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Abstract 

Antigen transfer refers to the process of intercellular information exchange, where antigenic components 
including nucleic acids, antigen proteins/peptides and peptide-major histocompatibility complexes 
(p-MHCs) are transmitted from donor cells to recipient cells at the thymus, secondary lymphoid organs 
(SLOs), intestine, allergic sites, allografts, pathological lesions and vaccine injection sites via trogocytosis, 
gap junctions, tunnel nanotubes (TNTs), or extracellular vesicles (EVs). In the context of vaccine 
inoculation, antigen transfer is manipulated by the vaccine type and administration route, which 
consequently influences, even alters the immunological outcome, i.e., immune amplification and 
tolerance. Mainly focused on dendritic cells (DCs)-based antigen receptors, this review systematically 
introduces the biological process, molecular basis and clinical manifestation of antigen transfer. 
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Introduction 
Antigen transfer is an important approach of 

cell-to-cell communication, where antigenic 
information is actively transmitted from donor cell to 
recipient cell in the form of nucleic acid, antigen (Ag) 
protein/peptide, peptide major histocompatibility 
complex (p-MHC) and vaccine particle mainly at the 
thymus, peripheral lymphoid organ, intestine, allergic 
site, allograft, pathological lesion and vaccine 
injection site through the contact-dependent path-
ways including trogocytosis, gap junctions, and 
tunnel nanotubes (TNTs), and the contact- 
independent extracellular vesicles (EVs) [1]. In fact, 
both professional antigen-presenting cells (APCs) and 
somatic cells (i.e., non-APCs) are potential 
participants in antigen transfer. Specifically, Ag can 
be transferred from APCs to APCs, from non-APCs to 
APCs, from APCs to non-APCs, and even from 
non-APCs to non-APCs, which is of vital significance 
for coordinating immune elicitation/amplification 
and tolerance establishment/maintenance [2]. 

Encompassing dendritic cells (DCs), B cells and 

macrophages, APCs are a heterogeneous family with 
functionally specialized subsets that mediate innate 
and adaptive immunity upon local microenviron-
mental cues. Notably, DCs are the most powerful 
APCs that accommodate a dual regulatory effect in 
immune activation and tolerance induction. It has 
been widely recognized that DCs modulate the 
activation of T cells through both canonical [3] and 
non-canonical [4-7] Ag presentation pathways, in 
which the MHC system is flexibly mobilized to elicit 
potent immune responses against virus infection [8] 
and tumorigenesis [9, 10]. On the other hand, DCs are 
paramount in the orchestration of both central and 
peripheral tolerance. DCs promote central tolerance 
during the negative selection of autoreactive T cells in 
the thymus, and induce a tolerogenic or exhausted 
state of T cells by driving the polarization of 
regulatory T cells (Tregs) from naïve T cells in the 
periphery [11]. Such versatile immune competence of 
DCs is largely attributed to their inherent 
characteristics, such as: 1) multiple subsets with 

 
Ivyspring  

International Publisher 



Theranostics 2022, Vol. 12, Issue 13 
 

 
https://www.thno.org 

5889 

functionalized phenotypes that constitute a 
wide-ranging immune surveillance [12, 13], including 
conventional DC (cDCs) [14-17], Langerhans cells 
(LCs) [16, 17], plasmacytoid DCs (pDCs) [18], and 
monocyte-derived DCs (mo-DCs) [19]; 2) rapid 
sensing and chemotaxis toward sites under the 
“non-self” invasion [20]; 3) diverse endocytic receptor 
repertoires and Ag process systems for multi- 
dimensional activation of T cells [21, 22]; and 4) 
homing toward the secondary lymphoid organs 
(SLOs, including lymph nodes (LNs), spleen, Peyer’s 
patches (PPs), adenoids and tonsils) during 
maturation to provide a timely integration of 
environmental signals. Moreover, besides direct 
capture of peripheral Ag [23-26], DCs are capable of 
collecting antigenic information from Ag-exposed live 
cells including non-leukocytes and other types or 
individuals of APCs [14, 23, 27-29], serving as Ag 
acceptors to ensure an all-round supervision over the 
body and promote the flexible modulation of immune 
activation [1] and tolerance [30]. 

Indeed, the existence of intercellular antigen 
transfer largely reshapes our understanding about the 
mode of action of vaccines. For locally administrated 
vaccines, the accessibility and availability of 
peripheral Ag by SLOs-resident DCs plays a central 
role in the in-situ activation of T-/B- lymphocytes and 
consequently determines the immunological 
outcomes [31]. However, considering the poor 
mobilization ability of tissue-resident DCs and the 
potential cell damage caused by the “non-self” attack, 
a direct contact with the source Ag may be difficult, 
risky and not necessary. As a matter of fact, APCs and 
non-APCs predominate at the vaccine sites can both 
be positively vaccinated and act as intermediaries that 
provide antigenic information to DCs, such as 
keratinocytes (KCs) [32], muscle cells [33], LCs [34, 
35], migratory DCs [36], macrophages and B cells. As 
a matter of fact, antigen transfer from infected, 
transformed, or vaccinated live cells to DCs prevents 
the risk of cell damage caused by direct virus/tumor 
contact, compensates the insufficient availability of 
certain types of DCs to distal Ag, and enhances 
specific immune responses against natural infection, 
tumorigenesis and vaccine inoculation [2, 37-39].  

Therefore, rationally utilize and regulate antigen 
transfer for improved vaccine efficacy might 
demonstrate some clinical significance. However, 
current understanding about the biological process 
and molecular basis of antigen transfer is insufficient 
[40], which may limit the efficiency and safety of 
current vaccines. Herein, mainly focused on 
DCs-based Ag receptors, this review systematically 
introduces the mode, location and participant of 

antigen transfer, especially in the context of vaccine 
inoculation, which may provide guidance for the 
design and development of vaccines. 

Pathological and physiological 
significance of antigen transfer 
Pathological significance of antigen transfer 

Antigen transfer refers to the intercellular 
trafficking (active behavior) of antigenic information 
from the donor to the acceptor, which effectively 
promotes the availability of Ag and extends the 
breadth and duration of immune response. APCs, as 
represented by DCs, fail to elicit immune responses 
when directly exposed to viruses that are highly 
invasive and cell-destructive (e.g., herpes simplex 
virus (HSV), Epstein-Barr virus (EBV), cytomegalo-
virus and some influenza viruses) [37]. Likewise, 
transformed or malignant cells may reshape the 
microenvironment to inactivate infiltrating immune 
cells, as both the number and the LNs-migrating 
ability of tumor-infiltrating DCs drastically decreased 
with time [41]. 

Under these circumstances, Ag is transferred 
from infected or transformed live cells to DCs, which 
greatly reduces the risk of direct virus/tumor contact 
and magnifies specific immune response to natural 
infection and tumorigenesis. 

Physiological significance of antigen transfer 
It is reported that compared to APCs, most 

somatic cells (e.g., muscle cells, keratinocytes) 
abundant at the sites of vaccine administration can be 
positively vaccinated and even display higher 
competence in nucleic acid-transfection and protein- 
uptake [2]. However, these cells are generally low in 
the expression of co-stimulatory molecules, which 
deprives their ability of direct T-cell activation upon 
vaccination. In response to this situation, Ag is 
transferred from vaccinated somatic cells to the 
nearby APCs to activate specific immune response. 

On the other hand, tissue-resident DCs, 
important components of the lymphoid organs that 
far outnumber their circulating counterparts have 
poor mobilization ability, which greatly limits their 
accessibility to the peripheral Ag. However, these 
DCs, LN-resident CD8α+ DCs in particular, have been 
shown to present Ag from other cells (e.g., circulating 
DCs), leading to efficient elicitation of the cytotoxic T 
lymphocyte (CTL) response [38, 39]. Therefore, 
antigen transfer from other cells to tissue-resident 
DCs may compensate the low availability of these 
certain types of APCs to distal Ag and magnifies 
specific immune response. 
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Figure 1. Four modes of antigen transfer. (A) Trogocytosis. Cells in close contact can directly "bite" and internalize membrane-associated Ags and/or p-MHCs from each 
other. (B) Gap junction. Adjacent cells exchange intracellular antigenic information (pDNA, mRNA, Ag protein/peptide and p-MHCs) via hexamer channels. (C) Tunnel 
nanotubes (TNTs). Cell-cell connection by actin-based membrane protrusions that establish cytoplasmic continuity between distant cells and enable the exchange of cytoplasmic 
Ags and cell surface-associated Ags. (D) Extracellular vesicles (EVs). Donor cells bud directly from the plasma membrane to generate microvesicles containing p-MHCs and/or 
membrane-associated Ags, or secrete exosomes derived from the intracellular Ag-incorporating endosomes. These microvesicles and exosomes diffuse into the extracellular 
space to be captured by acceptor cells. Ag: antigen; mRNA: messenger RNA; pDNA: plasmid DNA; p-MHC I/II: peptide-major histocompatibility complex class I/II molecules.  

  

Mode of antigen transfer 
Intercellular antigen transfer is largely mediated 

by the contact-dependent pathways including 
trogocytosis [27], tunnel nanotubes (TNTs) [42] and 
gap junctions [43], as well as the contact-independent 
extracellular vesicles [15] (Figure 1). Both 
microvesicles bud directly from the plasma 
membrane [1] and trogocytosis [44] are able to 
transfer membrane-associated Ags and functional 
p-MHCs presented on the cell surface, whereas 
exosomes derived from the late endosomes [45, 46], 
gap junctions [47] and TNTs [48] mainly transfer 
cytoplasmic Ag in the form of nucleic acid, Ag 
protein/peptide, and p-MHCs. 

