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Alzheimer’s disease (AD) is the most common form of dementia among the elderly population. AD, which is characterized as a
disease of cognitive deficits, is mainly associated with an increase of amyloid β-peptide (Aβ) in the brain. A growing body of recent
studies suggests that protein kinase C (PKC) promotes the production of the secretory form of amyloid precursor protein (sAPPα)
via the activation of α-secretase activity, which reduces the accumulation of pathogenic Aβ levels in the brain. Moreover, activation
of PKCα and mitogen-activated protein kinase (MAPK) is known to increase sAPPα. A novel type of PKC, PKCε, activates the Aβ
degrading activity of endothelin converting enzyme type 1 (ECE-1), which might be mediated via the MAPK pathway as well.
Furthermore, dysregulation of PKC-MAPK signaling is known to increase Aβ levels in the brain, which results in AD phenotypes.
Here, we discuss roles of PKC in Aβ production and clearance and its implication in AD.

1. Introduction

Alzheimer’s disease (AD) is the most common form of
dementia among the elderly population [1, 2]. A major hall-
mark of AD is the abnormal processing and accumulation
of neurite plaques containing amyloid β-peptide (Aβ) in the
brain [3, 4]. Amyloid precursor protein (APP) is mainly
cleaved by the α-secretase enzyme (Figure 1), producing
the secretory form of amyloid precursor protein (sAPP;
β-amyloid (Aβ) 17–42), which is soluble and nontoxic [5].
However, when APP is cleaved by β- and γ-secretase enzymes
[6], it leads to the formation of Aβ1–40 and Aβ1–42, which
are insoluble unlike sAPP, and results in the accumulation
of amyloid plaques [7]. In the production of Aβ1–42,
the Aβ1–42/Aβ1–40 ratio is associated with the amount
of insoluble Aβ aggregation [8]. On the other hand, the
abnormal hyperphosphorylation of tau results in insoluble
fibrils and neurofibillary tangels in the brain [9, 10]. Thus, an
understanding of the pathological processes of APP and tau
in AD is a critical therapeutic target in preventing or delaying
AD in humans [11–13]. Here, we review the role of protein
kinase C (PKC) in Aβ production and clearance through
α-secretase or Aβ-degrading enzyme activity. Among several
PKCs, we focus on the role of PKCε in Aβ levels because

several recent findings have demonstrated that the activation
or overexpression of PKCε promotes the Aβ degradation
activity of endothelin converting enzyme type 1 (ECE-1)
[14, 15].

2. PKC and Aβ Plaques

PKC is a phospholipid-dependent serine/threonine kinase
and consists of at least 12 isoenzymes [18, 19]. PKCs can be
classified into three subfamilies based on their protein struc-
ture and second messenger requirements: conventional (or
classical), novel, and atypical. Conventional PKCs contain
the α, β1, β2, and γ isoforms and require Ca2+, diacylglycerol
(DAG), and a phospholipid such as phosphatidylcholine for
activation. Novel PKCs include the δ, ε, η, θ, and μ isoforms
and require DAG or phospholipids but do not require Ca2+

for activation. On the other hand, atypical PKCs consisting
of protein kinase ζ , ι, and λ isoforms do not require either
Ca2+ or diacylglycerol for activation [20].

Numerous studies have suggested that phorbol 12-
myristate 13-acetate (PMA), a nonspecific PKC activator,
is capable of lowering secreted Aβ levels in neurons [21–
24]. Based on these results, several studies have attempted
to identify precisely which PKC isozyme actually regulates
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Figure 1: Amyloid metabolism by secretases and Aβ-degradation enzymes (ECE-1, IDE, NEP). Aβ-degrading proteases play an important
role in regulating Aβ levels via known cleavage sites (adapted from [1, 16, 17]).

APP processing. The overexpression of PKCα or PKCε, but
not PKCθ, has been shown to induce APP secretion from
cells [25]. Interestingly, specific inhibition of either PKCα or
PKCθ in CHO cells expressing APP695 was associated with
a loss of PMA-mediated APP secretion [26]. In addition,
experiments with a dominant negative fragment of PKCε
reduced phorbol ester-induced secretion of sAPPα [15, 27].
However, even though intraparenchymal administration of
phorbol esters reduces Aβ levels and decreases amyloid
plaque density in mice expressing an amyloidogenic variant
of human APP, α-secretase activity is not increased in the
brain [28]. This raises the possibility that PKC reduces Aβ
levels in vivo by another mechanism.

