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Abstract

Circulation CD4+CD25+FoxP3+ regulatory T cells (Tregs) have been associated with the delicate balancing between control
of overwhelming acute malaria infection and prevention of immune pathology due to disproportionate inflammatory
responses to erythrocytic stage of the parasite. While the role of Tregs has been well-documented in murine models and P.
falciparum infection, the phenotype and function of Tregs in P. vivax infection is still poorly characterized. In the current
study, we demonstrated that patients with acute P. vivax infection presented a significant augmentation of circulating Tregs
producing anti-inflammatory (IL-10 and TGF-b) as well as pro-inflammatory (IFN-c, IL-17) cytokines, which was further
positively correlated with parasite burden. Surface expression of GITR molecule and intracellular expression of CTLA-4 were
significantly upregulated in Tregs from infected donors, presenting also a positive association between either absolute
numbers of CD4+CD25+FoxP3+GITR+ or CD4+CD25+FoxP3+CTLA-4+ and parasite load. Finally, we demonstrate a suppressive
effect of Treg cells in specific T cell proliferative responses of P. vivax infected subjects after antigen stimulation with Pv-
AMA-1. Our findings indicate that malaria vivax infection lead to an increased number of activated Treg cells that are highly
associated with parasite load, which probably exert an important contribution to the modulation of immune responses
during P. vivax infection.
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Introduction

Malaria is a major worldwide scourge, infecting and killing

several millions of individuals each year [1]. Of the species that

infect humans, Plasmodium vivax and Plasmodium falciparum are the

two most important human malaria parasites. While deaths by P.

vivax are rare compared to the P. falciparum, there is an increasing

number of publications reporting severe disease, including

respiratory distress and coma as a result of P. vivax infection

[2,3]. Although the worldwide burden of P. vivax malaria has not

been reliably estimated, the annual infections may range from 132

million to 391 million people [4] and 2.6 billion people living in

areas of risk [5]. This disease affects poor people living in least

developed and developing countries. Infection by this parasite may

result in life-long learning impairment, incapacitating adults for

work, with major direct economic consequences due to loss of

productivity and depletion of the already meager financial

resources [6]. Despite the importance of this disease, representing

the most prevalent recurrent malaria [7], the immunological

mechanisms associated to the control of parasite levels and disease

severity are not fully understood.

Protective cellular immune responses against malaria can be

initiated by antigen-presenting cells (e.g. dendritic cells) that

ultimately activate specific CD4+ and CD8+ T cells. The resulting

protective Th1-dependent immune responses to blood-stage

malaria infection [8] is largely mediated by IFN-c and TNF-a
[9]. These cytokines act synergistically to optimize nitric oxide

production [10], which have been associated with parasite killing

[11]. Paradoxically, the morbidity of acute malaria is associated

with severe immune-mediated pathology due to disproportionate

inflammatory responses to the erythrocytic stage of the parasite

[12]. The delicate balancing between control of infection and

prevention of immunopathology [13] is attributed to

CD4+CD25+FoxP3+ regulatory T cells (Tregs), which play an

important role in maintaining immune homeostasis and control-

ling excessive immune responses [14]. These cells have been
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shown to suppress cellular immune responses through direct

contact with immune effector cells and by the production of

regulatory cytokines, including TGF-b and IL-10 [15].

Evidences of the role of Treg cells as suppressors of T cell

responses in malaria were initially demonstrated in murine models,

where these cells have been associated with increased [16,17] or

delayed [18,19] parasite growth. Higher Treg cell numbers are

associated with increased parasite load [20–22] and development

of human infection caused by P. falciparum [23]. A functional deficit

of Treg cells, characterized by reduced expression of CTLA-4

(cytotoxic T lymphocyte antigen 4) and FoxP3 (forkhead box P3

transcription factor), was observed in studies involving the Fulani

ethnic group that present low susceptibility to clinical malaria by P.

falciparum [24].