In fact, different modes of antigen transfer are 
involved in various physiological and pathological 
conditions. Trogocytosis is generally observed 
between cells with active membrane mobility. DCs 
trogocytose membrane fragments containing 
functional p-MHCs from neighboring cells are able to 
initiate immune response efficiently [49]. Meanwhile, 
immunosuppressive molecules transferred to DCs via 

trogocytosis may lead to impaired immunity [50, 51]. 
Gap junctions are hexamer channels formed within 
adjacent cells that facilitate the intracellular Ag 
exchange. For example, pathogenic and harmless 
antigen captured by gut-resident macrophages can be 
transferred to migratory DCs through gap junctions to 
induce protective immunity and establish oral 
tolerance, respectively [52-54]. TNTs are actin-based 
membrane protrusions (up to 150 µm in length) that 
enable cell-to-cell connection over a longer distance. 
TNTs are the main mediators of lymphatic meshwork 
that support the quick activation of LN-resident DCs 
and promote the efficient induction of immune 
response [55]. Likewise, TNTs formed with malignant 
cells or virus-infected cells may accelerate the spread 
of diseases [55, 56]. EVs, on the other hand, enable a 
contact-independent Ag transfer between the donor 
and the acceptor. Tumor Ag transferred to DCs via 
EVs may consequently promote anti-tumor immunity 
or induce T-cell tolerance, depending mainly on the 
form of transferred Ag and the maturation state of 
receptor DCs [57-60]. 
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Trogocytosis 
Generally, DCs phagocytize apoptotic and 

necrotic debris from the extracellular space for 
canonical Ag presentation and non-canonical Ag cross 
presentation [61-63]. However, recent studies have 
demonstrated that DCs can also obtain antigenic 
information from living cells through a 
contact-dependent pathway called "trogocytosis" (also 
known as "nibbling", Figure 1A) [27, 40]. Trogocytosis 
is an active process whereby acceptor cells conjugate 
to donor cells for extraction of surface molecules and 
membrane fragments [64]. In the context of antigen 
transfer, membrane Ag and p-MHCs displayed on the 
surface of donor cells are transferred to DCs in close 
proximity via trogocytosis, which mainly involves 
close cell-to-cell contact, formation of “immunological 
synapse”-like structure, cross-cellular transport of 
plasma membrane-associated cargos, and separation 
of cells, leading to elicited immune responses or 
maintained peripheral tolerance [14, 65-67]. Notably, 
the special biological characteristics of DCs facilitate 
the development of trogocytosis, including high 
membrane deformability and elasticity, rapid sensing 
and chemotaxis in respond to inflammation, and 
extensive interaction with other cells [10, 68]. On the 
contrary, lines of evidence indicate that macrophages, 
which readily phagocytose apoptotic cells, cannot 
trogocytose membrane from viable cells, possibly due 
to limited expression of surface scavenger receptors 
[40, 44], too acidic endosomal/phagosomal environ-
ment, or high levels of lysosomal proteases [69]. 

In tumor-bearing patients, compared to 
apoptotic or necrotic tumor cells, live tumor cells 
expressing various tumor-associated antigens (TAAs) 
and tumor-specific antigens (TSAs) are the most 
abundant source of Ag with high immunogenicity. 
Therefore, trogocytosis of viable tumor cells by DCs 
contributes to an efficient and versatile Ag 
presentation for the activation of anti-tumor immune 
response [44]. Meanwhile, during virus infection (e.g., 
human immunodeficiency virus (HIV) and EBV), DCs 
are able to preferentially acquire viral Ag from 
infected cells including lymphocytes, macrophages 
and non-hemopoietic cells, without risks of 
self-infection and immune dysfunction. On the other 
hand, DCs directly infected by virus may serve as Ag 
donors to provide sustained Ag for epidermal 
resident LCs or recruited circulating DCs [70-73]. 

However, attention should be paid to the fact 
that immunosuppressive molecules may also spread 
and spoil the immune microenvironment during 
trogocytosis. For example, human leukocyte 
antigen-G (HLA-G), a nonclassical HLA-class I 
molecule usually over-expressed by malignant cells, 
can directly inhibit the function, chemotaxis and 

viability of immune cells through receptor binding 
[74]. Furthermore, the systemic immune environment 
can be further deteriorated when HLA-G is 
transferred to DCs via trogocytosis, which limits the 
activation of effector T cells, promotes the expansion 
of immunosuppressive cells (such as Tregs and 
myeloid-derived suppressive cells (MDSCs)), and 
even induces the apoptosis of immune cells, 
rendering tumor cells with greater metastatic 
potential [50, 51]. Similarly, virus with high 
invasiveness and viability may also accelerate the 
speed and scale of transmission through antigen 
transfer. For example, although DCs are largely 
resistant to productive virus infection, they express 
high levels of C-type lectins, the main attachment 
factors of HIV at the surface of dermal and mucosal 
DCs. As a result, myeloid DCs, pDCs and LCs are all 
susceptible to infection with HIV, leading to impaired 
antigen-presenting function. In addition, follicular 
DCs (FDCs) capture large quantities of HIV as 
persistent reservoirs of virion to promote viral 
pathogenesis. Furthermore, HIV-pulsed DCs can 
transfer virion to T cells through “trans-infection” 
(across the virological synapse or DC-derived 
exosomes) and/or “cis-infection” (mediated by the de 
novo viral production within DCs) for facilitated viral 
dissemination and escaped antiviral immunity 
[75-77]. 

Gap junctions 
Gap junctions are clusters of intercellular 

hemichannels mainly composed of plasma membrane 
protein Connexin and formed in closely apposed 
neighboring cells [43] (Figure 1B), especially in DCs, B 
cells, monocytes and activated lymphocytes that have 
a high expression of Connexin 43 (Cx43) [78, 79]. In 
such communication channels, ions and small 
molecules can be passively diffused [80]. Moreover, 
gap junctions provide a pathway mediating the direct 
cell-to-cell transfer of Ag in the form of nucleic acids, 
proteins (molecular weights below 1 kDa, or amino 
acid residues less than 11) [81, 82], p-MHCs, and other 
signaling molecules [83]. Of note, Cx43-based gap 
junctions are more favorable for the intercellular 
transfer of MHC I-restricted peptides with molecular 
weights lower than 1 kDa, instead of the theoretically 
larger MHC II-restricted peptides [62, 84]. 

Accumulating evidence suggests that gap 
junction plays an important role in the initiation and 
amplification of immune responses. It’s reported that 
infection with bacteria Salmonella up-regulates the 
expression of Cx43 in both human and murine 
melanoma cells, which promotes the formation of 
functional gap junctions between melanoma cells and 
adjacent DCs to facilitate the intercellular transfer of 
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antigenic peptides. Consequently, DCs present Ag on 
their surface to initiate specific cytotoxic T cells 
against tumor growth. Notably, such Cx43-dependent 
antigen transfer induces cross presentation and CD8+ 
T cell activation more efficient than that of standard 
Ag loading in generating anti-tumor responses [85, 
86]. Macrophages, although with limited capacity of 
Ag cross-presentation and CD8+ T cell activation, may 
serve as transfer stations of Ag to promote immune 
responses. Specifically, tumor rejection Ags are 
phagocytosed by macrophages [87] and subsequently 
transferred to DCs through gap junction-mediated 
intercellular transmission, which promotes the 
maturation of DCs and augments antitumor T cell 
responses [88]. Such antigenic communication 
between macrophages and DCs can also be observed 
in the intestine. Mazzini et al. [47, 52] revealed that 
CX3CR1+ macrophages sampled over the intestine for 
suspicious “non-self” substances and delivered 
captured soluble Ags to DCs through gap junction. 
Subsequently, Ag-exposed DCs migrated toward the 
draining lymph nodes (dLNs) to prime or tolerize T 
cells, depending on the microenvironmental signals. 
FDCs have also been shown to form immune cell 
clusters with cognate follicular B cells by 
Cx43-mediated gap junction for direct Ag delivery 
[89], supporting the development and maturation of B 
cells in the germinal center [79]. 

Tunnel nanotubes 
Tunnel nanotubes (TNTs) (Figure 1C), also 

known as “filopodia bridges”, “membrane tubes” and 
“nanotubules” [90], are non-adherent, filamentous 
actin (F-actin) -based cytoplasmic protrusions [91] 
widely found in immune cells, neurons, tumor cells 
[56] and epithelial cells. TNTs enable cell-to-cell 
communication over long distance by plasma 
membrane bridges [92] (e.g., TNTs in macrophages 
can extend more than 150 μm [93]), which establishes 
cytoplasm continuity [94] and facilitates intercellular 
information exchange. Specifically, nucleic acids, 
proteins, lipid nanoparticles, organelles (such as 
vesicles, lysosomes, mitochondria and 
autophagosomes) and even pathogenic particles [95] 
can be transported from donor cells to acceptor cells 
via TNTs [42]. To date, “cell dislodgment" and 
"actin-driven" are the two widely recognized 
mechanisms accounting for the formation of 
intercellular TNTs [96]. However, more efforts are 
needed to fully address the molecular basis and 
immunological significance of TNTs. 

Despite insufficient understanding of 
TNTs-involved Ag transfer, lines of evidence suggest 
that such long and thin membrane tubes actively 
mobilize the immune regulatory networks by 

connecting multiple cells and promoting the 
intracellular sharing of antigenic information [97]. It 
should be mentioned that the unique membrane 
structures of DCs including elaborate dendrites, 
sophisticated pseudopodia and delicate ruffles 
support the deformation and rearrangement of 
plasma membrane [98, 99], which also consists the 
structural basis of TNTs. Peripheral Ag-exposed DCs 
migrate to the dLNs within 48 h in a chemokine 
receptor 7 (CCR7)-dependent manner [14, 23], during 
which DCs undergo maturation with extensive 
dendritic stretching and remarkable morphological 
change, laying the foundation for immune cell 
communication and T cell activation [100]. Then, 
LNs-resident DCs acquire Ag from their migratory 
counterparts by TNTs, which increases the 
availability of Ag and consequently magnifies 
immune response [1, 100]. In addition, p-MHC class II 
complexes and costimulatory B7 family proteins (e.g., 
CD86 molecules) are shared within two adjacent B 
cells [101] or B cells and macrophages [102] through 
TNTs-mediated interconnection networks, which 
improves the efficiency of Ag-dependent T cell 
activation and induces a wide-ranging mobilization of 
the immune system. 

Nevertheless, TNTs formed within tumor cells 
are reported to accelerate tumor metastasis by 
propagating metabolic plasticity, angiogenic ability 
and therapy resistance [56]. Besides, TNTs can be 
exploited by pathogens such as HIV-1 for direct 
cell-to-cell spread [55]. 

Extracellular Vesicles 
Extracellular vesicles (EVs) (Figure 1D) are small 

spherical lipid bilayer particles released into the 
extracellular environment by almost all types of cells, 
including APCs, somatic cells and tumor cells. 
According to different mechanisms of biogenesis, EVs 
are mainly categorized into microvesicles (also named 
as microparticles) that bud directly from the plasma 
membrane [103] and exosomes secreted as a 
consequence of the fusion of multivesicular 
endosomes (MVEs) with the plasma membrane [104]. 
EVs loaded with cargos (e.g., lipids, proteins and 
nucleic acids) are diffused into the interstitial space or 
the circulation to be internalized by receptor cells via 
phagocytosis, endocytosis, macropinocytosis, lipid 
rafts-mediated internalization, or direct plasma 
membrane fusion [105, 106]. EVs remain attached to 
recipient cells can also transfer donor-derived cargos. 
For example, during allogenic organ transplantation, 
donor DCs migrate from the graft to lymphoid tissues 
and transfer MHC molecules to recipient cDCs 
through EVs. These EVs are internalized or remain 
attached to the recipient cDCs, instead of fusing with 
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the plasma membrane of the acceptor APCs, which 
consequently enhanced the activation of alloreactive T 
cells. In this regard, depletion of recipient DCs after 
allograft can be used to delay graft rejection [107]. 

EVs-mediated Ag transfer from tumor cells or 
virus-infected cells to DCs is of great importance to 
the initiation and maintenance of specific immune 
responses [15]. DCs are able to selectively engulf 
cancer cell-derived EVs incorporating antigenic 
protein, epitope peptide and/or p-MHCs through 
extracellular vesicles-internalizing receptors (EVIR) 
[45, 46], which coordinates antitumor response with 
quick mobilization and high efficiency [57]. Of note, 
EVs can be easily isolated from the sera or malignant 
effusions of patient, representing as rich reservoirs of 
the whole panel of tumor Ag that may elicit a broad 
array of T cell clones against multiple Ag epitopes. 
Indeed, several EVs have been collected, modified 
and used as the next-generation cell-free cancer 
vaccines in personalized tumor immunotherapy [108, 
109]. 

