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A B S T R A C T

Comorbid diseases complicate patient outcomes and escalate healthcare costs, necessitating the need for a deeper 
mechanistic understanding. Neuropsychiatric disorders (NPDs) such as Neurotic Disorder, Major Depression, 
Bipolar Disorder, Anxiety Disorder, and Schizophrenia significantly exacerbate Type 2 Diabetes Mellitus (DM2), 
often leading to suboptimal treatment outcomes. The neurobiological mechanisms underlying this comorbidity 
remain poorly understood. To address this gap, we developed a novel pathway-based network computational 
framework to identify critical shared disease mechanisms between DM2 and these five prevalent comorbid NPDs. 
Our approach involves reconstructing an integrated DM2 ∩ NPDs KEGG pathway-pathway network and employs 
two complementary analytical methods, including the "minimum path to comorbidity" method to identify the 
shortest path fostering comorbid development. This analysis uncovered shared pathways like the PI3K-Akt 
signaling pathway and highlighted key nodes such as calcium signaling, MAPK, estrogen signaling, and 
apoptosis pathways. Dysregulation of these pathways likely contributes to the development of DM2-NPDs co-
morbidity. These findings have significant clinical implications, as they identify promising therapeutic targets 
that could lead to more effective treatments addressing both DM2 and NPDs simultaneously. Our model not only 
elucidates the intricate molecular interactions driving this comorbidity but also identifies promising therapeutic 
targets, paving the way for innovative treatment strategies. Additionally, the framework developed in this study 
can be adapted to study other complex comorbid conditions, advancing personalized medicine for comorbidities 
and improving patient care.

1. Introduction

Comorbidity, defined as the presence of two or more diseases in the 
same individual, is associated with worse patient outcomes, more 
complicated treatments, and increased healthcare costs [1,2]. Under-
standing the etiology of comorbid diseases is essential for effective 
treatment and the prevention of their emergence.

Type 2 Diabetes mellitus (DM2) is a chronic metabolic disorder 
affecting approximately 6.28 % of the world’s population, correspond-
ing to 462 million people [3], with projections indicating a rise to 700 
million by 2045 [4]. Characterized by insulin resistance and hypergly-
cemia, DM2 accounts for 90 % of all diabetes cases [5]. It occurs when 

pancreatic islet β cells fail to produce sufficient insulin to maintain 
normal glucose metabolism [6,7]. The origin of DM2 is multifactorial, 
involving the complex interaction of genetic, environmental and life-
style factors [8]. While DM2 most often develops in people older than 
45, its incidence is increasing among younger populations due to 
obesity, increased food intake, and lack of physical activity [9,10]. The 
risk of DM2 increases with age, with approximately one-third of the 
individuals suffering from DM2 being above 50 years old [3].

DM2 patients frequently experience emotional and behavioral 
symptoms, such as anxiety and depression, which exacerbate disease 
severity [11]. There is a bidirectional relationship between DM2 and 
depression, with each condition increasing the risk of the other [12]. 
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Moreover, individuals with bipolar disorder (BD) [13] and schizo-
phrenia [14] have a three- to fivefold times higher risk of developing 
comorbid DM2. Current evidence suggests a notably high prevalence of 
comorbidity between DM2 and neuropsychiatric disorders (NPDs), with 
around 40 % of patients with DM2 also suffering from a non-psychotic 
psychiatric disorder [15]. Common NPDs in DM2 include anxiety dis-
orders (20–25 %), major depressive disorder (MDD) (10–30 %), 
schizophrenia (10 %) and BD (10 %) [15–19]. Comorbid NPDs in DM2 
patients are linked with impaired quality of life [20], reduced treatment 
adherence [21], decreased glycemic control control [22], and poorer 
treatment prognosis [23,24].

Despite recognition of DM2-NPDs comorbidity, the underlying 
mechanisms remain unclear. No pharmacological interventions specif-
ically target this comorbidity, and some treatments for DM2 can exac-
erbate NPDs and vice versa [25–28]. Understanding these mechanisms is 
crucial. Additionally, there is a lack of transcriptomic data from human 
patients and animal models with comorbid DM2 and NPDs in public 
repositories like ArrayExpress [29] and Gene Expression Omnibus 
(GEO) [30], making it difficult to study these mechanisms. This gap 
necessitates alternative approaches, such as computational modeling 

and pathway-based analyses. Our study addresses this issue by 
employing network-based approaches to investigate the comorbidity 
between DM2 and NPDs, including MDD, Neurotic Disorder (ND), 
Anxiety Disorder (AD), BD, and Schizophrenia. Unlike previous studies 
that focused on isolated conditions, our research provides novel insights 
into shared molecular pathways and potential therapeutic targets for 
this specific set of comorbidities.