While the role of Tregs in malaria infection has been well-

documented in murine models and P. falciparum infection, the

association of Treg cells and P. vivax infection is still poorly

understood. A recent study by Jangpatarapongsa and colleagues

[25] demonstrated an increase on the number of IL-10-producing

Treg cells in P. vivax-infected individuals. However, further

phenotypic and functional characterization of Tregs cells in vivax

malaria is still needed.

In the current study, we describe the augmentation of

circulating Treg cells in peripheral blood of P. vivax-infected

individuals and its possible association with parasite burden. We

also show the expression of molecules (CTLA-4 and glucocorti-

coid-induced tumor necrosis factor receptor - GITR) as well as

pro- and anti-inflammatory cytokines associated with suppression

by Tregs. Furthermore, the association between Treg subpopula-

tions and parasitemia was evaluated. We also demonstrated these

cells have a suppressive effect on in vitro T cell proliferative

responses of individuals infected with P. vivax. Our results point to

an increased numbers of activated Treg cells that are significantly

associated with parasite load and may exert their function by

modulating the immune responses during P. vivax infection.

Materials and Methods

Study Population and Blood Samples
Samples from 30 patients older than 18 years old with non-

complicated P. vivax malaria were used in the study. All patients

were resident in Manaus, the capital of the Amazonas State

(Western Brazilian Amazon). The patients were unrelated

outpatients being diagnosed at the Fundação de Medicina

Tropical do Amazonas. Fifteen healthy adult blood donors were

recruited for the study over the course of several months from Belo

Horizonte, Minas Gerais State, Brazil, a non-endemic area for

malaria. The study was approved by the Ethics Committee on

Research with Humans of Universidade Federal de Minas Gerais

(Protocol# ETIC 060/07). Blood was obtained after receiving the

signed inform consent.

Venous blood was collected immediately before the beginning

of the antimalarial treatment in EDTA and heparin-containing

tubes (4 and 32 mL, respectively) and was used to prepare thick

smears for microscopy, to extract parasite DNA and for PBMC

isolation. Parasitological evaluation was performed by examina-

tion of 200 fields at l.0006magnification under oil-immersion. All

slides were examined by at least two well-trained microscopists

from the Brazilian Ministry of Health. The P. vivax mono-infection

was confirmed by PCR as previously described [26]. Hemoglobin,

hematocrit (HCT) and platelet levels were measured using an

automated blood cell counter (ABX Pentra 90; Horiba Diagnos-

tics, Kyoto, Japan) (Table 1). Correlation between platelet counts

and the level of parasitemia and hemoglobin level and parasitemia

was determined for both infected and control donors (Figure S1A

and S1B, respectively).

Isolation of Peripheral Blood Mononuclear Cells
Peripheral blood mononuclear cells (PBMCs) were obtained as

previously described [27]. Briefly, cells were isolated from

heparinized blood on a density gradient centrifugation (Histopa-

queH, Sigma Aldrich Co., USA) and were resuspended at a final

concentration of 16107 cell/mL in RPMI 1640 medium (Invitro-

gen Co., USA) supplemented with 2 mM of L-glutamine (Sigma),

5% heat-inactivated human AB serum (Sigma) and 6% Antibiotic-

Antimycotic solution (Invitrogen).

Cell Phenotyping by Flow Cytometry and Intracellular
Staining

PBMCs were stained using monoclonal antibodies to determine

the expression of T regulatory cell markers (CD4, CD25 and

FoxP3), and co-expression of GITR (glucocorticoid-induced

tumor necrosis factor receptor), CD152/CTLA-4 (Cytotoxic T-

Lymphocyte Antigen 4), IFN-c, IL-17, IL-10 and TGF-b.

Cells were incubated with 2 mL of undiluted monoclonal

antibodies (all from BD Pharmingen, USA) conjugated either

with fluorescein isothiocyanate (FITC), phycoerythrin (PE) or

allophycocyanin (APC) in the dark for 30 min at room

temperature. Intracellular staining for FoxP3, CTLA-4 and

cytokines was performed using the eBioscience fixation/permea-

bilization buffer kit following manufacturer’s instructions. After

incubation, PBMCs were washed twice with 2 mL of phosphate-

buffered saline containing 0.01% sodium azide followed by

fixation in 200 mL of fixative solution (10 g/L paraformaldehyde,

1% cacodylic acid, 6.65 g/L sodium chloride, 0.01% sodium

azide). Phenotypic analyses were performed using a Becton

Dickinson FACScalibur flow cytometer and the analysis was

performed using the CellQuest software (BD Biosciences, USA)

(Figure S2).