However, EVs with insufficient co-stimulatory 
signals and/or adjuvant-like components may induce 
immune tolerance when internalized by immature 
DCs [110]. Moreover, immunosuppressive molecules 
can also be transferred through tumor cells-derived 
EVs [111-114] to impair the maturation and 
immunological function of immune cells. 

Location of antigen transfer 
A growing number of studies have 

demonstrated that Ag is transferred at various 
physiological and pathological compartments that 
mainly include thymus [115], SLOs [1], intestine [47], 
allergic sites [116], allografts [117], lesions [34, 35] and 
vaccine injection sites [2], which largely determines 
the immunological consequence (i.e., immune 
activation or tolerance). And more efforts are needed 
to unveil other potential sites, as well as the associated 
outcomes, of antigen transfer. 

Thymus 
Thymus is primarily responsible for the 

establishment of central tolerance that avoids auto-
immune responses [118]. Specifically, autoreactive T 
cells are negatively selected and eliminated in the 
thymic medulla before entering the periphery, which 
blocks the recognition of T cell receptors (TCRs) with 
tissue-restricted self-Ags and prevents specific 
cytotoxic killing against normal cells [30]. Firstly, a 
subpopulation of medullary thymic epithelial cells 
(mTECs) displays the vast majority of autoantigens by 
generating corresponding p-MHCs, a process that 
involves the transcription factor autoimmune 
regulator (AIRE) [119, 120]. Then, the resultant 

p-MHCs are subjected to other APCs in the medullary 
microenvironment such as DCs, B cells and 
macrophages, especially resident CD8α+ DCs, 
possibly through trogocytosis, exosomes and uptake 
of apoptotic bodies that are irrespective of the 
subcellular localization or expression pattern of Ag 
[121]. As a result, medullary thymocytes that express 
TCRs with high affinity for autoantigen-associated 
p-MHCs presented by these APCs are either deleted 
through apoptosis or undergo lineage deviation that 
gives rise to Tregs and other ‘unconventional’ T cell 
populations [122]. Notably, during negative selection, 
CD8+ and CD4+ single positive T cells may travel at a 
rate of 10 μm per minute in the medullary areas to 
increase the interaction with these APCs [123]. It 
should be mentioned that scavenger receptor CD36 is 
involved in the process of antigen transfer from 
mTECs to DCs in the form of EVs that contain mTECs 
cell surface proteins (i.e., intact p-MHC class I and II 
complexes) [115]. However, more efforts are needed 
to unveil the mechanistic details of such EVs-engaged 
antigenic communication and explore the 
participation of other antigen transfer approaches. 

Secondary lymphoid organs 
SLOs, especially LNs and spleen, are highly 

organized structures that filter lymph and blood for 
suspicious Ags in these fluids, allow the entry of 
Ag-loaded DCs, and facilitate the antigenic interaction 
between DCs, B cells and T cells, serving as the 
“transit hubs” of adaptive immunity. There are a 
variety of specialized stromal cells, bone marrow cells 
and lymphocytes constituting the structural 
organization of SLOs for efficient Ag encounter and 
intercellular transfer. For example, LNs are 
anatomically composed of paracortex (T cell zone), 
cortex (B cell zone with follicles and germinal centers) 
and medulla (including subcapsular sinus (SCS), 
medullary sinuses, medullary cords and hilus) [124]. 
These functionalized compartments are closely 
connected to orchestrate immune response against 
foreign substances. 

Circulating DCs migrate back to the LNs upon 
peripheral Ag stimulation through afferent lymphatic 
vessels and in a chemokine-dependent manner for Ag 
transfer and lymphocyte activation [125, 126]. 
Notably, the T cell immunity elicited within SLOs is 
found to be compartmentalized by route of lymphatic 
transport. In response to the administration of 
vaccinia virus (a replication-competent live 
attenuated vaccine), skin DCs fail to relocate to the 
dLNs from site of infection, which ablates vaccine 
efficacy [127]. To delineate the underlying 
mechanisms, O'Melia et al. [128] designed a suite of 
nanoscale biomaterial tools to track and quantify the 
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Ag access and presentation within LNs, thereby 
optimizing antitumor CD8+ T cell responses [121]. 
They found that in the melanoma context, the extent 
of Ag presentation by dLNs-resident APCs remained 
unchanged despite the sustained access of lymph- 
draining Ag while the presentation of cell-transported 
Ag was increased, which was partially caused by the 
phenotypes of DCs accessed via different lymphatic 
transport mechanisms. Specifically, passively drained 
Ag was presented mainly by pDCs and cDCs that 
displayed an immunosuppressive phenotype. In 
contrast, actively transported Ag was presented by 
dDCs and LCs that exhibited an immunepotentiating 
phenotype. However, the complex communication 
among different cells, especially the intercellular 
antigen transfer, is still incompletely understood. 
More detailed discussion of intra-SLOs antigen 
transfer can be found at the following chapters (i.e., 
5.1 From APCs to APCs). 

Generally, antigen can be transferred within the 
SLOs in multiple forms, including Ag 
protein/peptide, Ag-encoding nucleic acid, functional 
p-MHC, immune complex, and vaccine particle. More 
importantly, the form of Ag may affect the mode and 
even the immunological consequence of Ag transfer. 
In SLOs, LNs in particular, exogenous Ag or Ag 
fragments (i.e., antigenic complexes, protein and 
peptide) transferred to DCs by trogocytosis, EVs, 
TNTs or gap junctions can be canonically presented 
on the MHC class II molecules to activate specific 
CD4+ T cells [3, 62, 129] or cross-presented via the 
MHC class I molecule-restricted pathway to initiate 
specific CD8+ T cells [63]. Meanwhile, Ag-encoding 
nucleic acids (e.g., mRNA, pDNA) transferred to DCs, 
probably through EVs, TNTs or gap junctions, can be 
translated into “endogenous Ag” and then 
preferentially presented on the MHC class I molecules 
or undergo Ag translocation to the endosomes for 
MHC class II-favored cross presentation [6, 7, 130, 
131]. Besides, functional p-MHC I and/or p-MHC II 
can be transferred to DCs mainly through 
trogocytosis and EVs, which facilitates an efficient 
elicitation and magnification of T-cell responses [49, 
132-134]. 

Intestine 
Chronically exposed to both innocuous and 

pathogenic Ags, intestine constitutes the largest and 
most complex part of the immune system where 
acquired oral tolerance to harmless dietary proteins 
and commensal bacteria is established while specific 
immune response against pathogenic microbes can be 
elicited [135]. It is increasingly recognized that in the 
intestine, antigen transfer among phagocytes with 
specialized functions [136] plays a vital role in 

mediating the balance between tolerance (Figure 2A) 
and protective immunity (Figure 2B). 

Intestinal APCs, especially DCs, are in 
dispensable for triggering peripheral Foxp3+ Tregs 
polarization from naïve T cells and inducing oral 
tolerance [137, 138]. And default responses to 
harmless Ags may otherwise lead to food allergies, 
inflammatory bowel disease, and even colorectal 
cancer [139, 140]. Mazzini et al. [52] found that soluble 
food Ags are internalized by gut-resident CX3CR1+ 
macrophages and quickly transferred to migratory 
CD103+ DCs in a Cx43-dependent and plasma 
membrane-required manner (i.e., through gap 
junction), which consequently promoted Treg 
differentiation and induced oral tolerance to these 
Ags. Meanwhile, McDole et al. [141] suggested that in 
steady state, goblet cells in the epithelium of small 
intestine transported low molecular weight soluble 
Ags from the intestinal lumen to tolerogenic CD103+ 
DCs in the lamina propria to promote intestinal 
immune homeostasis. However, the underlying 
mechanisms accounting for such Ag transfer from 
goblet cells to DCs remain to be fully elucidated. 
Segmented filamentous bacteria (SFB) and other 
intestinal resident commensal bacteria adhere tightly 
to intestinal epithelial cells (IECs) via hook-like 
structures, and Ag proteins from these bacteria can be 
transferred into the cytosol of IECs through 
adhesion-directed endocytosis to affect host T cell 
homeostasis [142]. Specifically, at the tip of the 
SFB-IEC synapse, SFB generates endocytic vesicles 
containing microbial cell wall-associated proteins, 
including an Ag that induces mucosal T helper type 
17 (Th17) cell differentiation, to be acquired by host 
IECs for elicitation of specific T cell responses. 

On the other hand, intercellular antigen transfer 
might also occur in the context of gastrointestinal 
infections that consequently induces protective 
immune defense against potentially pathogenic Ags 
[53, 54]. In the rectal mucosal biopsies of patients with 
acute campylobacter colitis or cholera, mononuclear 
phagocytic cells (mainly macrophages and DCs) in the 
superficial rectal mucosa exhibit a higher prevalence 
of ultrastructural features of activation. Macrophages 
are found to actively insert pseudopodia through 
intestinal epithelial cell gaps to capture pathogenic 
Ag, while DCs that are superior in Ag presentation 
and T cell activation display active membrane 
processes, enhanced macropinocytosis and elevated 
phagosomal/lysosomal activity [143], indicating that 
macrophages and DCs might share antigenic 
information within the intestine through multiple 
pathways to coordinate the anti-infection immune 
responses. 
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Figure 2. Antigen transfer in the intestine. (A) Intercellular transfer of harmless Ag establishes intestinal homeostasis. Gut-resident CX3CR1+ macrophages (Mφ) 
continuously sample the gut lumen for harmless soluble Ag, including Ag from dietary proteins and commensal bacteria. Subsequently, Mφ captured Ag is transferred to intestinal 
migratory CD103+ DCs, which then migrate back to the dLNs to induce T cell tolerance, establishing intestinal flora homeostasis and preventing food allergy. (B) Intercellular 
transfer of pathogenic Ag induces pro-inflammatory responses against infection. Upon intestinal invasion of pathogenic bacteria and viruses, CX3CR1+ Mφ collect potentially 
pathogenic Ag from infected intestinal tissue cells or directly from the pathogen, which was further transferred to CD103+ DCs through gap junctions and EVs for presentation 
and T cell activation, inducing specific protective immune responses. 

 

Allergic sites 
Allergy, also termed as allergic disease or 

anaphylactic reaction, refers to hypersensitivity of the 
immune system in response to the exposure of 
typically harmless Ags. To date, mounting evidences 
have suggested that intercellular transfer of 
immunoreactive substance or Ag is closely associated 
with the development of exaggerated immune 
response to allergens such as pollens, dust mites, 
furry animal dander, drugs and foods. 