Network-based approaches, including protein-protein interaction 
(PPI) networks, have been instrumental in unravelling shared patho-
logical mechanisms between comorbid diseases [31–33]. Studies by 
Barabasi on network medicine and Brunak on integrated molecular 
networks have advanced our understanding of molecular interactions in 
human diseases [34,35]. Recent research has combined disease net-
works with predictive modeling to better understand chronic diseases 
and comorbidities [36], while another study used network analysis on 
electronic medical records of 496,408 DM2 patients to identify core 
diseases and trends [37]. However, few studies have focused on the 
comorbidity between DM2 and NPDs, such as MDD, ND, AD, BD, and 
Schizophrenia.

Previous research primarily explored DM2 comorbidities with 

Fig. 1. Schematic illustration of the methodology used in this paper. The aim was to isolate key pathways contributing to the development of comorbid DM2 and 
NPDs. (A) We represent the various data sources and the methodology used to reconstruct and analyze the DM2 ∩ NPDs KEGG pathway-pathway network. Topo-
logical analysis was employed to identify the top 10 high centrality pathways, and composition analysis was performed to determine the subclass to which the 
common pathways belong. (B) We also devised the ‘minimum path to comorbidity’ method, which allows us to isolate the shortest path that facilitates the 
development of comorbid DM2 and NPDs.
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individual disorders, such as Alzheimer’s Disease [33,38], or studied 
NPDs in isolation, such as with Schizophrenia [39], using transcriptomic 
and network-based approaches. Network-based methods have also been 
used to study NPDs, unravelling pathogenic mechanisms [40] and 
identifying potentially drug treatments [41]. Pathway-based analyses of 
large-omics data have further advanced our understanding of complex 
diseases [42]. Bioinformatics and machine learning have also been 
applied to find molecular biomarkers for DM2 with neurological dis-
eases [43], and study the effects of central nervous system disorders on 
glioblastoma progression [44]. However, there is a need for more 
comprehensive approaches that examine a wider range of NPDs in 
combination with DM2.

Here, we developed and applied a pathway-based network compu-
tational framework (see Fig. 1) to uncover key pathological mechanisms 
contributing to the comorbidity of DM2 and NPDs. To the best of our 
knowledge, no prior studies have used network-based approaches spe-
cifically to study the emergence of this comorbidity. This study makes 
several significant contributions: First, we take a comprehensive 
approach by concurrently analyzing the shared pathophysiological 
mechanisms between DM2 and five prevalent NPDs (ND, MDD, AD, 
Schizophrenia and BD), offering new insights into the molecular in-
teractions that drive these comorbid conditions. We reconstructed and 
analyzed five DM2-NPDs comorbidity PPI networks to identify common 
disease pathways shared between DM2 and all five NPDs. The shared 
pathways between DM2 and these NPDs were then used to reconstruct 
the DM2 ∩ NPDs KEGG pathway-pathway network. Next, we employed 
two complementary strategies to analyze this network. The first strategy 
identified the top 10 high-centrality pathways that could potentially 
exert system comorbid effects. The second strategy introduced the 
‘minimum path to comorbidity’ method, which uses graph theory 
techniques to isolate the shortest path that might facilitate the devel-
opment of comorbid DM2 and NPDs. This approach highlighted key 
disease pathways that functionally interact and are in close proximity 
with the reference pathways representing DM2 and NPDs, suggesting 
that targeting these pathways pharmacologically could have a signifi-
cant therapeutic impact. These contributions collectively enhance the 
understanding of DM2-NPD comorbidities and open new avenues for 
therapeutic development, offering potential treatment strategies based 
on the identified pathways.

The paper is organized as follows: The Methods section provides a 
detailed explanation of the network-based approaches and data sources 
used in the study. The Results section presents key findings, including 
shared pathways and potential therapeutic targets. The Discussion in-
terprets these findings within the context of current literature and out-
lines possible implications for treatment. Lastly, the Conclusion 
summarizes the study’s contributions and suggests directions for future 
research.

Overall, this study advances our understanding of DM2-NPD co-
morbidity by developing a novel computational framework, identifying 
crucial shared molecular pathways, and suggesting potential therapeutic 
targets that could be explored for treating these interconnected 
conditions.