3. Aβ Clearance and Peptidases

The accumulation of Aβ in the brain is one of the main
symptoms of AD [3]. An abnormality in the proteolytic
degradation of Aβ appears to be associated with the
progression of AD [29]. As shown in Figure 1, several
proteases that degrade Aβ in mice include insulin-degrading
enzyme (IDE), neprilysin (NEP), and endothelin-converting
enzyme (ECE) 1 and 2 [16, 30]. IDE (insulysin) is a ∼
110 KDa thiol zinc-metalloendopeptidase which is expressed
in the cytosol, peroxisomes, and endosomes and on cell
surfaces, and it is the major enzyme responsible for insulin
degradation in vitro [31]. However, IDE has also been found
to degrade Aβ in neuronal and microglial cells [32] and
to eliminate the neurotoxic effects of Aβ [33]. Consistently,
IDE-null mice showed increased levels of Aβ in the brain
[34]. NEP is another key player in Aβ clearance [35]. In

the brain, NEP is mainly expressed on neuronal plasma
membranes [36]. NEP-null mice show defects in both the
degradation of exogenously administered Aβ and in the
metabolic suppression of endogenous Aβ levels in a gene
dose-dependent manner [37]. The importance of these zinc-
metalloendopeptidases in Aβ clearance is demonstrated by
the fact that the transgenic overexpression of IDE or NEP in
neurons significantly reduces Aβ levels and plaque associated
with AD pathology [38]. Angiotensin-converting enzyme
(ACE) is a membrane-bound zinc metalloprotease [39]. ACE
mainly converts angiotensin I to angiotensin II, which is
critical in the regulation of blood pressure, body fluid, and
sodium homeostasis [40]. Recent studies indicate that ACE
expression also promotes the degradation of Aβ [41].

Several receptor-mediated Aβ clearance mechanisms
have already been examined [42]. Low-density lipoprotein
receptor-related protein (LRP) and the receptor for advanced
glycation end products (RAGE) regulate Aβ levels across
the blood-brain barrier [43]. Both LRP and RAGE are
multiligand cell surface receptors that mediate the clearance
of a large number of proteins in addition to Aβ. LRP mainly
removes Aβ from the brain to the periphery whereas RAGE
appears to influx Aβ back to the brain from the periphery
[42, 43].

4. Endothelin-Converting Enzymes (ECEs)

ECEs are a class of type II transmembrane metalloproteases,
which convert pro-ET into endothelin [44]. Two differ-
ent ECEs, including ECE-1 and ECE-2, are expressed in
brain regions related to AD [45, 46]. Although ECE-1 is
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Figure 2: Overexpression of PKCε reduces the amyloid plaque burden and inhibits Aβ accumulation in brain parenchyma. (a) Thioflavin
S staining and anti-Aβ immunostaining revealed fewer plaques and Aβ immunoreactive deposits in the hippocampus and neocortex in
APPInd/PKCεTg1 mice than in APPInd mice. Scale bar: 200 μm. Quantification of (b) thioflavin S staining and (c) Aβ deposits in hippocampus
and cortex sections (adapted from [14]). ∗P < .05 by two-tailed t-test.

abundantly expressed in vascular endothelial cells [47], it is
also expressed in nonvascular cells, including hippocampal
and neocortical pyramidal neurons, cerebellar Purkinje cells,
and astrocytes [48]. ECE-2 is also expressed in the brain,
especially in several subpopulations of neurons in the

thalamus, hypothalamus, amygdala, and hippocampus [46].
Studies have demonstrated that ECE-1 is a key enzyme for
the degradation of Aβ in the brain [49]. The in vivo function
of ECE has been examined in ECE-1 heterozygous (+/−)
and ECE-2 null (−/−) mice. In both cases, levels of Aβ were
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Figure 3: Schematic summary of role of PKC-MAPK-dependent Aβ production and clearance. PKCα upregulates α-secretase activity while
PKCε stimulates Aβ-degrading activity of ECE-1, probably via MAPK-dependent Ets-1 pathway. MAPK is also known to activate α-secretase
activity independently or through PKC activation.