Mast cells (MCs) are well recognized as key 
effector cells of allergic reactions, which respond to 
endogenous or exogenous danger signals by secreting 
a plethora of mediators including histamine, 
proteases and cytokines in the form of mast cell 
granules (MCGs) that can be released by 
degranulation within seconds on activation to initiate 
immune responses, neutrophil recruitment and 
allergen clearance. On skin inflammation, 
MCs-exocytosed intact MCGs are engulfed by and 
degraded within dermal DCs to promote DC 
maturation and migration to the dLNs for subsequent 
T cell priming [144]. In turn, it is reported that 
CD301b+ perivascular DCs continuously sample the 
blood and relay Ag to neighboring MCs and other 

DCs through an active discharge of surface-associated 
Ags on microvesicles (MVs) generated by vacuolar 
protein sorting 4 (VPS4) to potentiate inflammation 
and anaphylaxis against blood-borne Ags [115]. 
Moreover, in the case of allergic asthma and atopic 
dermatitis (AD), the interplay between tissue 
structural cells and DCs is largely responsible for 
CD4+ T helper type 2 (Th2) cell-induced dysregulated 
type 2 inflammation (Th2 sensitization) to 
environmental allergens [145]. For instance, when 
exposed to house dust mite (HDM), airway epithelial 
cells generate danger-associated molecular patterns 
(DAMPs), chemokines and cytokines to recruit, 
activate and skew DCs toward Th2 phenotype that 
promotes the pulmonary inflammatory reactions. 
Whereas skin KCs recognize HDM through Toll-like 
receptors (TLRs) and produce type 2 immune 
cytokines to activate cDC2 subsets and induce their 
migration to the dLNs for elicitation of Th2 response. 
Moreover, individuals with autoimmune diseases, 
such as systemic lupus erythematosus (SLE) that 
produces systemic inflammation in multiple organs, 
have platelets that continuously recruit and release 
mitochondrial DNA (mtDNA) as a source of 
circulating autoantigen to exacerbate the self-attack of 
immune system [146]. 
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Allografts 
Similar to that of allergy, the rapid acquisition of 

antigenic information from allograft by host APCs 
induces severe immune rejection and graft organ 
necrosis. During allogeneic organ transplantation, 
host DCs rapidly integrate intact donor p-MHC class I 
complexes through cross dressing or uptake and 
process donor Ags into allopeptides bound to 
self-MHC molecules, which induces massive 
proliferation of reactive T cells and leads to graft 
rejection [147, 148]. In addition, donor DCs migrated 
from the graft to the SLOs may release EVs to facilitate 
an efficient passage of donor MHC molecules to host 
cDCs, which triggers full activation of alloreactive T 
cells and impedes graft survival [107]. On the other 
hand, DCs in successfully transplanted patients 
undergo continuous transfer of p-MHCs from donor 
DCs and/or donor somatic cells to DCs, and these 
MHC-dressed DCs may induce immune tolerance to 
benefit a long-term graft survival by upregulating 
their own programmed death-ligand 1 (PD-L1) [149]. 

In order to minimize the Ag transfer-associated 
graft rejection, Borges et al. [150] incubated skin grafts 
with the anti-inflammatory mycobacterial protein 
DnaK, which promoted a March 1-dependent 
reduction of MHC class II molecules on donor CD103+ 
DCs, thereby inhibiting the transfer of p-MHCs to 
recipient DCs and prolonging the survival of 
transplanted skin. Meanwhile, Zhang et al. [151] used 
CRISPR/Cas9 to ablate costimulatory CD40 at the 
genomic level in DCs dressed with donor p-MHCs to 
inhibit their maturation and LNs-homing, which not 
only induced long-term graft tolerance but also 
prevented severe immunosuppressive side effects. 

Pathological lesions 
Antigen transfer at the lesions (e.g., sites under 

physical damage, chemical stimulation, ultraviolet 
irradiation, pathogen infection and tumorigenesis) 
may serve as a critical line of immune defense. For 
example, in human skin models and genital herpes 
lesion biopsies, HSV is first taken up by LCs that 
patrol over the epidermis. Subsequently, HSV-loaded 
LCs migrate to the dermis and transfer HSV Ag to 
CD103+ cDCs with a superior antigen-presenting 
ability and more motivated LNs-homing for initiation 
of immune response (passive Ag transfer, as 
HSV-infected LCs undergo apoptosis to be further 
taken up by dermal DCs) [152, 153]. Notably, cDC1s 
that feature high expression of C-type lectin-like 
receptor 9A (CLEC9A) are capable of binding 
dead-cell debris and promoting the cross presentation 
of corpse-associated Ags, which facilitates their relay 
of Ag from the donor cells or directly from the 
pathogens [154, 155]. Moreover, during skin 

inflammation, an intensive and long-lasting 
synapse-like contact between migratory DCs and 
stationary MCs culminates in the functional transfer 
of DC-restricted proteins to MCs, including MHC 
class II complexes, which may ensure the host defense 
during DC migration to the dLNs or critical periods of 
migration-based DC absence [156]. In the context of 
tumorigenesis, p-MHC class I complexes and other 
membrane structures containing the “non-self” Ags 
that presented on the surface of tumor cells can be 
directly transferred to DCs via trogocytosis [44], while 
intracellular Ags can be transmitted to DCs through 
exosomes [157]. Squadrit et al. [57] reported a 
lentivirus-encoded chimeric receptor named 
extracellular vesicle-internalizing receptor (EVIR) to 
facilitate the specific and efficient uptake of cancer 
cell-derived EVs by DCs, which exploited the cross 
dressing of pre-formed p-MHC class I complexes for 
improved activation of specific T cell responses 
against tumor. 

However, as aforementioned, some immuno-
suppressive molecules might also be transferred to 
immune cells through trogocytosis, gap junctions, 
TNTs and EVs to modulate immune responses and 
promote disease progression [50, 51, 74]. For example, 
natural killer (NK) cells acquire carcinoembryonic 
antigen (CEA) from the surface of CEA-expressing 
cells via trogocytosis and exhibit inhibited cytolytic 
activity and dampened degranulation function [158]; 
T cells exposed to tumor-derived exosomes 
incorporating PD-L1 display suppressed activation in 
the dLNs [159]; and TNT-connected astrocytoma cells 
may promote tumor progression and resistance to 
therapy [160]. 

Vaccine injection sites 
Prophylactic and therapeutic vaccines are 

generally administrated into the intramuscular, 
subcutaneous or intradermal compartments. Different 
physiological sites differ in the cell type, cell 
abundance and lymphatic system. Therefore, the site 
of vaccine inoculation may affect the efficacy of Ag 
transfer as well as the strength and duration of 
immune response [2]. 

For example, upon intramuscularly injection, 
self-amplifying mRNAs (SAM®)-encoded Ag is 
expressed by muscle cells and then transferred to 
nearby APCs, which consequently promotes the 
activation the CD8+ T-cell responses [33]. In addition, 
mRNA-based vaccine is taken up by both immune 
and non-immune cells in the skin upon intradermal 
administration [32]. Functional Ag may be expressed 
by these vaccinated non-immune cells and then 
transferred to APCs to promote the induction of 
adaptive immunity. Moreover, studies suggest that 
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many keratinocyte-specific molecules can be 
transferred to epidermal-resident LCs as mRNA and 
protein probably via TNTs or dendrites [161, 162]. 

Administrated vaccine antigen internalized by 
non-APCs at the injection site can be transferred to 
tissue-resident APCs or migratory DCs. Meanwhile, 
migratory DCs may migrate towards the draining 
SLOs and transfer both directly captured and 
indirectly acquired (transferred from non-APCs) Ag 
to LN-resident or splenic DCs. Detailed information 
will be discussed in the following sections. 

Participant of antigen transfer 
The phenomenon of antigen transfer was 

initially identified in T cell activation. In fact, within 
minutes of cognate T cells interacting with APCs, 
p-MHCs on the surface of APCs form clusters at the 
site of T cell contact. Subsequently, clusters containing 
p-MHCs are internalized by T cells via TCR-mediated 
trogocytosis. As a result, T cells are subjected to the 

Ag-specific cytolysis by neighboring T cells (termed 
“fratricide”), which may lead to suppressed T cell 
immunity [163]. Meanwhile, T cells may also acquire 
p-MHCs from other target cells through 
contact-dependent immunological synapses, and 
Tregs are especially adept at removing MHC class II 
and costimulatory molecules from APCs via 
trogocytosis to induce immune tolerance [164]. In 
addition to T cell-based Ag receptors, NK cells [165, 
166] and basophils [167] can also acquire Ag from 
APCs, thereby impacting the potency, durability, and 
even consequence of immune responses. 

Generally, antigen transfer is a reciprocal 
interaction that theoretically can occur between any 
cells with active membrane mobility, including that 
from APCs to APCs, from non-APCs to APCs, from 
APCs to non-APCs, and even from non-APCs to 
non-APCs. In this review, we focus on DCs-based Ag 
receptors and the associated immunological outcomes 
(Table 1). 

 
 

Table 1. Antigen transfer with APCs-based receptors 

Donor cell Acceptor cell Pathway Ag form Location Immunological outcome Ref. 
APCs to APCs       
Migratory cDC1 LNs-resident cDC1/2 TNTs, EVs, trogocytosis, 

gap junctions 
p-MHC I/II LNs Initiate anti-tumor immune response [1, 48, 55, 

134] 
pDCs cDC1 EVs antigen protein/peptide, or 

p-MHC I 
LNs Cross prime CD8+ T cells and induce 

durable immunity 
[132, 133] 

B cells and FDCs, 
respectively  

FDCs and B cells, 
respectively 

EVs p-MHC II Follicle Immunocomplexes deposit on FDCs 
and cognitive B cells differentiation  

[183, 184] 

LCs Dermal cDCs EVs, trogocytosis, gap 
junctions, TNTs 

Processed Ag and intact 
p-MHCs 

Skin Induce immune defense against 
HSV  

[152] 

B cells mo-DCs Possibly by EVs, 
trogocytosis, gap 
junctions, TNTs 

Processed Ag and intact 
p-MHC II 

/ Mo-DCs obtain processed Ag to 
activate T cells 

[280] 

Macrophages DCs Gap junctions Dietary Ag Intestine Establish oral tolerance [52, 206]  
Macrophages DCs Gap junctions, EVs Ingested or processed Ag  Intestine and skin Resist the infection by 

Mycobacterium, Salmonella, Listeria 
and other pathogens 

[176, 178, 
211] 

Macrophages B cells Possibly by gap 
junctions, TNTs 

p-MHCs Lymphoid 
follicles 

Initiate the early activation of 
cognate B cells 

[183] 

B cells B220+ Macrophages EVs Processed Ag fragments or 
Ag particles 

Peritoneum Macrophages acquire the ability to 
activate CD4+ T cells 

[187] 

cDCs B cells Possibly by gap 
junctions, TNTs 

Processed Ag fragments, Ag 
particles and intact p-MHC II 

Lymphoid 
follicles 

Activate cognate B cells [180, 185] 

Non-APCs to APCs       
Gene edited 4T1/ 
B16 tumor cells with 
high expression of 
MHC I/II 

Tumor infiltrating 
cDC1 

Possibly by EVs, 
trogocytosis, gap 
junctions, TNTs 

p-MHC I/II Tumor site Activate tumor specific CD4+ T cells [189] 