Recombinant Pv-AMA-1
The recombinant protein representing amino acids 43 to 487

of Pv-AMA-1 [28,29] was expressed in Escherichia coli

BL21(DE3) at 37uC for 3 h by adding 0.1 mM isopropyl-1-

thio-b-D-galactopyranoside (IPTG, Invitrogen), as previously

described [27]. Pv-AMA-1 antigen was tested to determine the

presence of Gram-negative bacterial endotoxin using a chro-

mogenic Limulus Amebocyte Lysate test (QCL-1000, Cambrex,

USA) according to the manufacturer’s instruction, and was

found to be a non significant source of endotoxins (levels lower

than detection limit of 5 EU/mL).

Table 1. Description of the study population by age and
hematological parameters (Mean 6 SD).

Individuals

Characteristics
Malaria-infected+

(n = 30)
Malaria-naı̈ve
(n = 15)

Age mean, years 37.6612.63 36.43611.96

Hemoglobin (g/dL) 12.861.6* 16.161.1

Platelets (cells/mm3) 96,600645,300* 184,400620,300

Parasitemia (parasites/mL) 492063474 0

+P. vivax infection detected by parasitological smears and PCR.
*Statistically different from control group (P,0.0001).
doi:10.1371/journal.pone.0009623.t001

Treg in Vivax Malaria
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Analysis of the Effect of CD4+CD25+ T Cells on In Vitro
Cellular Proliferation to Pv-AMA-1

For the analysis of suppression activity, CFDA-SE labeled

PBMCs from P. vivax infected individuals that presented positive

proliferative responses for P. vivax AMA-1 antigen were co-

incubated with autologous CD4+CD25+ isolated cells. CFDA-

SE labeling of freshly isolated PBMCs (106 cells/mL in PBS/1%

BSA) was performed by incubation of 0.4 mM CFDA-SE

(Molecular Probes, USA) for 10 minutes at room temperature.

CD4+CD25+ lymphocytes (T regulatory cells) were purified

from PBMCs by magnetic bead separation using a Quad-

roMACS cell separator (Miltenyi Biotec, USA). CD4+ T cells

(.97% purity) were purified by using a T cell isolation kit

(Miltenyi Biotec, USA), and CD4+CD25+ T cells were enriched

by a single-step positive selection using anti-CD25 microbeads

(Miltenyi Biotec). All microbead isolations followed the manu-

facturer’s instructions. The purified CD4+CD25+ T regulatory

cells were incubated at different concentrations (1:2, 1:5 and

1:10 ratios) with autologous CFDA-SE-labeled PBMCs pulsed

with P. vivax AMA-1 (1 mg/well), for 96 hours at 37oC and 5%

CO2 atmosphere.

The cell proliferative response of PBMCs co-incubated

with CD4+CD25+ T regulatory cells was assessed using a

Becton Dickinson FACScan flow cytometer. Data on 56104

lymphocytes were acquired and the analysis was performed

using the CellQuest software (BD Biosciences, USA). The

results are expressed as CFDA-SE proliferation ratio, calcu-

lated by the proliferative response observed in co-cultures of

Pv-AMA-1-stimulated PBMCs with CD4+CD25+ T cells over

Pv-AMA-1-stimulated PBMCs only. Additional controls using

antigen only or mitogen (PHA, Sigma, USA) were also

included. CFDA-SE labeling of freshly isolated PBMCs (106

cells/mL in PBS/1% BSA) was performed by incubation of

0.4 mM CFDA-SE (Molecular Probes, USA) for 10 minutes at

room temperature. Cells were washed and set up as described

above.