increased compared with wild-type mice, suggesting that
these ECEs are an important Aβ-degrading enzyme in vivo
[50]. Another study demonstrated that NEP (−/−)/ECE-
1 (+/−) or NEP (−/−)/ECE-2 (−/−) mice have increased
accumulation of both Aβ1–40 and Aβ1–42 in the brain [51].
Interestingly, a genetic variant of human ECE-1 (ECE1B
C-338A) with increased promoter activity was associated
with a reduced risk of sporadic AD in a French Caucasian
population [45]. ECE-1 degrades synthetic Aβ levels in vitro
[50] and is the main ECE for Aβ degradation. Recently, the
expression of ECE-2 has also been shown to be a relevant
Aβ-degrading enzyme and is dramatically increased at both
mRNA and protein levels of patients with AD [52].

Endothelin-1 (ET-1) is the major peptide formed by
ECE-1, and its cellular actions are mediated via two G-
protein coupled receptors, ETA and ETB, which are widely
distributed in the brain [53]. ET-1 levels appear elevated
in postmortem brains from patients with Alzheimer-type
dementia [54]. A study indicates that ET-1 is increased
in brain microvessels isolated from patients with AD and
promotes the survival of brain neurons [55]. However, this
effect might be associated with the protective actions of ET-1
in vivo, rather than contributing to the AD pathology [56].

5. PKCε, MAPK, and ETS Pathways

The activation of PKCs has suggested a neuroprotective
function in animals [57]. PKC activators can also prevent the
production of Aβ and extend the survival of AD transgenic
mice [58]. However, chronic treatment of nonspecific PKC
activators such as phorbol esters at high doses could increase
levels of Aβ by decreasing PKC function or increasing APP
synthesis [59]. These studies also suggest that the chronic
application of phorbol esters may differentially regulate
the function of PKC isoforms, downregulating PKCα and
upregulating PKCε. There are several mechanisms by which
the activation of PKCs could regulate the reduction of Aβ.
Interestingly, our recent study demonstrates that overexpres-
sion of human PKCε reduces Aβ levels significantly in the

brain (Figure 2). As shown in Figure 3, activation of PKCs
including PKCα is known to promote α-secretase activity
[25, 60], while activation or overexpression of PKCε stim-
ulates Aβ-degrading activity of ECE-1, probably via MAPK-
dependent Ets-1 pathway [14, 15]. MAPK is also known to
activate α-secretase activity independently [61] or through
PKC activation [62–64]. Since MAPK can activate Ets-1
and 2 [65], it is possible that PKCε-mediated MAPK could
control ETS pathways and thus regulate ECE expression in
the brain. Additionally, ETS transcription factors play a key
role in cell growth, differentiation, and survival [66]. ETS
proteins form complexes and act synergistically with other
transcription factor families such as PEA3 or AP-1 [67].
Ets-1 has been known to be involved in angiogenesis [68].
However, another research indicates that upregulation of Ets-
2 is closely associated with AD neurodegenerative lesions in
the brain [69].

6. Conclusion

In Alzheimer’s disease (AD), it has long been known that
activated PKCs reduce Aβ levels in the brain. PKC is also
suggested to be a functional biomarker of AD [70]. The
steady-state level of Aβ depends on a balance between pro-
duction and clearance. In addition to Aβ production, several
researchers suggest that enzyme-mediated degradation of
Aβ is also critical for the regulation of Aβ levels [71].
Especially, since PKC is a key modulator in Aβ production
or clearance in the brain [15, 58, 72], regulation of PKC
activity could be a useful treatment target for AD [14,
73, 74]. However, the functional relevance of each PKC
isoform in regulating Aβ levels in AD remains to be studied.
Moreover, while α-secretase-mediated cleavage of APP via
PKC isoforms reduces amyloid, detailed mechanisms of
how PKC isoforms activate the enzyme-degradation system
await further investigation. Therefore, PKC isoform-specific
ligands or viral-mediated overexpression of PKC isoform
as well as specific shRNAs approaches may unveil detailed
molecular bases that underlie PKC-regulated Aβ clearance.
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