Fibrosarcoma tumor 
cells 

cDC2 Possibly by EVs, 
trogocytosis, gap 
junctions, TNTs 

p-MHC I Tumor site Promote antitumor CD8+ T cell 
immunity 

[190] 

Melanoma cells and 
epithelial cells near 
the colorectal tumor 

pDCs Possibly by EVs, 
trogocytosis, gap 
junctions, TNTs 

p-MHC I Tumor site Compensate the poor cross 
presentation and phagocytic ability 
of pDCs 

[191] 

Tumor cells and 
commensal bacteria, 
respectively 

Intestinal commensal 
bacteria and DCs, 
respectively 

Possibly by EVs, TNTs, 
trogocytosis 

p-MHC I Tumor site, 
intestine 

Upregulate reactive IFN-γ+ T cells 
and sensitize immune checkpoint 
blockade efficacy  

[202-205] 

UVB irradiated 
mutate melanocytes  

Skin-resident DCs and 
tumor infiltrating DCs 

Possibly by EVs, 
trogocytosis, gap 
junctions, TNTs 

Possibly p-MHC I  Tumor site, 
mutated skin 

Promote the cure rate of malignant 
melanoma 

[281] 

HCV or HCV infected 
hepatocytes  

pDCs Contact-dependent gap 
junctions, TNTs, EVs 

HCV RNA HCV infected 
liver 

Triger TLR 7 activation induced 
type-I IFN release by pDCs to inhibit 
HCV infection 

[192, 193] 

KCs Multiple DCs subsets 
in skin and LNs 

Possibly by EVs, 
trogocytosis, gap 
junctions, TNTs 

Ag-encoding mRNA and 
protein 

Vaccine injection 
site and draining 
LNs 

Induce an enhanced immune 
response without immune cell 
depletion upon repeated inoculation 

[32] 
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Donor cell Acceptor cell Pathway Ag form Location Immunological outcome Ref. 
of mRNA vaccine 

Muscle cells Mo-DCs Possibly by trogocytosis, 
gap junctions, TNTs 

mRNA transfected Ag 
fragments and/or p-MHC I 

Vaccine injection 
site 

Elicit potent Ag-specific CD8+ T cell 
immune responses 

[33] 

KCs LCs TNTs Ag-encoding mRNA and 
protein 

Vaccine injection 
site 

Promote vaccine effect [161, 162] 

Symbiotic bacteria 
and IECs  

IECs, macrophages, 
and DCs 

Gap junctions, EVs Ag fragments Intestine Maintain intestinal homeostasis [136, 142, 
282] 

mTECs Thymus-resident 
CD8α+ DCs 

EVs p-MHC I/II Thymus Establish central tolerance [115, 122] 

Graft cells DCs in organ recipients Trogocytosis, EVs p-MHC I Transplanted 
organ 

Induce activation and proliferation 
of allergen-reactive T cells 

[107, 147, 
148] 

Mast cells DCs EVs Possibly ingested and/or 
processed Ag fragments, Ag 
particles, and intact p-MHC 
II 

Near the allergic 
site 

Induce acute inflammatory injury, 
such as severe vascular leakage, at 
the allergic sites 

[144] 

Epithelial cells DCs Possibly by EVs, 
trogocytosis, gap 
junctions, TNTs 

Possibly ingested and/or 
processed Ag fragments, Ag 
particles, and intact p-MHC 
II 

Allergic skin Cause allergen-associated Th2 
immune responses 

[145] 

Platelets DCs, Macrophages EVs Mitochondria DNA and 
multiple autoantigens 

Kidney Aggravate systemic lupus 
erythematosus 

[146] 

 
 

From APCs to APCs 
It is widely recognized that DCs, especially 

cDCs, are indispensable coordinators of the adaptive 
immunity, yet elicitation of specific immune response 
may not rely solely on the direct antigenic stimulation 
on DCs. Accumulating evidence suggests that Ag or 
Ag complex can be transferred from other types or 
individuals of APCs to DCs [168] (Figure 3), 
contributing to an improved availability of Ag that 
mobilizes the immune system with higher efficiency. 

DCs and DCs 
S.L. Nutt et al. [79] have summarized that 

heterogeneous DCs subpopulations are closely 
associated with each other in the systemic immune 
network despite distinct developmental, locational, 
phenotypical and functional hallmarks, which 
constitutes the immunological basis of T cell 
activation and tolerance [169, 170]. 

It is reported that in response to CD40L- 
expressing Th cells or recombinant CD40L, networks 
of TNTs are induced by DC1 (i.e., DCs matured in the 
presence of inflammatory mediators of type-1 
immunity) to support the direct intercellular transfer 
of endosome-associated vesicles and Ag between DCs 
[55]. Aline et al. [171] demonstrated that DCs-derived 
exosomes encompassing functional MHC class I/II 
and costimulatory molecules were capable of 
inducing protective immunity against toxoplasmosis, 
serving as a novel cell-free vaccine. Specifically, part 
of the adoptively transferred Toxoplasma gondii-pulsed 
DC-derived exosomes accumulated in the spleen and 
were most likely internalized by spleen-resident 
CD8α+ DCs, which elicited a strong systemic T helper 
type 1 (Th1)-biased specific immune response. In 
addition, protein antigens in DCs-derived exosomes 
can be transferred to and presented by recipient DCs 
to induce the activation of allogeneic T cells, which 

may be used to facilitate cancer immunotherapy [172, 
173]. On the other hand, inflammatory signals induce 
the LNs-homing of migratory cDC1 and its 
subsequent Ag transfer to LNs-resident DCs through 
tight synaptic interaction [15], which facilitates the 
accumulation of Ag in LNs-resident DCs for 
activation of specific effector CD8+ T cells [1]. pDCs, 
formerly known as natural interferon producing cells 
(NIPCs), are the main producers of type I Interferon 
(IFN) [18] and play a key role in antiviral immunity. 
Although the capability of pDCs to generate in vivo 
cross-primed CD8+ T cells remains controversial, they 
have been shown to transfer antigen (possibly Ag 
protein, peptide, or p-MHC I [133]) to the bystander 
cDCs via EVs, which leads to efficient cross-priming 
of naive CD8+ T cells and induction of durable 
immunity. Notably, although both cDC1s and cDC2s 
are capable of acquiring Ag from pDCs, cDC1s, 
instead of cDC2s, are required for CTL activation 
upon pDCs-targeted vaccination [132]. Furthermore, 
monocytes loaded with protein or peptide antigen can 
transfer Ag to splenic DCs through cell-cell contact 
and the formation of Cx43-containing gap junctions, 
which leads to efficient activation of CTLs and potent 
antitumor responses [174]. 

Macrophages and DCs 
With intricated membrane structures and 

dynamic membrane activities, macrophages and DCs 
are closely associated in the context of antigen transfer 
(Figure 2). Although macrophages prevail in 
phagocytosis, their ability of Ag cross presentation is 
far inferior than that of DCs. However, studies 
suggest that there exists a complicated interplay 
between macrophages and DCs in the process and 
presentation of Ag. For instance, upon dead cell 
accumulation in vivo, macrophages transfer 
phagocytosed Ag to DCs via exosomes for potent 
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antigen presentation and efficient T‐cell activation 
[181]. In addition, despite inefficient cellular uptake of 
Listeria monocytogenes (Lm), DCs are capable of 
taking up microparticles (MPs) released by 
Lm-infected macrophages. These MPs transport Lm 
Ag to DCs for presentation, propagating DC-elicited 
protective immunity against Lm infection [175]. 
Similarly, macrophages act as transmitters to convey 
Ag for presentation by DCs in response to the 
invasion of other pathogens such as mycobacterium 
[176, 177] and salmonella [178]. Moreover, it is found 
that infected macrophages secrete EVs containing 
Cdc42 (a protein responsible for increased cellular 
endocytic activity) to enhance the cellular uptake of 
recipient cells [179], which may further facilitate the 

antigenic cross-talk between macrophages and DCs. 

B cells, macrophages and DCs 
A successful elicitation of the humoral immunity 

depends primarily on the close antigenic interaction 
among B cells, macrophages and DCs. In both LNs 
and spleen, the maturation and native antigen 
presentation of B cells requires the support from 
follicular dendritic cells (FDCs) and CD169+ 
subcapsular sinus (SCS) macrophages [180]. 
Specifically, at the T-B border, SCS macrophages 
display Ag including processed viral particles, 
vaccine particles and immune complexes [181, 182] to 
both cognate and non-cognate B cells via TNTs-like 
cellular protrusions that extend into follicles. SCS 
macrophages-mediated Ag recognition by cognate B 

 

 
Figure 3. Close intercommunication among B cells, macrophages and DCs in the LNs. Peripheral migratory conventional DC1 and DC2 (i.e., mcDC1 and mcDC2) 
move back to the draining LNs via afferent lymphatics and transfer Ag (including viruses, particulate Ag and immune complexes) to CD169+ subcapsular sinus (SCS) macrophages 
that line the follicle-proximal side of the SCS. Then, these SCS macrophages display Ag to follicular B cells via cellular protrusions, and follicular DCs (FDCs) located therein 
engage in reciprocal Ag sharing with B cells for elicitation of germinal center reactions. Afterwards, mcDC1 and mcDC2 pass through the T-B boundary and enter the T 
cell-localized medullary zone to share Ag with resident conventional DCs (rcDCs) for efficient activation of immune responses. 
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cells through B cell antigen receptors (BCRs) initiates 
the early activation and the subsequent migration to 
T-B border of B cells [183]. Meanwhile, immune 
complexes are transferred from SCS macrophages to 
non-cognate B cells, and then ferried into the follicle 
for deposition on FDCs [183, 184]. Then, FDCs retain 
native Ag for prolonged presentation to B cells that 
evokes the germinal center reactions and promotes 
the maturation of effector and memory B cells. 
Notably, evidence suggests that in the lymphoid 
germinal center, direct intercellular communication 
through gap junctions is involved in FDCs-FDCs and 
FDCs-B cells interaction, in which multiple signal 
molecules and Ag fragments/complexes can be 
shared [89]. On the other hand, there is mounting 
evidence that both migratory and resident cDCs may 
encounter cognate B cells at the T-B border and 
contribute to their early initiation [180, 185]. Besides, 
Lectin-like oxidized low-density lipoprotein 
receptor-1 (LOX-1) signaling on DCs promotes B cell 
differentiation into class-switched plasmablasts and 
facilitates their exit from germinal center and 
migration towards local mucosa and skin [186]. 
Furthermore, result illustrates that Ag acquired by B 
cells through BCRs can be specifically transferred to 
B220+ macrophages through direct cell-cell contact, 
which enables the macrophages to activate CD4+ T 
cells [187]. 

From non-APCs to APCs 
Given the homologous expression of MHC class 

I molecules by all nucleated cells, non-APCs can also 
serve as Ag donor cells to APCs, especially to DCs, 
including malignant/transformed cells, vaccinated 

muscle cells and KCs, and even harmless commensal 
bacteria. Antigen transfer from non-APCs to APCs 
may promote the immune response against the “non- 
self” or facilitate the spread of invasive pathogens. 