Statistical Analysis
The one-sample Kolmogorov-Smirnoff test was used to

determine whether variability followed a normal distribution

pattern. P values were determined by two-tailed Mann-Whitney U

test. Correlation analysis was performed using Spearman rank

correlation. A P value,0.05 was considered significant. All

statistics were carried out using Prism 5.0 for Windows (GraphPad

Software, Inc.) software.

Results

Regulatory T Cell Frequency Is Elevated in P. vivax
Infected Donors

Regulatory T cells were identified by flow cytometry as

CD3+CD4+ T cells expressing both CD25 and FoxP3 markers

(Figure 1A) and are reported as absolute numbers of cells per

mm3. Our data clearly show that number of Treg cells was

significantly increased in P. vivax-infected subjects (medi-

an = 256.2 cells/mm3) when compared to malaria-naı̈ve donors

(median = 116.5 cells/mm3) (P = 0.0119, Figure 1B). Further

analysis show that frequency of Treg cells (demonstrated by

proportion of positive cells) were also elevated in P. vivax-infected

subjects (P = 0.0009, Figure S3A). Although the difference of both

absolute number and proportion of CD4+CD25+FoxP3+ cells

between infected and control donors, the level of expression of

FoxP3 was similar in both groups (P = 0.0833, data not shown).

Since the increased absolute number of CD4+CD25+FoxP3+ cells

would reflect a possible augmentation of total CD4+ lymphocytes,

the number of total CD4+ cells was also analyzed. No difference

in the absolute number of this lymphocyte population was

observed between malaria infected and naı̈ve individuals (data

not shown).

Peripheral Blood CD4+CD25+FoxP3+ Subpopulations Are
Also Augmented in P. vivax Infected Donors

Once observed the elevated number of Treg cells in the

peripheral blood of infected donors, we further characterized this

cell population by evaluating the expression of molecules and

cytokines associated with cell modulation. Surface expression of

the GITR molecule and intracellular expression of CTLA-4 and

cytokines were evaluated by flow cytometry. P. vivax-infected

individuals presented a significant increase of circulating GITR+

(P = 0.0119, Figure 2A) and CTLA-4+ Treg cells (P = 0.0026,

Figure 1. Flow cytometric analysis of regulatory T cells. (A)
CD25 and FoxP3 expression in gated CD4+CD3+ lympho-
cytes. Dot plot show a representative data of 35 donors examined.
(B) Absolute numbers of circulating CD4+CD25+FoxP3+ regulatory T
cells in malaria-naı̈ve and P. vivax-infected donors (n = 15 and 20,
respectively). Absolute numbers (cells/mm3) are indicated on Y-axis
and lines represent median. Statistical differences were detected
using Mann-Whitney U test and are indicated on the graph with
significant P values.
doi:10.1371/journal.pone.0009623.g001

Treg in Vivax Malaria
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Figure 2B), when compared to malaria-naı̈ve donors. Flow

cytometric analysis also showed a significant increase on

CD4+CD25+FoxP3+ T cells producing IFN-c (P,0.0001), IL-17

(P = 0.0020), TGF-b (P,0.0001) and IL-10 (P,0.0001)

(Figures 2C to 2F) in malaria-infected individuals. Similar results

were observed when proportion of cells expressing CTLA-4+,

TGF-b, IL-10, IFN-c, and IL-17 were analyzed (Figures S3C to

S3G, P,0.05 for all). No differences in the proportion of GITR+

between infected and control individuals was observed

(P = 0.3866, Figure S3B).

