evaluation metrics


	 Potential clinical translation of hepatic vascular segmentation in HCC
	 Systematic treament
	 Ablation
	 Transarterial chemoembolization (TACE
	 Radiotherapy
	 Minor hepatectomy
	 Major hepatectomy
	 Liver transplantation

	 Technical challenges and prospects
	 Difficulty in data acquisition and annotation
	 Interpretability issues
	 Resource requirements

	 Conclusion
	 References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