Tumor cells and DCs 
Tumor infiltrating DCs assume different 

functional states that affect the antigen transfer and 
overall antitumor immunity (Figure 4A). In the TME, 
interferon regulatory factor 8 (IRF8)-dependent 
CD103+ cDC1 (CD141+ cDC1 in human) are the only 
APCs that can cross present tumor rejection Ags for 
activation of specific CTLs [23], which are sparsely 
distributed and frequently threatened by the hostile 
immunosuppressive environment [188]. In this 
situation, antigen transfer, especially cross dressing 
(i.e., p-MHCs transfer), from tumor cells to cDC1s 
stands as an efficient means of Ag presentation and 
reactive T cell activation [44, 189]. On the other hand, 
cDC2 is developmentally driven by interferon 
regulatory factor 4 (IRF4) and highly specialized in 
MHC II-restricted presentation [29]. Recently, Duong 
et al. [190] investigated the transcriptional profiles of 
intra-tumoral DCs within regressor tumors and 
identified an activation state of CD11b+ cDC2 with 
interferon-stimulated gene signatures. Stimulated by 
exogenous IFN-β, these cDC2 acquired and presented 
intact tumor-derived p-MHC class I complexes to 
induce CD8+ T cell-involved antitumor immunity 
against progressor tumors in mice lacking cDC1 [188, 
190]. Moreover, Bonaccorsi et al. [191] identified that 
pDCs, although inefficient in internalizing cell 
membrane fragments by phagocytosis, were able to 
acquire membrane patches and associated molecules 

 

 
Figure 4. Antigen transfer from non-APCs to APCs in the context of anti-cancer/-infection immunity. (A) Tumor cells serve as the largest Ag reservoir for 
migratory conventional DCs (mcDCs), plasmacytoid DCs (pDCs) and macrophages. Ag is transferred from tumor cells to these APCs through both contact dependent (i.e., 
trogocytosis, gap junctions and TNTs) and independent (i.e., EVs) pathways, leading to activation and expansion of T cells in situ or in the dLNs. (B) Hepatitis C virus 
(HCV)-infected parenchymal hepatocytes release virus RNA and protein Ag through both contact dependent and independent pathways for activation of Kupffer cells and pDCs 
against virus invasion. TAAs, tumor associated antigens; TSAs, tumor specific antigens. 
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from cancer cells of different histotypes in a cell-to- 
cell contact-dependent manner that closely resembled 
“trogocytosis”. As a result, tumor cell-derived Ag was 
displayed by pDCs and recognized by specific CD8+ T 
cells to promote anti-tumor cellular immune 
response. 

Virus infected cells and DCs 
During hepatitis C virus (HCV) infection, 

exosomes mediate the intercellular transfer of 
immunostimulatory HCV RNA from infected cells to 
neighboring non-infectible pDCs to trigger the 
generation of type I IFN [192] (Figure 4B). Both 
HCV-infected cells and purified HCV RNA-packaged 
exosomes are sufficient to activate pDCs without 
infecting them. Notably, the exosomal viral RNA 
transfer is dependent on active viral replication, direct 
cell-cell contact and TLR 7 signaling [193]. 
Nevertheless, such exosome-mediated transfer of 
viral RNA may enhance virus clearance by activating 
Kupffer cells and pDCs or promote virus infection by 
delivering infectious viral genomes to cells that are 
permissive for viral replication. 

Vaccinated somatic cells and DCs 
To improve the efficacy of protein- or nucleic 

acid- based vaccines, substantial efforts have been 
paid to promote the site-specific accumulation of 
vaccine components in SLOs, and even in APCs 
[194-199], which increases the availability of vaccine 
Ag by DCs to amplify specific immune response and 
establish a durable memory. However, a targeted 
delivery of vaccine preparation proposes great 
demands for its physiochemical properties (e.g., 
particle size, potential and surface modification) and 
route of administration [200, 201]. Moreover, 
compared to professional APCs that have a limited 
cell abundance in different vaccination sites, somatic 
cells with larger quantity and widespread distribution 
display higher competence in messenger RNA 
(mRNA)-transfection and protein-uptake, which may 
impact the magnitude and duration of specific 
immunoresponse by transferring Ag to nearby APCs 
(specific mechanisms of Ag transfer need to be further 
identified) [2]. Indeed, most somatic cells are 
biologically equipped with abundant cytoplasmic free 
ribosomes (such as KCs and muscle cells) or rough 
endoplasmic reticulum-attached ribosomes (such as 
hepatocytes and fibroblasts) to support their antigenic 
communication with surrounding DCs [33]. For 
example, KCs actively transfer Ag, including 
Ag-encoding mRNA [161] and protein [162], to the 
skin-resident LCs mainly in a contact-dependent 
fashion, impacting the efficacy and safety of 
transdermal- and intramuscular- injected vaccines. 

Commensal bacteria and DCs 
It is reported that several bacteria participate in 

tumor immunosurveillance and antitumor immune 
response. Rong et al. [202] studied the bacteria- 
reactive CD8+ T cell response in HBV-associated 
hepatocellular carcinoma patients and found that 
circulating CD8+ T cells displayed remarkable 
enhanced immune responses against a series of 
commensals and bacteria, including Escherichia coli 
(E. coli), Enterococcus faecium, Bifidobacterium 
longum, Bacteroides fragilis, and Enterococcus hirae. 
And the ratio of CD8+ T cell-to-Foxp3+ Treg was 
positively correlated with the proportion of 
Bifidobacterium longum-reactive and Enterococcus 
hirae-specific CD8+ T cells, whereas the frequency of 
PD-1+ CD8+ T cells was negatively correlated with the 
frequency of Enterococcus hirae-specific CD8+ T cells. 
Moreover, these bacteria-reactive responses were 
MHC class I-restricted and dependent on the presence 
of APCs, indicating that certain commensal bacteria 
might act as Ag mediators between cancer cells and 
APCs to increase the proportion and viability of 
tumor-reactive IFNγ+ T cells [202], which is also 
observed in MC38 colon cancer, MCA-205 sarcoma 
and RET melanoma [203-205]. 

Vaccine effect of antigen transfer: 
immune amplification or tolerance 

Antigen transfer plays an important role in 
coordinating immune amplification and tolerance. 
When the receptor cells are tolerogenic DCs, 
immature DCs, some pDCs and even certain types of 
non-APCs [110, 138, 165, 206-208], antigen transfer 
may promote the expansion of immunosuppressive 
Tregs/MDSCs and even induce the apoptosis of 
specific T cells, leading to tolerance [47]. Immune 
tolerance is fundamental to the maintenance of 
homeostasis. For example, antigen transfer from 
mTECs to DCs in the thymus enables the deletion of 
self-reactive T cells and promotes the establishment of 
central tolerance [118-120]. In patients with 
autoimmune diseases, harmless Ag (e.g., autoantigens 
and dietary proteins) are recognized as pathogenic 
Ag, which consequently causes local/systemic 
inflammatory responses that are harmful and even 
fatal. In this situation, antigen transfer that induces 
tolerance to specific Ag may limit autoimmune 
responses and help restore homeostasis [146, 209, 
210]. On the other hand, antigen transfer to mature 
APCs, especially DCs, may facilitate the access and 
presentation of Ag that contributes to a more efficient 
and versatile elicitation of the adaptive immunity [1, 
48, 55, 134, 190, 211], which is frequently used to 
enhance the preventive and therapeutic effects of 
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vaccines [26]. 
Vaccines are powerful weapons against 

pathogenic evasion [26] and tumor progression [212- 
216], which elicit specific T/B lymphocyte-mediated 
effector and memory immune responses upon single 
or repeated inoculation. Considering the efficacy and 
biosafety, most recently licensed vaccines are typically 
protein/peptide-based subunit vaccines that usually 
used in combination with adjuvants, nucleic 
acid-based vaccines (especially mRNA vaccine) 
[217-219], and DCs-based vaccines [220, 221]. And 
transcutaneous local injection is the most applied 
route of administration for these vaccines [222], 
including: 

1) Intradermal injection (i.d.), which is most 
frequently used for the inoculation of bacillus 
Calmette-Guérin (BCG), rabies and smallpox vaccines 
[223] for its little invasiveness, avoided drug 
degradation in the gastrointestinal tract, and escaped 
hepatic first-pass effect. Vertebrate skin comprises 
epidermis and dermis. Epidermis is composed of 
abundant KCs and few melanocytes and LCs. In 
contrast, dermis is rich in collagen and elastin fibers 
but low in cell density. Dermal APCs (such as cDCs, 
mo-DCs, LCs and macrophages) [224] and lymphatic 
system facilitate a quick and effective initiation of 
immune response, conferring dermis a highly 
immunocompetent site for vaccine delivery [225, 226]. 

2) Subcutaneous injection (s.c.), that is most 
suitable for the administration of live-attenuated 
vaccines against polio, measles, mumps, rubella and 
yellow fever. Subcutaneous compartments 
incorporate blood vessels, nerves, loose connective 
tissue and adipose tissues, where fibroblast, mast cell 
and macrophage are most abundant. Subcutaneous 
drainage system is underdeveloped, which prolongs 
the in-situ Ag dwelling and serves as Ag reservoirs. 

3) Intramuscular injection (i.m.). As the most 
commonly used route of delivery for licensed vaccine, 
especially inactivated vaccines against hepatitis A/B 
(HepA/B), HPV, influenza, and the currently 
prevalent severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), i.m. is easy to perform 
and generally well tolerated, with a low risk for 
adverse reactions [212-214, 227]. Muscle tissue is 
composed primarily of myocytes, with few APCs, 
blood vessels and nerves. Therefore, higher dosage, 
adjuvant-incorporation, and multiple administration 
is usually recommended for eliciting an expected 
immunoprotection [228]. 

In addition, intravenous (i.v.) and intranodal 
(i.n.) injection have also been studied [229]. However, 
their feasibility and safety needs to be further 

optimized before putting into clinical use [230]. It’s 
worth noting that a long-term persistence of 
immunogens/immunomodulators or sustained 
expression of vaccine products was observed at the 
site of delivery following i.d., s.c., and i.m. (superficial 
injection). Meanwhile, upon i.v., i.m. (deep injection), 
and intraperitoneal injection (i.p.), significant 
antigenic signal was detected in the liver early post 
administration [231, 232], suggesting that the 
biodistribution of vaccine is route-dependent, and 
liver may be an important anatomical compartment 
for mounting immunoreactions. 

Antigen transfer takes place after vaccine 
inoculation, which is primarily grouped into the 
following categories according to the type and tissue 
distribution of vaccine (Table 2): 1) Antigen (such as 
Ag-encoding nucleic acids, Ag peptides/fragments, 
intact Ag proteins, particulate Ag, immune complex 
and functional p-MHCs) transfer from vaccinated 
APCs and/or non-APCs to neighboring DCs at site of 
administration in the context of protein/peptide- 
based vaccines (Figure 5A) and nucleic acid-based 
vaccines (Figure 5B); 2) Antigen transfer from 
Ag-pulsed DCs to nearby APCs including LCs, cDCs 
and macrophages at vaccine inoculation site in terms 
of DCs-based vaccines (Figure 5C); and 3) Antigen 
sharing from Ag-laden DCs to SCS macrophages, B 
cells, FDCs and cDCs at the dLNs to activate germinal 
center reactions. 