Figure 2. Flow cytometric analysis of surface markers (CTLA-4 and GITR) and cytokines (IFN-c, IL-17, TGF-b, and IL-10) in
CD4+CD25+FoxP3+ regulatory T cells in malaria-naı̈ve and P. vivax-infected donors (n = 15 and 20, respectively). Results were expressed
as absolute numbers of cells expressing (A) GITR, (B) CTLA-4, (C) IFN-c, (D) IL-17, (E) TGF-b, and (F) IL-10. Absolute numbers (cells/mm3) are indicated
on Y-axis and lines represent median. Statistical differences were detected using Mann-Whitney U test and are indicated on the graphs with
significant P values.
doi:10.1371/journal.pone.0009623.g002

Treg in Vivax Malaria
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Expression of CTLA-4, GITR, TGF-b, IL-10, IFN-c and IL-17
Is Upregulated in CD4+CD25+FoxP3+ Cells from P. vivax
Infected Donors

The expression of analyzed surface and intracellular markers

was determined by median intensity of fluorescence in order to

obtain the absolute expression level per cell basis. Following the

increase in the absolute numbers of Treg subpopulations, P.

vivax infected donors presented a significant higher expression

level of all markers tested (CTLA-4, GITR, TGF-b, IL-10, IFN-

c and IL-17) on CD4+CD25+FoxP3+ cells when compared to

those observed on malaria-naı̈ve subjects (P,0.0001 for all,

Figure 3).

Absolute Number of Treg Cells Correlates with Parasite
Burden in P. vivax-Infected Individuals

The significantly higher absolute number of circulating

CD4+CD25+FoxP3+ cells observed in parasitized donors

(Figure 1) suggested that this cell population may have an

important role during malaria infection. To further evaluate

whether there is a direct correlation between these two variables,

the absolute numbers of CD4+CD25+FoxP3+ Treg cells were

correlated with the levels of parasitemia (Figure 4). The data

clearly shows that the number of peripheral Treg cells increases

with the level of parasitemia (Rs = 0.48, P = 0.0364) in P. vivax

infected individuals. Similar significant correlations were also

observed between parasitemia and absolute numbers of Treg

expressing GITR (Rs = 0.66, P = 0.0017), CTLA-4 (Rs = 0.47,

P = 0.0349), IFN-c (Rs = 0.52, P = 0.0187), TGF-b (Rs = 0.66,

P = 0.0016), IL-10 (Rs = 0.59, P = 0.0067) and IL-17 (Rs = 0.68,

P = 0.0011) (Figure 5). These data may imply a direct association

between increased parasite number, CTLA-4 and GITR expres-

sion and possibly cytokine production.

CD4+CD25+ Treg Cells Regulate Antigen-Specific PBMC
Proliferation in P. vivax-Infected Individuals

In order to determine the possible effect of Treg cells on the

immune response during malaria infection, a functional assay was

designed to evaluate whether CD4+CD25+FoxP3+ Treg cells can

modulate the in vitro immune response to parasite antigen. When

isolated CD4+CD25+ T cells were added to the in vitro cultures

(independent of cell ratio) of Pv-AMA-1-stimulated PBMCs

obtained from two individuals (previously selected due to posi-

tive in vitro proliferative responses after antigen stimulation) a

significant reduction on the cell proliferative response elicited by

Figure 3. Expression of surface markers (CTLA-4 and GITR) and cytokines (IFN-c, IL-17, TGF-b, and IL-10) on CD4+CD25+FoxP3+

regulatory T cells in malaria-naı̈ve and P. vivax-infected donors (n = 15 and 20, respectively). Results were expressed as median intensity
of fluorescence (lines represent median) for (A) GITR, (B) CTLA-4, (C) IFN-c, (D) IL-17, (E) TGF-b, and (F) IL-10 on CD4+CD25+FoxP3+ cells. Statistical
differences were detected using Mann-Whitney U test and are indicated on the graphs with significant P values.
doi:10.1371/journal.pone.0009623.g003

Figure 4. CD4+CD25+FoxP3+ regulatory T cells are directly
correlated with parasite burden. The relationship between
absolute numbers of CD4+CD25+FoxP3+ regulatory T cells and degree
of parasitaemia among 20 patients with Plasmodium vivax malaria was
examined using Spearman rank correlation.
doi:10.1371/journal.pone.0009623.g004

Treg in Vivax Malaria
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the recombinant Pv-AMA-1 antigen was observed (Figure 6).