2. Methods

2.1. Reconstruction of the integrated DM2-NPDs comorbidity PPI 
networks

To identify common pathological mechanisms between DM2 and 
each of the five NPDs, we reconstructed five DM2-NPDs comorbidity PPI 
networks (Table 1). Following established studies [40, 45–48], we uti-
lized the STRING disease app, integrated within Cytoscape app [49], to 
collect the top 200 disease-associated proteins, ranked by the highest 
disease association score, for each of the six conditions: DM2 
(DOID:9352), MDD (DOID:1470), ND (DOID:4964), AD (DOID:2030), 
BD (DOID:3312), and Schizophrenia (DOID:5419). The STRING disease 

app sources its data from the DISEASES database [50,51], which collects 
gene-disease associations from various types of evidence, including 
automatic text mining, a rigorously maintained and frequently updated 
resource that integrates that integrates gene-disease associations from 
multiple evidence types, including automatic text mining, manually 
curated databases like UniProt Knowledgebase (UniProtKB), 
genome-wide association studies (GWAS), and cancer mutation data. 
The DISEASES database is updated weekly, ensuring that the data we 
used are both current and robust. The gene-disease associations are then 
unified and assigned a confidence score, with 5 stars indicating high 
confidence and 1 star indicating low confidence in the association being 
a true positive. By focusing on the top 200 high ranking 
disease-associated proteins, we prioritize those proteins strongly impli-
cated in the diseases of interest, facilitating a more precise identification 
of biological processes closely associated with disease progression [52]. 
This method ensures that our analysis is based on high-confidence data, 
allowing us to accurately explore the common pathological mechanisms 
underlying comorbid DM2 and NPDs.

To reconstruct the five DM2-NPDs comorbidity PPI networks, we 
merged the DM2 PPI network with each of the five NPDs PPI networks 
using the “merged” function in Cytoscape app [53] (see Fig. 1A). The 
confidence cut-off score for the PPI was set at 0.8. This score is deter-
mined based on the nature and quality of the supporting evidence for the 
PPIs, ranging from 0 (indicating low confidence) to 1.0 (indicating high 
confidence). Therefore, the higher the score, the greater the likelihood 
that the PPIs are true positives [54]. It’s worth noting that a recom-
mended cut-off for high confidence is above 0.7 [55]. As a result, a 
stronger cut-off of 0.8 was selected.

2.2. Commonalities subnetwork extraction and enrichment analysis

We, then extracted the commonalities subnetwork from each DM2- 
NPDs comorbidity PPI network. These subnetworks include common 
disease-associated proteins between DM2 and each NPD, along with 
their first neighbors. The number of common disease-associated proteins 
between DM2 and each NPDs found from each comorbidity network, 
along with the number of human proteins contained in each extracted 
commonalities subnetwork, is listed in Table 1. Using the isolated 
human proteins from each subnetwork, we then performed enrichment 
analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database [56]. Pathway enrichment analysis allows us to gain mecha-
nistic insight associated with a list of proteins [57]. Enrichment analysis 
was conducted in the ClueGO app [58] in Cytoscape, utilizing the KEGG 
database. Only statistically significant enriched terms with an adjusted 
p-value ≤ 0.05 (corrected with Bonferroni step-down) were retained.

2.3. Reconstruction and analysis of the DM2 ∩ NPDs KEGG pathway- 
pathway network

2.3.1. Integrated DM2 ∩ NPDs KEGG pathway-pathway network
To identify common pathological pathways between DM2 and all the 

Table 1 
Characteristics of the DM2-NPDs comorbidity PPI networks and commonalities 
subnetworks.

DM2-NPDs 
comorbidity PPI 
networks

Nodes Edges Common disease- 
associated 
proteins (DM2 ∩

NPDs)

Commonalities 
subnetwork human 
proteins

DM2 and AD 368 1610 32 197
DM2 and MDD 381 1558 19 177
DM2 and 
Schizophrenia

379 1610 21 181

DM2 and BD 381 1588 19 170
DM2 and Neurotic 
Disorder

360 1531 40 206
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NPDs included in our analysis, we reconstructed an integrated 
DM2 ∩ NPDs KEGG pathway-pathway network. In this network, nodes 
represent pathways, and edges denote functional relationships between 
these pathways. To reconstruct the integrated network, we first 
compared the isolated significantly enriched KEGG pathways found 
between DM2 and each of the five NPDs using enrichment analysis. This 
allowed us to identify the KEGG pathways involved in DM2 that are also 
found in all five NPDs. Overall, we identified 87 KEGG pathways shared 
between DM2 and all five NPDs.

To ensure that the identified 87 common pathways do not contain 
any false positive results of pathways containing only DM2- or NPD- 
associated genes, we checked that all the pathways contained at least 
one disease-associated gene for each condition. Using this method, we 
did not identify any false positive results, as all of the 87 common 
pathways were found to contain at least two genes associated with each 
condition.

To reconstruct the integrated DM2 ∩ NPDs KEGG pathway-pathway 
network and create functional interactions between the 87 common 
pathways, we utilized the KEGGREST package [59] in R to parse the 
KEGG database [56]. We parsed each of the 353 KEGG pathways (Homo 
sapiens) entries to extract information of the functional relationships of 
each pathway with other pathways. We then combined all the in-
teractions obtained, which resulted into 1914 functional 
pathway-pathway interactions. Functional relationships between path-
ways, represent the interconnectedness and communication that occurs 
between different pathways to accomplish complex physiological pro-
cesses, such as where components from one pathway influence the ac-
tivity or regulation of components in another pathway. We then isolated 
the functional relationships between the 87 common pathways and 
reconstruct a direct DM2 ∩ NPDs KEGG pathway-pathway network, 
composed of 87 nodes and 328 edges. Therefore, these 87 pathways 
represent shared biological mechanisms that concurrently play a role in 
both diseases, with the edge interactions denoting functional relation-
ships between the pathways.