Protein-based vaccines 
Increasing studies suggest that the efficiency of T 

cell-mediated adaptive immunity against peripheral 
infections and particulate vaccine systems (such as 
nanoparticles, microparticles and adjuvant- 
formulated proteins) depends heavily on the ability of 
LNs-homing and Ag presentation by peripheral DCs 
[233]. In addition, it seems that most soluble Ags 
cannot penetrate into the paracortex and cortex of 
LNs, which directly limits the Ag accessibility of 
LNs-resident DCs [237, 238]. At the same time, 
anatomic studies indicate that Ag diffused into the 
LNs in a size-dependent manner seems to accumulate 
only at the proximal ends near the afferent lymphatic 
vessels, whereas Ag carried by migratory DCs 
penetrates deep into the medullary zone [128]. On the 
other hand, vaccine Ag transferred from vaccinated 
muscle cells, KCs, fibroblasts and other tissue cells to 
skin-resident DCs in the epidermis and dermis is 
reported to facilitate a durable immune response 
under limited dosage of vaccine inoculation [32, 33] 
(Figure 6A). Therefore, antigen transfer to DCs is of 
physiological and clinical significance. 
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Table 2. Antigen transfer and its immunological effects by different types of vaccine 

Vaccine type Vaccine component Administration 
route 

Major Ag donor cells Major Ag receptor cells Immunological outcome Ref. 

Protein-based vaccine      
Protein Multivalent HPV protein Ag and 

adjuvant AS04 
i.m. Muscle cells and 

skin-resident DCs, 
respectively 

Skin-resident DCs and 
LNs-resident DCs, 
respectively 

Prevent HPV induced infections and 
cancers 

[212-214] 

Protein 5-20 recombinant/fusion tumor 
neoantigens 

s.c. KCs and skin-resident 
DCs, respectively 

Skin-resident DCs and 
LNs-resident DCs, 
respectively 

71.4 % of cancer patients are under 
control with specific CTL response 
elicited 

[236] 

Protein TAAs (HER-2) and 
immunostimulatory molecules 
modified plasma membrane 
vesicles (PMVs) 

s.c. Breast cancer cells DCs in subcutaneous 
compartment and LNs 

Induce both cellular and humoral 
immunity against HER-2- 
expressing tumor cells 

[241] 

Protein M2e-displaying outer membrane 
vesicles (OMVs) 

s.c. Escherichia coli Skin somatic cells and 
DCs 

Initiate specific humoral immunity 
against influenza A (H1N1)  

[240] 

Protein Oligodendrocyte-derived EVs 
containing multiple myelin Ags 

i.v. Oligodendrocyte, 
monocyte, cDCs 

mo-DCs Induce immunosuppressive 
monocytes and apoptosis of 
autoreactive CD4+ T cells in several 
autoimmune encephalomyelitis 
models 

[283] 

Protein OVA s.c. Skin somatic cells and 
CCR9+ pDCs, 
respectively 

CCR9+ pDCs and thymus 
cDCs, respectively 

Induce pDCs-mediated thymic central 
tolerance 

[249] 

Nucleic acid-based vaccine      
pDNA OVA pDNA i.m. KCs CD103+/CD8α+ DCs Activate OVA-specific CD8+ T cells  [49] 
pDNA Bacillus anthracis protective 

antigen domain 4 (PA-D4) 
pDNA 

i.d. by 
electroporation  

KCs Skin-resident DCs Induce potent Anthrax-associated 
humoral immune response 

[284] 

pDNA OVA pDNA and GM-CSF 
-loaded mesoporous silica 
microrods (MSRs)  

s.c. KCs and migratory 
DCs, respectively 

Skin-resident DCs and 
LNs-resident DCs, 
respectively 

Elicit OVA-specific CTL response, Th1 
humoral response and CD8+ effector 
and memory T cell responses 

[285] 

mRNA Influenza A mRNA delivered by 
Lipofectamine 2000 

i.m. Muscle cells mo-DCs  Cross prime CD8+ T cells in vivo [33] 

mRNA Protamine mRNA i.d. KCs and migratory 
DCs, respectively 

Migratory DCs and 
LNs-resident DCs, 
respectively 

Induce functional Ags in the dLNs 
and massive activation of T cells 

[32] 

DCs-based vaccine      
mo-DCs Mo-DCs loaded with both 

keyhole limpet hemocyanin 
(KLH) and TAA 

i.d., i.n. mo-DCs CD163+ macrophages and 
LNs-resident DCs 

Induce Ag-specific immune response 
in patients with melanoma 

[273] 

mo-DCs In vivo activated mo-DCs  s.c. mo-DCs LNs-resident CD8α+ DCs Activate B16-OVA specific CD8+ T cell 
immune response 

[279] 

mo-DCs Tumor whole cell lysate-pulsed 
mo-DCs 

i.d. mo-DCs Possibly DCs and 
macrophages in the dLNs 
and vaccine injection site 

Nearly half of the patients generate 
specific immune responses against 
glioblastoma, with survival time 
prolonged 

[268, 277] 

mo-DCs Tumor whole cell lysate-pulsed 
mo-DCs 

s.c. mo-DCs Possibly DCs and 
macrophages in LNs and 
vaccine injection site 

Induce renal cell cancer-specific Th1 
immune response 

[286] 

cDC2 and 
pDCs 

Three TAAs/mRNA-pulsed 
cDC2 and pDCs 

i.d. cDC2 and pDCs LNs-resident DCs Increase metastatic 
castration-resistant prostate cancer 
(mCRPC) reactive IFN-γ+ CTLs 

[276] 

cDC2 TAAs (gp100 and tyrosinase) 
-pulsed cDC2 

i.d. cDC2 LNs-resident DCs Prolong progression free survival in 
some melanoma patients 

[274] 

pDCs TAAs (gp100 and tyrosinase) 
-pulsed pDCs 

intra-LN pDCs LNs-resident DCs Prolong the survival of melanoma 
patients with 1-2 years 

[275] 

pDCs Peripheral Ag (OVA) -loaded 
pDCs 

i.v. CCR9+ pDCs Thymus-resident cDCs Induce central tolerance [249] 

 
The bivalent (2vHPV, Cervarix), quadrivalent 

(4vHPV, Gardasil) and nine-valent (9vHPV, Gardasil 
9) human papillomavirus (HPV) vaccines are 
primarily composed of noninfectious virus-like 
particles (VLP) that display potent protection against 
cervical infections caused by HPV, condylomas and 
some HPV-related cancers [212-214, 234, 235]. 
Recently, accumulating evidence indicates that 
muscle cells at site of injection may act as Ag 
reservoirs/donors for DCs during i.m. administration 
to promote the establishment of a sustained anti-viral 
effector and memory immune defense [236-239]. 
Antigen transfer is also involved in other 

protein-based vaccines and contributes to an efficient 
disease prevention and control. Rappazzo et al. [240] 
reported influenza vaccines based on bacteria-derived 
outer membrane vesicles (OMVs) and ectodomain of 
the influenza M2 protein (M2e). Briefly, OMVs were 
engineered to display M2e by transforming E. coli 
with a plasmid encoding the transmembrane protein 
ClyA followed by the Ag of interest, which elicited 
high IgG titers and protects against lethal doses of the 
mouse-adapted H1N1 influenza strain PR8 in BALB/c 
mice, probably due to the OMVs-mediated Ag 
transfer to APCs in vivo. 



Theranostics 2022, Vol. 12, Issue 13 
 

 
https://www.thno.org 

5904 

 
Figure 5. Characteristics of the currently most licensed three vaccine types. (A) Protein-based vaccines. Widely used in clinical practice, these vaccines incorporate 
disease-associated Ag protein/peptide (usually insufficient in immunogenicity) and adjuvants (such as alum and Freund's adjuvants) and are mainly administrated via i.m., s.c., i.d., 
and i.n. (less adopted). After administration, Ag is transferred from vaccinated somatic cells (such as muscle cells, keratinocytes and fibroblasts) and APCs (such as rDCs, LCs and 
macrophages) to DCs at the injection site to amplify immune responses for disease prevention and treatment. (B) Nucleic acid-based vaccines. These vaccines contain 
Ag-encoding mRNA or plasmid DNA (pDNA) with self-adjuvant effects and are inoculated mainly by i.d., s.c. and i.m. After injection, vaccine particles/naked nucleic acids are 
internalized, translated, processed and presented by local somatic cells and APCs, or undergo Ag (the original Ag, translated/process/displayed Ag fragments or Ag complexes) 
transfer to DCs, serving as prophylactic and therapeutic agents. (C) DC-based vaccines. Primarily administrated through i.d., s.c., i.m., i.v. and i.n. (less adopted), these vaccines 
are mainly composed of ex vivo-cultured mo-DCs derived from autologous/allogeneic mononuclear progenitor cells or endogenous cDCs/pDCs isolated and enriched from blood 
to provide an individualized therapeutic effect. These DCs are pulsed with Ag and adjuvant prior to administration, and Ag-laden DCs can also transfer Ag to nearby APCs in vivo. 
i.d.: intradermal injection; i.m.: intramuscular injection; i.n.: intranodal injection; i.v.: intravenous injection; s.c.: subcutaneous injection; TAA: tumor associated antigen; TSA: 
tumor specific antigen. 

 
Figure 6. Antigen transfer in protein-based vaccines and nucleic acid-based vaccines. (A) After local administration of protein-based vaccines, Ag is captured, 
processed, presented and/or intercellularly shared by epidermal LCs and keratinocytes (KCs). Subsequently, activated Langerhans cells (LCs) migrate to the dermis for activation 
of migratory conventional DCs (mcDC1 and mcDC2) via antigen transfer. Meanwhile, fibroblasts in the dermis may also internalized and transfer Ag to DCs. Activated dermal 
cDCs and LCs then homing to the dLNs in a CCR7-dependent manner to induce immune response. Meanwhile, free Ag particles may also diffuse into the dLNs in a 
size-dependent manner to directly activate adaptive immunity. (B) Nucleic acid-based vaccines are locally administrated to be internalized and transfected by LCs, KCs and 
fibroblasts. Subsequently, these vaccinated cells may transfer Ag to skin DCs for dLNs-homing and immune activation. Similarly, nucleic acids and expressed Ag may directly drain 
toward the dLNs to induce immune response. i.d., intradermal injection; s.c., subcutaneous injection; i.m., intramuscular injection; i.n., intranodal injection. 
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Patel et al. [241] reported a biocompatible 
particulate protein delivery system that may exploit 
the phenomenon of Ag transfer from tumor cells to 
DCs for improved immunization. Briefly, plasma 
membrane vesicles (PMVs) are prepared from 
biological materials (such as cultured cells and 
isolated tissues) and surface-modified by 
glycosylphosphatidylinositol (GPI)-anchored TAAs 
(breast cancer Ag: human epidermal growth factor 
receptor-2 (HER-2) in this work) and immuno-
stimulatory molecules (such as interleukin (IL)-12 and 
B7-1), which induced both cellular and humoral 
immunity against a HER-2-expressing tumor cell 
challenge along with delayed tumor growth and 
partial regression of established tumors. 