These results suggest that these cells do have the capacity to

modulate the in vitro response at least to this P. vivax-specific

antigenic preparation. No significant differences were observed in

cultures stimulated with PHA for all tested individuals (data not

shown).

Discussion

CD4+CD25+FoxP3+ T cells, also known as T regs, play an

important role maintaining immune homeostasis and controlling

excessive immune responses [14]. These cells suppress cellular

immune responses through direct contact with immune effector

cells and by production of regulatory cytokines, including TGF-b
and IL-10 [15]. Over the past four decades, since its first

description in the early 1970’s [30,31], several studies have focused

to describe the role of Tregs in infectious diseases (reviewed in

[15,32]), including tuberculosis [33], hepatitis C [34], leishman-

iasis [35,36], helminthiasis [37–40] and malaria [16–20,22,41–

44]. Although consistent evidence based on experimental models

and human P. falciparum infection suggest that Tregs may

contribute to the onset of infection, the role of these cells during

malaria and the possible mechanisms of regulation are not yet fully

elucidated. Furthermore, the association of Treg cells and P. vivax

infection is still poorly understood.

In the current study, we initially showed that P. vivax-naturally

infected individuals present a significant augmentation of

circulating Treg cells in peripheral blood, as previously

demonstrated in murine and P. falciparum infections

[20,41,42]. Of note, while absolute number and proportion of

CD4+CD25+FoxP3+ cells is higher in malaria infected individ-

uals, no differences were observed for number/proportion of

CD4+ lymphocytes. The expansion of Tregs in the above

settings has been significantly associated with increased or

delayed parasite growth [16–19] as well as with increased

parasite load [20–22] and development of clinical malaria [23].

Indeed, herein we also observe a positive correlation between

absolute numbers of Treg cells and parasite burden in P. vivax

malaria. Although the number of peripheral Treg cells increases

according to the level of parasitemia, the relationship between

number of parasites and host’s regulatory T cell activity is still

not clear. However, it is possible that increased Treg activity

may trigger modulation of host immune response and

consequently predisposes to parasite survival and/or failure in

the control of parasite multiplication. On the other hand,

increased Treg responses might also account for limitation of

exacerbated infection-induced pathology, which would be lately

beneficial to the host.

A variety of potential mediators of Treg activity that could

contribute to the suppression of the host’s immune response have

been identified, including GITR [45,46], CTLA-4 [47], FoxP3

[48,49], and the anti-inflammatory cytokines IL-10 and TGF-b
[50–52]. Our results show a significant increase of circulating

CD4+CD25+FoxP3+GITR+ and CD4+CD25+FoxP3+CTLA-4+

lymphocytes in P. vivax-infected donors, which was further

correlated with level of parasitemia observed in the same

individuals. Interestingly, a higher expression of these markers

on per cell basis was also seen in P. vivax-infected donors. Both

GITR and CTLA-4 molecules are constitutively expressed on cell

surface of natural Tregs [32] and are regulated by FoxP3

expression [53,54]. Initial studies related to the effects of GITR-

signaling on Treg cells indicated that interaction of this receptor

with agonist antibody or GITR ligand (GITRL) lead to an

apparent abrogation of suppressive activity of Tregs [45,46,55].

However, although not essential for the T cell suppressor activity

[54], the engagement of GITR promotes proliferation of Tregs

[54,56] and potential enhancement of their suppressive function

[55]. Nonetheless, the augmentation of circulating number of

CD4+CD25+FoxP3+ co-expressing GITR in P. vivax infected

subjects might partially reflect the expansion of Tregs observed in

those individuals. In this context, we suggest that proliferation of

Treg cells in these individuals is elicited by GITR expression,

which is possibly upregulated by FoxP3 expression. Although the

effect of GITR signaling in Treg cells of P. vivax infected donors

Figure 5. Correlation of CD4+CD25+FoxP3+ regulatory T cell co-expressing (A) GITR, (B) CTLA-4, (C) IFN-c, (D) TGF-b, (E) IL-10, and (F)
IL-17 and degree of parasitaemia among 20 patients with Plasmodium vivax malaria. Statistical significance was determined by Spearman
rank correlation.
doi:10.1371/journal.pone.0009623.g005

