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Dental and oral tissues maintain homeostasis through potential reparative or regener-
ative processes. This native biological regulation ensures appropriate oral function and
provides systemic health conditions through ideal digestion and intake of nutrition. Even if
some tissues break down, general dental treatment or the administration of growth factors
can help them to recover. However, a large disruption of oral tissues due to tooth loss, ma-
lignant diseases, and severe trauma can cause irreversible tissue loss in the oral cavity. To
compensate for this, artificial materials, such as prostheses and dental implants, support the
improvement in human quality of life. We need to consider both native biological elements
and biomedical products. This Special Issue of Biomolecules, titled “Oral Regenerative
Medicine: Current and Future”, covers the dental field and focuses on craniofacial tissue
regenerative therapy. Dental pulp and periodontal tissue-derived cells are well-known as
major cell sources in the dental field. Dental pulp stem cells (DPSCs) are promising cell
sources for biomineral tooth complexes [1]. Pilbauerova et al. reported a detailed analysis
of the effect of cultivation passaging on the relative telomere length and proliferation
capacity of DPSCs [2]. The authors found that the excessive proliferation of DPSCs during
in vitro culture results in telomere attrition. In vitro cultivation without passaging enabled
the preservation of telomere length. A further detailed analysis of stemness, including
differentiation ability and functional features, is essential to further validate this finding.
DPSCs are not only useful for the regeneration of dentin pulp complexes but also for wound
healing in other tissues due to their multifaceted effects [3]. In this regard, hyaluronic acid
(HA) plays an essential role in wound healing [4]. Schmidt et al. demonstrated the effect
of HA on DPSCs in vitro. Low-molecular-weight fragments that have been produced by
the enzymatic cleavage of HA have bioactive properties that are different from those of
high-molecular-weight HA [5]. The authors revealed that low-molecular-weight fragments
of HA induced an acute reduction in the proliferation of DPSCs and soon recovered in
subsequent passages. Low-molecular-weight fragments of HA conserved the expression
of stem cell markers, such as CD29, CD44, CD73, and CD90, indicating that HA may be a
useful material for scaffold tissue engineering with DPSCs. DPSCs physiologically give
rise to odontoblasts, which drive dentin formation. Odontoblasts play an essential role
in both dentin mineralization and sensory transduction, following the stimuli applied
to the dentin surface. Kimura and Shibukawa’s group identified that plasma membrane
Ca2+-ATPase (PMCA) in rat and human odontoblasts mediates dentin mineralization [6].
This study demonstrated that PMCA contributes to the maintenance of intracellular free
Ca2+ homeostasis in odontoblasts. They suggested that PMCA not only plays a critical role
in physiological dentin formation but also in the pathological reactionary dentin formation
induced by multiple external stimuli. It is also used in the application of high-pH dental
materials on the dentin surface.
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Among oral tissues, the periodontium is also permanently exposed to mechanical
forces resulting from chewing, mastication, or orthodontic force. Brockhaus reported on
the preservation and remodeling processes within the periodontium through periodontal
ligament fibroblasts during orthodontic tooth movement. Tooth movement by mechanical
stress initially decelerates the periodontal ligament fibroblast cell cycle and proliferation.
After adapting to environmental changes, cells can regain periodontium homeostasis,
affecting their reorganization [7]. Dieterle et al. summarized the mechanobiology of the
health, pathologies, and regeneration of oral periodontal tissues [8]. Further elucidation of
the cell type specific and spatiotemporal fine tuning of mechanobiological processes will
be a strong tool in the field of oral regenerative medicine. Periodontal tissue development
originates from dental follicle progenitor/stem cells (DFPCs). Bi and Fan’s group summa-
rized the cell–cell interactions and signaling pathways in DFPCs [9]. For DFPC-related
tissue engineering, such as alveolar bone repair, periodontal regeneration, and bio-root
complex formation, an ideal scaffold is of vital importance in advanced preparation tech-
nology. As DFPCs play a unique role in maintaining a favorable microenvironment for
stem cells, they are useful for applications in nervous tissue regeneration and therapies for
autoimmune and inflammatory diseases as well. Stock reported an extremely rare case of
classical and periodontal Ehlers–Danlos syndrome [10]. Dental diseases caused by genetic
mutations can provide us with greater detail about their pathogenesis. Recent studies
have revealed that genetic mutations not only show dental abnormalities, but that they
also impair calvaria bone formation, resulting in neurocognitive defects due to increased
intracranial pressure [11]. Central nervous system-related functional decline is also an
important pathogenesis that influences oral function. Thus, it is essential to understand
the systemic regulation for peripheral oral functional stability. Long bones and calvaria
are pivotal tissues that can provide a better understanding of the relationship between
peripheral oral and systemic regulation. Tissue regeneration and functional recovery in
regenerative medicine are based on signaling pathways and molecular mechanisms. Li
et al. summarized the diversity of cell signaling pathways in the calvaria suture, which is a
unique place to construct the cranial bone and protect the brain [12].

This Special Issue suggests the importance of understanding the relationship between
both the cell source and effective regeneration. Physiological functional recovery is the
most essential problem and the ultimate purpose of regenerative therapy. A deeper un-
derstanding of the pathological background and genetic basis and cellular signaling in
local-systemic regulation is essential in dental tissue regeneration.
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