DCs-derived exosomes (Dex) are loaded with 
costimulatory molecules, functional p-MHCs and 
other immune cell-interacting elements, and are 
especially enriched in p-MHC class II complexes, by 
10-100-fold that of DCs, which might lead to a more 
efficient Ag transfer to other DCs and remarkable 
immunological impacts [242]. It should be noted that 
the immune effects (i.e., stimulation or inhibition) and 
biological activity of Dex depend on the activation 
status of donor DCs and the follow-up artificial 
manipulation of the isolated endosomes. For instance, 
compared with that from immature DCs, Dex from 
mature murine DCs are enriched in MHC class II, 
costimulatory B7.2, intercellular adhesion molecule 1 
(ICAM-1) and depleted in milk fat globule-epidermal 
growth factor-factor VIII (MFG-E8), which are 50- to 
100-fold more potent in functional T-cell activation 
both in vitro and in vivo [243]. And the involvement of 
exosomes in the induction of host defense and 
immune evasion has been reviewed by Schorey et al. 
[244] in detail. Indeed, with advances in molecular 
and cellular biology, such cell-free multifunctional 
protein delivery platform might have widespread 
applications in mediating antigen transfer for a 
desired immune regulation [245-248]. 

As mentioned before, antigen transfer might also 
induce immune tolerance and dampen the protective 
effect of protein-based vaccines. Hadeiba et al. [249] 
found that peripheral pDCs engulfed subcutaneously 
injected exogenous Ag in the absence of TLR signals, 
and subsequently migrated to the thymus in a 
CCR9-dependent manner to delete Ag-reactive 
thymocytes and induce immune tolerance. 
Specifically, pDCs themselves fail to make physical 
contacts with CD4+ T cells, and are incapable of 
directly inducing T cell proliferation. Nonetheless, 
pDCs transport and transfer Ag to thymic APCs to 
abort the activation and clonal expansion of cognate 
CD4+ T cells, inducing Ag-specific systemic tolerance 
[208]. However, the mechanistic details of such Ag 

transfer in tolerogenic T cell induction needs further 
exploration. In addition, given that co-stimulatory 
membrane molecules and immunostimulatory 
soluble molecules are low-expressed in most 
non-APCs, the direct transfer of functional p-MHC 
class I complexes from Ag-pulsed non-APCs to 
immature DCs may sometimes induce T-cell tolerance 
and/or exhaustion due to insufficient costimulatory 
signals [2, 59, 60, 110]. 

Nucleic acid-based vaccines 
Compared to protein/peptide-based subunit 

vaccines that are generally inadequate in 
immunogenicity, nucleic acid-based vaccines have 
self-adjuvant effect and can act as pathogen- 
associated molecular patterns (PAMPs) to stimulate 
pattern-recognition receptors (PRRs, such as TLR-3/ 
-7/-8/-9) for amplified immune responses [32, 250], 
which have emerged as promising vaccine platforms 
in anti-cancer and anti-viral immunotherapy [251, 
252]. And antigen transfer during the inoculation of 
nucleic acid-based vaccines is increasingly gaining 
attention for its potential clinical benefits (Figure 6B). 

Considering the great discrepancy in lymphatic 
draining system and cell abundance of different 
vaccination sites, the administration route and 
delivery vehicle of the nucleic acid of interest 
significantly shapes the efficiency and duration of 
vaccine responses. DNA- and mRNA-based vaccines 
are commonly delivered via i.d. [253], i.m. [254] and 
s.c. [255], or through the less adopted i.n. [256], i.v. 
[257], intra-tumoral injection [258], intra-splenic 
injection [259], and intranasal administration [260]. 

After administration, Ag-encoding nucleic acids 
are directly captured, processed and presented by 
DCs through MHC class I-biased pathway, or 
indirectly transferred to DCs from transfected somatic 
cells in the form of exogenous protein/peptide to 
induce MHC class II-preferred Ag presentation. In 
addition, it is reported that pDNA-vaccinated somatic 
cells may 1) present associated p-MHC class I 
complexes on the cell surface to be recognized and 
even cytolyzed by cognate CD8+ T cells [261]; or 2) be 
phagocytized by DCs for further process and 
presentation [262]. For example, Li et al. [49] found 
that following vaccination with ovalbumin-encoding 
pDNA (OVA-pDNA, i.m.), CD103+/CD8α+ DCs 
obtain antigenic information from transfected KCs via 
cross dressing to efficiently activate both naïve and 
memory CD8+ T cells. Similarly, after administration, 
mRNA vaccines are extensively internalized and 
expressed by muscle cells and KCs, and the resultant 
Ag protein/peptide can be transferred to nearby 
APCs for CD8+ T cell activation and immune 
amplification [32, 33]. 
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DCs-based vaccines 
The adoptive transfer of ex vivo-activated DCs 

has been widely recognized with good biosafety and 
sufficient efficacy in clinical anti-tumor therapy [263]. 
Briefly, CD34+ bone marrow progenitors or CD14+ 
peripheral blood monocytes are isolated and 
stimulated with granulocyte-macrophage colony 
stimulating factor (GM-CSF) and IL-4 in vitro to 
generate mo-DCs [264, 265]. Then, the resultant 
mo-DCs are pulsed with 1) TAAs and/or TSAs [266, 
267]; 2) tumor whole cell lysates [268]; or 3) tumor- 
derived EVs [269, 270], and concurrently stimulated 
with adjuvants for maturation [271]. However, the 
clinical efficacy of mo-DCs-based vaccine is greatly 
limited by its inferior ability of CCR7-dependent LNs 
homing and Ag cross presentation [272]. As a result, a 
large proportion of mo-DCs remained at the site of 
administration, lost viability and are eliminated by 
phagocytes [273]. In this consideration, some current 
clinical trials have used enriched cDCs and pDCs that 
directly collected from the peripheral blood and 
activated in vitro before administration, which might 
have broader immunotherapeutic applications as 
these DCs subsets display superior LNs homing and 
T-cell cross priming [274-276]. 

Nevertheless, multiple clinical phase II and 
phase III studies have shown that the less mobilized 
mo-DCs are sufficient in eliciting potent immune 
responses in cancer therapy [268, 276-278], which may 
attribute to the antigen transfer from mo-DCs to other 
APCs both at the site of injection and the dLNs [29, 
273, 279] (Figure 7). For example, Huang et al. [174] 
found that even undifferentiated monocytes loaded 
with Ag protein or peptide induced robust CD8+ T cell 
responses by Ag transfer to endogenous splenic CD8+ 
DCs in a cell-to-cell contact-dependent fashion and 
through Cx43-mediated intercellular gap junctions. 
On the other hand, DCs retain at the injection site may 
transfer Ag to tissue-resident LCs or circulating cDCs 
through multiple contact- and non-contact- 
dependent pathways including EVs and trogocytosis 
to sensitize the immune system for specific activation 
[72]. Meanwhile, dead cells, cell derbies and apoptotic 
bodies of those DCs can be phagocytized by 
infiltrating CD163+ macrophages as an approach of 
passive Ag transfer. Consequently, Ag-laden 
macrophages migrate to the liver for further Ag 
sharing and T-/B-cell activation [273]. In short, 
intercellular antigen transfer during the 
administration of DCs-based vaccines may serve as an 
efficacious strategy to amplify immune response. 

 

 
Figure 7. Antigen transfer in DC-based vaccines. After local injection, adoptively transferred DCs (as represented by monocyte-derived DCs (mo-DCs)) transfer Ag to 
Langerhans cells (LCs) in the epidermis (1) and migratory conventional DCs (mcDCs) in the dermis (2). Then, part of Ag-loaded mo-DCs, LCs and mcDCs migrate to the dLNs 
in a CCR7-dependent manner to activate adaptive immune responses (3-1). In addition, mo-DCs that undergo apoptosis in situ and their apoptotic bodies are mainly 
phagocytosed by macrophages (3-2) and transported to the liver for immune activation (4). 
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Conclusions and Discussion 
In this review, mainly focused on DCs-based 

antigen receptors, we summarize the recent 
understanding of antigen transfer and its impact on 
immune amplification and tolerance. We conclude 
that antigen transfer plays an important role in 
coordinating immune responses against the invasion 
of the “non-self”. Therefore, appropriately 
manipulating antigen transfer may promote the 
preventive and/or therapeutic effects of vaccines, 
which depends heavily on a rational design of the 
vaccine component and administration route. 
Meanwhile, undesired antigen transfer may induce 
tolerance or cause allergy, graft rejection and 
autoimmune diseases. In these regards, reasonable 
intervention that blocks or disturbs antigen transfer is 
needed. 

Of note, antigen transfer-associated immune 
amplification and tolerance can sometimes be 
interconvertible. In fact, persistent and/or 
excessively/insufficiently-dosed Ag stimulation may 
induce a tolerogenic phenotype of DCs that leads to 
vaccine failure. To avoid the induction of unwanted 
tolerance to an antigen of interest, 1) adjuvants that 
facilitate the recruitment, mobilization, and 
maturation of DCs can be supplemented; 2) the route 
of vaccine delivery that determines the participants of 
antigen transfer needs further consideration; 3) the 
dose and type (i.e., protein-, nucleic acid-, or cells- 
based vaccines) of vaccine should be carefully selected 
as different mechanisms of antigen transfer may be 
involved. 

Up to now, the key steps and mediators directing 
the intercellular antigen transfer remain obscure, and 
the immunological and pathological consequences of 
antigen transfer in different biological processes 
require further exploration. Therefore, more efforts 
are needed for proper regulation over the mode, site 
and participant of antigen transfer that might 
contribute to a more satisfactory immune outcome. 
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receptor-1; mcDCs: migratory conventional DCs; 
rcDCs: resident conventional DCs; IRF8: interferon 
regulatory factor 8; IRF4: interferon regulatory factor 
4; HCV: hepatitis C virus; mRNA: messenger RNA; E. 
coli: Escherichia coli; HepA/B: hepatitis A/B; 
SARS-CoV-2: severe acute respiratory syndrome 
coronavirus 2; pDNA: plasmid DNA; HPV: human 
papillomavirus; VLP: virus-like particles; OMVs: 
outer membrane vesicles; M2e: influenza M2 protein; 
PMVs: plasma membrane vesicles; GPI: glycosyl-
phosphatidylinositol; HER-2: human epidermal 
growth factor receptor-2; IL: interleukin; Dex: 
DCs-derived exosomes; ICAM-1: intercellular 
adhesion molecule 1; PAMPs: pathogen-associated 
molecular patterns; PRRs: pattern-recognition 
receptors; GM-CSF: granulocyte-macrophage colony 
stimulating factor. 
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