Treg in Vivax Malaria
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Figure 6. Indirect suppression elicited by CD4+CD25+ T regulatory cells from P. vivax-infected individuals. (A) CFDA-SE Proliferation
ratio of Pv-AMA-1- stimulated PBMCs (sPBMCs) and sPBMCs co-cultured with different proportions of autologous CD4+CD25+ lymphocytes (1:2, 1:5
and 1:10, CD4+CD25+ cells: sPBMCs). Results are expressed for two malaria-infected donors who presented positive proliferative response after Pv-
AMA-1 stimulation. (B) Representative FACS histogram plots for 1 out 2 donors with positive proliferative response after Pv-AMA-1 stimulation
showing CFDA-SE staining after antigen stimulation and co-culturing with CD4+CD25+ T cells. CFDA-SE Proliferation ratio for sPBMCs was calculated
by proliferative response observed in Pv-AMA-1-stimulated PBMCs (indicated by positivity for CFDA-SE) divided by basal proliferative response of
non-stimulated cells (PBMCs only). CFDA-SE Proliferation ratio for co-cultured cells were calculated by proliferative response observed in Pv-AMA-1-
stimulated PBMCs with CD4+CD25+ T cells divided by proliferative response observed in Pv-AMA-1-stimulated PBMCs only.
doi:10.1371/journal.pone.0009623.g006

Treg in Vivax Malaria
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was not established, evidences from murine malaria suggest that

infection alter GITR signaling in Tregs, and this eventually

contributes to the escape of parasites from host T cell immunity

[57].

The inhibitory receptor CTLA-4 presents partial homology to

CD28 molecule and interacts to the same ligands, CD80 and

CD86, with a much higher affinity [58]. The suppressive effect of

CTLA-4 is associated with the reduced IL-2 production and IL-2

receptor expression, and by arresting T cells at the G1 phase of the

cell cycle [59,60]. Moreover, CTLA-4 expressing Treg cells induce

the expression of the enzyme indoleamine 2,3-dioxygenase (IDO)

by antigen-presenting cells which degrades tryptophan, and the

lack of this essential amino acid inhibits T cell activation and

promotes T cell apoptosis [61]. An indirect evidence of the role of

this receptor in experimental malaria has been demonstrated by

the in vivo blockade of CTLA-4 using specific monoclonal

antibody, leading to an exacerbation of P. berghei-mediated

immunopathology [19,62]. Although the potential functional role

of CTLA-4 in regulatory T cell activity remains controversial [63],

the increased number of CTLA-4+ Treg cells in P. vivax-infected

donors suggests that regulation may occur through direct contact

between antigen-presenting cells and Tregs after engagement of

the CTLA-4 pathway. Moreover, since the number of CTLA-4+

Tregs is positively associated with parasitemia, it may suggest the

involvement of this receptor on the outcome of human malaria. A

reduced expression of CTLA-4 was observed in the Fulani ethnic

group, contributing to their lower susceptibility to malaria

infection and suggesting that alterations in the maturation process

of Treg in Fulani individuals may also account for the generation

of a lower number of Treg [24].

In this study, patients with acute P. vivax infection presented

a significant augmentation of CD4+CD25+FoxP3+ cells pro-

ducing the anti-inflammatory cytokines IL-10 and TGF-b,

which also correlated positively with parasite burden. Both

cytokines exert a critical role on the regulation of type-1

response in experimental malaria [21] and contribute to Treg

cell suppressive activity in vivo [64]. This regulatory activity

may limit the malaria-induced inflammation, therefore pre-

venting the severity of clinical malaria. However, although IL-

10 and TGF-b are naturally produced by Tregs [32] and are

required to induce FoxP3 expression [65], it is not clear

whether or how parasite replication might influence the

production of these cytokines. Conversely, we also observed

an increased number of circulating CD4+CD25+FoxP3+ T cells

that produce IFN-c and IL-17 in peripheral blood of P. vivax-

infected donors, which also correlated with the levels of

parasitemia. Recently, Scholzen and colleagues [65] demon-

strated the intracellular production of IFN-c, IL-4 and IL-17,

by CD4+CD25+ Tregs with intermediate (also described as

effector T cells) rather than high expression of FoxP3

molecule, suggesting the presence of different subsets of T

regulatory cells during malaria. In our study, however, we did

not observe any correlation between Foxp3 expression levels

and production of all intracellular cytokines assessed (data not

shown). Nevertheless, the role of these pro-inflammatory

cytokines in malaria-elicited Tregs still remains to be

addressed.