2.3.2. Pinpointing essential comorbidity disease communicator nodes
After reconstructing the DM2 ∩ NPDs KEGG pathway-pathway 

network, we used the igraph package [60] in R to conduct network to-
pological analysis and identify high centrality pathways. Specifically, 
we used the ‘hub_score’ function within igraph to assess node centrality, 
focusing on those nodes that act as hubs within the network. The 
‘hub_score’ function measures how well-connected a node is to other 
highly connected nodes, assigning higher scores to nodes that are linked 
to multiple hubs or nodes with high degrees, indicating their pivotal role 
in the network. Nodes with high hub scores are crucial because they 
have extensive connections and interact with other central nodes, 
making them key facilitators of information flow and interaction within 
the network. By applying the ‘hub_score’ function, we identified nodes 
that are central to the network’s structure and functionality. These high 
centrality nodes, or hubs, are crucial for understanding the comorbidity 
between DM2 and NPDs. They play significant roles in the systemic 
interactions driving the emergence of comorbid conditions by func-
tionally connecting with multiple pathways. Consequently these hubs 
act as key “comorbidity disease communicator nodes” in the network 
[45]. The term "comorbidity disease communicator nodes" refers to 
nodes that are crucial for bridging different pathways related to DM2 
and NPDs, thereby facilitating and amplifying interactions that 
contribute to the comorbidity between these diseases. These nodes are 
essential in both promoting the emergence and deepening the under-
standing of comorbid DM2 and NPDs. To pinpoint these critical nodes, 
we focused on the top 10 nodes with the highest hub scores, which serve 
as indicators of high centrality. These nodes are integral to the network’s 
functionality and offer valuable insights into the mechanisms underly-
ing the comorbidity between DM2 and NPDs, as well as potential ther-
apeutic targets.

2.4. Composition analysis and tissue-specificity enrichment analysis of 
DM2-NPDs interactions

Additionally, we conducted composition analysis on the 
DM2 ∩ NPDs KEGG pathway-Comorbidity, defined as the presence of 
two or more diseases in the same individual, is associated with worse 
patient outcomes, more complicated treatments, and increased health-
care costs [1,2]. Understanding the etiology of comorbid diseases is 
essential for effective treatment and the prevention of their emergence. 
network to determine the subclasses to which the 87 common disease 
pathways belong. To achieve this, we used the KEGGREST package [59]
in R to extract the subclass classification of each of the 87 pathways 
based on the KEGG database. This analysis offers valuable insights into 
the categorization of pathways and their functional relevance in the 
context of comorbid DM2 and NPDs.

Moreover, in order to identify potential overlapping tissues where 
the dysregulation of the 87 identified pathways could occur between 
DM2 and NPDs, we performed tissue-specific gene enrichment analysis. 
This analysis involved using the disease-associated genes identified to 
participate in these pathways from each condition. We performed the 
analysis using the TissueEnrich web application [61], and chose the 
GTEx database [62]. The GTEx database provides the most compre-
hensive information on normal tissue expression across 56 distinct tis-
sues. It is important to note that in the TissueEnrich application, samples 
from sub-tissues are combined into broader categories. For example, 
different regions of the brain are grouped under the term "brain", 
resulting in 29 human tissue categories. To identify tissue-specific genes, 
we applied the "tissue enriched" criterion, which defines genes as 
tissue-specific if their expression levels are at least five times higher in a 
particular tissue compared to all other tissues. In addition, we employed 
the fold-change test to determine the statistical significance of the 
tissue-specific genes.

2.5. The ‘minimum path to comorbidity’

To isolate the shortest path that may facilitate the development of 
comorbid DM2 and NPDs, we developed a method termed the ‘minimum 
path to comorbidity’ (see Fig. 1B). This approach leverages graph theory 
methods, specifically the shortest path algorithm, to identify key routes 
that contribute to the emergence of comorbid DM2 and NPDs. The 
’minimum path to comorbidity’ is designed to identify the most direct 
and influential pathways that may play a role in the development of 
comorbid DM2 and NPDs. To illustrate this concept, think of it as finding 
the shortest and most efficient route on a map connecting two cities, 
where each city represents a disease (DM2 and NPDs), and the roads 
between them represent biological pathways. The ’minimum path’ is the 
most direct route connecting the key pathways of both diseases, 
emphasizing the crucial molecular interactions that are most likely to 
contribute to the comorbidity. By focusing on this minimum path, we 
can pinpoint critical pathways that could represent therapeutic targets 
to address both DM2 and NPDs simultaneously, thereby reducing the 
risk or severity of comorbid DM2 and NPDs.

2.5.1. Highlighting and adding missing reference points on the 
DM2 ∩ NPDs KEGG pathway-pathway network

To determine the "minimum path to comorbidity" between DM2 and 
NPDs, we first selected five KEGG pathways as reference points: (i) the 
Type II diabetes mellitus (hsa04930) pathway, representing DM2, and 
(ii) four KEGG pathways—Dopaminergic synapse (hsa04728), Gluta-
matergic synapse (hsa04724), Serotonergic synapse (hsa04726), and 
GABAergic synapse (hsa04727)—representing NPDs. The selection of 
these pathways was guided by several considerations. Firstly, specific 
disease pathways for the five NPDs under investigation (MDD, BD, ND, 
AD, and Schizophrenia) are not available in the KEGG database. This 
limitation required a strategic approach to accurately represent the 
molecular mechanisms underlying NPDs.
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We selected these four pathways to collectively represent the NPDs 
reference point "pathway," because they are widely recognized in the 
literature as playing critical roles in the pathophysiology of all the NPDs 
studied [63–66]. These pathways were not selected arbitrarily; they are 
fundamental to neuropsychiatric function and are directly targeted by 
the pharmacological treatments currently employed for these disorders. 
For example, selective serotonin reuptake inhibitors (SSRIs) such as 
fluoxetine and sertraline, are commonly prescribed for the treatment of 
MDD, BD, ND and AD, specifically targeting the serotonin system. 
Similarly, the antidepressant ketamine, used for treatment-resistant 
depression, modulates glutamate neurotransmission, highlighting the 
importance of the Glutamatergic synapse pathway [67,68]. Benzodiaz-
epines like lorazepam, which enhance GABAergic activity in the brain, 
are widely used to treat MDD, ND and AD [69]. Furthermore, atypical 
antipsychotic drugs such as risperidone affect both the dopaminergic 
and serotonergic systems and are used to treat BD, MDD and Schizo-
phrenia [70]. These pathways were selected as reference points not only 
because of their central role in neurotransmission but also because of 
their direct involvement in the therapeutic mechanisms of action for 
these NPDs. This selection process allows us to overcome the absence of 
specific KEGG pathways for NPDs by focusing on pathways that are 
biologically and therapeutically relevant, ensuring that our network 
analysis is rooted in robust biological evidence.

The pathways serve as anchors in our "minimum path to comorbid-
ity" analysis, facilitating the identification of the shortest and most 
biologically significant routes that connect the reference points for DM2 
and NPDs. This approach enables us to explore potential mechanisms of 
comorbidity and identify key molecular interactions that could serve as 
therapeutic targets, making our study both data-driven and biologically 
meaningful.

Our approach works by first highlighting the selected reference 
points on the DM2 ∩ NPDs KEGG pathway-pathway network in yellow. 
However, only two reference points, the Dopaminergic synapse and 
Type II diabetes mellitus pathways, were initially present on the 
network. The absence of the other reference points highlights a limita-
tion of enrichment analysis. Despite the critical roles of Glutamatergic, 
Serotonergic, and GABAergic synapse pathways in the pathogenesis of 
these NPDs, they were not identified as statistically significant during 
the enrichment analysis. To overcome this limitation, our methodology 
adds the three missing reference points (Glutamatergic synapse, Sero-
tonergic synapse, and GABAergic synapse) to the network. To add the 
missing reference points, the algorithm calculates all the shortest paths 
between the reference points and all the nodes on the DM2 ∩ NPDs 
KEGG pathway-pathway network, using the functional relationships of 
all 353 KEGG pathways collected from KEGG database. It then identifies 
the shortest path with the smallest length for each missing reference 
point and extracts the relevant edge interactions between the reference 
points and the pathways on the network.

The shortest path between two nodes in the network is calculated as 
follows: 

d
(
vi, vj

)
= min

(
∑

e⋲E
length(e)

)

where vi and vj represent nodes (pathways in the network), E is the set of 
all edges (pathways functional interactions) in the network, and 
length(e) represents the weight or distance of each edge e. The min 
function identifies the path with the smallest total length, representing 
the shortest route between vi and vj.

In the case where no direct interactions exist between the missing 
reference points and the nodes on the network, the algorithm introduces 
additional missing nodes and edge interactions that are required to 
connect the missing reference points with the rest of the network to 
ensure connectivity. In addition, if multiple shortest paths with the 
smallest length exist, the algorithm adds the interactions for all of these 
paths to the network.