Based in our results, we show that malaria-infected individ-

uals present an increased amount of activated Treg cells in the

peripheral blood, observed by increased numbers of Treg

subpopulations expressing cell surface molecules and mediators

associated with suppression of immune responses. Moreover, we

show that the same malaria-infected donors had an increased

expression of all markers tested. These results might partially

explain the reduction of antigen-specific proliferative responses

previously demonstrated in individuals infected with malaria

[66], and higher plasmatic IL-10 levels in acute P. vivax infection

[25]. Indeed, evidence from functional assays show that

augmentation of CD4+CD25+ T cells abrogates antigen-specific

proliferation of PBMCs from infected individuals, suggesting the

role of Tregs during malaria infection. Of note, the ability of

Treg cells to abrogate P. falciparum-induced cell proliferation in

the Fulani population is directly associated to a reduced

expression of genes related to suppressive activity. Depletion

of Treg cells in Fulani individuals did not significantly increase

the proliferation of PBMCs in response to P. falciparum antigens,

whereas it restored an optimal response to the same antigens in

the sympatric highly susceptible Mossi population [24]. Finally,

we show that an increased number of circulating Tregs in acute

infected individuals is associated with parasite load. In fact,

regulatory T cells might limit infection-mediated pathology but

also compromise clearance of malaria-infected red blood cells

[21]. Whether the function of Tregs is beneficial to the host or

to parasite remains to be elucidated. Further studies are still

required to support the association of regulatory T cells and

immunosupression in a diverse P. vivax infection clinical

presentation.

Supporting Information

Figure S1 Correlation between hemoglobin levels (A) and

platelet counts (B) and the degree of parasitaemia among patients

with Plasmodium vivax malaria. Statistical significance was deter-

mined by Spearman rank correlation.

Found at: doi:10.1371/journal.pone.0009623.s001 (0.10 MB TIF)

Figure S2 FACS analysis. Representative FACS histogram plots

for 1 out 35 donors expressing (A) GITR, (B) CTLA-4, (C) IFN-c,

(D) IL-17, (E) TGF-b, and (F) IL-10 in CD4+CD25+FoxP3+

regulatory T cells in malaria-naı̈ve and P. vivax-infected donors.

CD4+CD25+FoxP3+ cells were initially gated according to

Figure 1A. Histogram plots were used to determine the percentage

of positive cells and median intensity of fluorescence (MFI) for

each stain (M1 indicates positive population).

Found at: doi:10.1371/journal.pone.0009623.s002 (0.13 MB TIF)

Figure S3 Flow cytometric analysis of regulatory T cells

indicating proportion of total and subpopulations of Treg cells.

Results are expressed as percentage of positive cells for (A)

CD4+CD25+FoxP3+, (B) CD4+CD25+FoxP3+GITR+, (C)

CD4+CD25+FoxP3+CTLA-4+, (D) CD4+CD25+FoxP3+TGF-b+,

(E) CD4+CD25+FoxP3+IL-10+, (F) CD4+CD25+FoxP3+IFN-c+,

and (G) CD4+CD25+FoxP3+IL-17+ in malaria-naı̈ve and P. vivax-

infected donors (n = 15 and 20, respectively). Proportions of

positive cells (%) are indicated on Y-axis and lines represent

median. Statistical differences were detected using Mann-Whitney

U test and are indicated on the graphs with significant P values.

Found at: doi:10.1371/journal.pone.0009623.s003 (0.21 MB TIF)
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