2.5.2. Adding missing pathways on the expanded DM2 ∩ NPDs KEGG 
pathway-pathway network

Moreover, the algorithm aims to create a fully connected network, 
where all nodes are connected with each other, so it identifies all nodes 
with degree values of 0 and 1 and determines all pairs that exist between 
these nodes and the remaining nodes on the expanded network.

The degree of a node in the network is calculated as: 

deg(v) =
∑

e⋲E
I(v ∈ e)

where deg(v) represents the degree of node v, and I(v ∈ e) is an indicator 
function that equals 1 if the node v is part of edge e (i.e., if there is a 
direct interaction between v and another node), and 0 otherwise. This 
summation counts the number of edges incident to node v.

It then calculates all the shortest paths between the pairs using the 
functional relationships collected from KEGG database. For each node of 
interest, the algorithm isolates the shortest path with the smallest 
length. Finally, the algorithm extracts and adds the relevant edges and 
missing nodes to create a fully connected expanded DM2 ∩ NPDs 
pathway-pathway network. The reliability of our graph expansion 
approach in introducing relevant comorbidity disease pathways in a 
Disease ∩ Disease KEGG pathway-pathway network is further analyzed 
in Supplementary File 1.

2.5.3. Isolating the minimum path to DM2 and NPDs comorbidity
To identify the key pathways that facilitate the development of co-

morbid DM2 and NPDs, we utilized the connected expanded 
DM2 ∩ NPDs KEGG pathway-pathway network to isolate the minimum 
path to DM2 and NPDs comorbidity. This process involved calculating 
the shortest paths with the smallest length for each of the four pairs that 
exist between the Type II diabetes mellitus pathway (DM2 reference 
point) and each of the four pathways (Dopaminergic, Glutamatergic, 
Serotonergic and GABAergic synapses) that represent the NPDs refer-
ence points.

The shortest path for each pair was computed as: 

min_path(PDM2,PNPD) = min(d(PDM2,PNPD)

where PDM2 represents the Type II diabetes mellitus pathway, and 
PNPD represents one of the four NPD pathways (Dopaminergic, Gluta-
matergic, Serotonergic, or GABAergic synapse). d(PDM2, PNPD) is the 
shortest path (distance) between the DM2 pathway and the NPD 
pathway.

We then highlighted the corresponding edges on the fully connected 
expanded DM2 ∩ NPDs pathway-pathway network. This enabled us to 
isolate the minimum path between DM2 reference point and the four 
NPDs reference points.

2.6. Validation of the importance of the central and “shortest path to 
comorbidity” pathways in DM2 and NPDs comorbidity using prefrontal 
cortex data

To validate the importance of the central and "shortest path to co-
morbidity" pathways in the context of DM2 and NPDs comorbidity, we 
conducted an analysis using microarray gene expression data from the 
prefrontal cortex (PFC). We accessed this data through the GEO data-
base, a repository with transcriptomic data [30]. We sought PFC 
microarray studies associated with NPDs, DM2, and comorbid DM2 and 
NPDs. Unfortunately, there were no available datasets for PFC samples 
from humans with DM2 or datasets from either animal models or 
humans with comorbid DM2 and NPDs. However, we identified dataset 
GSE34451, which includes three samples from the PFC of male 
Goto-Kakizaki rats (a model of Type II diabetes) and three samples from 
male Wistar rats (control) [71]. Additionally, we analyzed dataset 
GSE12654, which contains human PFC samples from patients with 
various NPDs [72].
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The Limma R package [73], which allows for the identification of 
differentially expressed genes (DEGs) from microarray experiments, was 
used to analyze each dataset and identify DEGs between each condition 
and the control samples. Both datasets were normalized and log2 
transformed. DEGs with p-value < 0.05 were considered as statistically 
significant. Subsequently, pathway enrichment analysis was performed 
using the ClueGO app [58] in Cytoscape, leveraging the KEGG database, 
to identify statistically significant enriched pathways with an adjusted 
p-value ≤ 0.05 (corrected with Benjamini-Hochberg) that are related to 
the DEGs.

3. Results

3.1. Comparison between the five NPDs

Comparison between the top 200 disease-associated proteins of the 
five NPDs (see Methods) using a Venn diagram [74] revealed that they 
share 43 common disease-associated proteins (Fig. 2). Table 2 indicates 
the major biological processes to which the disease-associated proteins 
of the NPDs belong.

3.2. Analysis results of the DM2 ∩ NPDs KEGG pathway-pathway 
network

We reconstructed and analyzed the DM2 ∩ NPDs KEGG pathway- 
pathway network (see Fig. 3), which consists of 328 functional re-
lationships (edges) between the 87 common pathways (nodes) identified 
through our analysis to be shared between DM2 and all NPDs.

3.2.1. Composition of the DM2 ∩ NPDs KEGG pathway-pathway network
The composition analysis of the DM2 ∩ NPDs KEGG pathway- 

pathway network indicated that the 87 common pathways belong to 
21 subclasses (Table 3), according to the KEGG database classification 
system. The results revealed that 23 pathways belong to the subclass of 
infectious diseases (viral, bacterial and parasitic), while 10 pathways 
belong to the endocrine system subclass. In addition, 11 pathways were 
classified under the signal transduction subclass, and 12 pathways were 

associated with various cancer subclasses.

3.2.2. Comorbidity (DM2 ∩ NPDs) disease communicator nodes
Topological analysis of the network led to the identification of the 

top 10 hubs nodes (Fig. 3, Table 4), which are high-centrality nodes that 
communicated with several of the other common disease pathways in 
the network. Therefore, these pathways, acting as potential comorbidity 
disease communicator nodes, are hypothesized to play a crucial role in 
facilitating the comorbidity between DM2 and NPDs. Their centrality in 
the network suggests they are essential due to their high connectivity 
and potential systemic influence.

The rationale behind identifying ’communicator nodes’ within our 
network stems from the need to prioritize and understand the most 
influential pathways among the numerous shared ones. While all 87 

Fig. 2. Comparison of the top 200 disease-associated proteins among the five NPDs (Schizophrenia, MDD, ND, AD and BD), indicating the presence of 43 common 
disease proteins.

Table 2 
Major biological processes in which the common disease-associated proteins of 
NPDs participate.

Biological Process NPDs common disease-associated proteins

Serotonergic 
neurotransmission

5-hydroxytryptamine receptor 1 A (HTR1A), 5-hy-
droxytryptamine receptor 2 A (HTR2A), Tryptophan 5- 
hydroxylase 1 (TPH1), Sodium-dependent serotonin 
transporter (SLC6A4), 5-hydroxytryptamine receptor 
1B (HTR1B), 5-hydroxytryptamine receptor 2 C 
(HTR1C)

Dopaminergic 
neurotransmission

Monoamine oxidase A(MAOA), D2 dopamine receptor 
(DRD2), Dopamine D4 receptor (DRD4)

Glutaminergic 
neurotransmission

Glutamate receptor ionotropic, kainate 2 (GRIK2), 
Glutamate receptor ionotropic NMDA 2 A (GRIN2A), 
Glutamate receptor ionotropic, NMDA 2B (GRIN2B), 
Glutamate decarboxylase 2 (GAD2)

Inflammation Corticotropin releasing hormone (CRH), Interleukin 10 
(IL10), Tumor Necrosis Factor (TNF), Corticotropin 
releasing hormone receptor 1 (CRHR1), Interleukin− 1 
beta (IL1B), Glucocorticoid receptor (NR3C1) and 
Interleukin− 6 (IL6)

Neurodegeneration Apolipoprotein E (APOE), Microtubule-associated 
protein (MAPT)

Diabetes Insulin (INS)
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pathways identified contain genes associated with both DM2 and NPDs, 
network analysis allows us to pinpoint pathways that are central and 
highly connected, suggesting they might have a more significant sys-
temic impact. This approach helps in prioritizing pathways for further 
study and potential therapeutic targeting. Moreover, network analysis 
provides a structured way to hypothesize about the functional re-
lationships and interactions between pathways, which might not be 
apparent from gene overlap alone. The identification of high centrality 
pathways as potential ’communicator nodes’ offers a focused direction 
for subsequent experimental validation and therapeutic exploration.

According to KEGG database classification system, seven of the 
communicator nodes belong to the subclass of ‘Signal transduction’ 
(Table 4). In contrast, Apoptosis belongs to the subclass of ‘Cell growth 
and death’, the Kaposi sarcoma-associated herpesvirus infection 

pathway belongs to the subclass of ‘Infectious disease: viral’, and the 
Toll-like receptor signaling pathway belongs to the ‘immune system’ 
subclass.

3.2.3. Tissue specificity analysis results of DM2-NPDs interactions
Comorbid conditions often involve multiple tissues and organs. 

Therefore, considering the interplay of molecular changes in different 
tissues and their contributions to comorbidity is essential. To address 
this, we conducted tissue-specific enrichment analysis of the disease- 
associated genes from DM2 and NPDs that were found to participate 
in the 87 common disease pathways. This analysis aimed to identify 
potential overlapping tissues where the dysregulation of these pathways 
could occur between these two conditions. The tissue-specific 

Fig. 3. Visualization of the DM2 ∩ NPDs KEGG pathway-pathway network, indicating the functional relationships between the 87 common pathways between DM2 
and NPDs. The top 10 hubs are highlighted in purple color. The size of the nodes is proportional to their degree. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Table 3 
Top 10 subclasses found in the DM2 ∩ NPDs KEGG pathway-pathway network 
and the number of pathways in each subclass.

Rank Subclass Frequency (pathways)

1. Signal transduction 11
2. Endocrine system 10
3. Infectious disease: viral 10
4. Infectious disease: bacterial 7
5. Cancer: overview 6
6. Cancer: specific types 6
7. Endocrine and metabolic disease 6
8. Immune system 6
9. Infectious disease: parasitic 6

10. Cardiovascular disease 3

Table 4 
Top 10 high centrality nodes that facilitate the emergence of DM2 and NPD 
comorbidity and their classification.

Rank KEGG pathway name Classification

1. Apoptosis (hsa04210) Cell growth and 
death

2. PI3K-Akt signaling pathway (hsa04151) Signal transduction
3. MAPK signaling pathway (hsa04010) Signal transduction
4. Toll-like receptor signaling pathway Immune system
5. NF-kappa B signaling pathway (hsa04064) Signal transduction
6. JAK-STAT signaling pathway (hsa04630) Signal transduction
7. TNF signaling pathway (hsa04668) Signal transduction
8. mTOR signaling pathway (hsa04150) Signal transduction
9. Kaposi sarcoma-associated herpesvirus infection 

(hsa05167)
Infectious disease: 
viral

10. FoxO signaling pathway (hsa04068) Signal transduction
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enrichment analysis revealed 14 statistically significant tissues related 
to the disease-associated genes in DM2 (Fig. 4A) and 17 statistically 
significant tissues in NPDs (Fig. 4B). This approach highlighted 11 
overlapping tissues (spleen, pancreas, cervix uteri, fallopian tube, colon, 
pituitary, small intestine, esophagus, stomach, muscle, brain) between 
DM2 and NPDs where the dysregulation of the 87 common disease 
pathways could occur.

3.3. Isolating the shortest path to DM2 and NPDs comorbidity

3.3.1. Adding reference points and missing pathways on the DM2 ∩ NPDs 
KEGG pathway-pathway network

Our objective was to identify the most critical path that might 
facilitate the development of comorbid DM2 and NPDs. To achieve this, 
we utilized the DM2 ∩ NPDs KEGG pathway-pathway network, which 
comprised the 87 common disease pathways identified between DM2 
and NPDs. We selected five pathways to act as reference points for the 
two conditions (see Methods) and highlighted them on the DM2 ∩ NPDs 
KEGG pathway-pathway network. We also employed the shortest path 
approach (see Methods) to add any missing reference points and ensure 
connectivity within the network. In addition, to create a fully connected 
network, we identified nodes with degree values of 0 and 1, and 
employed the shortest path approach to add additional missing path-
ways to the network (see Methods) to generate a fully connected 

expanded DM2 ∩ NPDs KEGG pathway-pathway network (Fig. 5), con-
sisting of 97 nodes and 391 edge interactions. The remaining uncon-
nected pathway lacked any direct functional interactions based on the 
data collected from the KEGG database (Fig. 5). Additionally, our 
approach introduced seven additional pathways (highlighted in red) to 
establish a fully connected network. Our model highlights the signifi-
cance of the added Calcium signaling pathway (hsa04020) in facilitating 
the development of comorbid DM2 and NPDs, as it exhibits functional 
relationships with several common disease pathways (DM2 ∩ NPDs) 
identified between DM2 and NPDs (Fig. 5).

3.3.2. Highlighting the shortest path to DM2 and NPDs comorbidity
To isolate the shortest path that contributes to the development of 

comorbid DM2 and NPDs, we initially calculated and isolated all the 
shortest paths with the smallest length between the DM2 reference point 
(Type II diabetes mellitus) and each of the four pathways representing 
NPDs (Dopaminergic synapse, Glutamatergic synapse, Serotonergic 
synapse and GABAergic synapse). Subsequently, we extracted the rele-
vant nodes and edges from these shortest paths and highlighted them on 
the expanded DM2 ∩ NPDs KEGG pathways network (Fig. 5), which 
allowed to isolate the shortest path that might lead to the emergence of 
DM2 and NPDs comorbidity.

The shortest path leading to NPDs and DM2 comorbidity encom-
passes three high centrality pathways: Calcium signaling pathway, 

Fig. 4. Tissue enrichment analysis results of disease-associated genes from (A) DM2 and (B) NPDs, which participate in the 87 common disease pathways.
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MAPK signaling pathway and Apoptosis (Fig. 6). These pathways not 
only exhibit functional interactions with one another but also have the 
potential to exert systemic comorbid pathogenic effects within the 
expanded DM2 ∩ NPDs KEGG pathway-pathway network (Fig. 5). 
Therefore, dysregulation of these pathways can facilitate the develop-
ment of comorbid DM2 and NPDs. Notably, the MAPK signaling and 
Apoptosis pathways are high centrality nodes in the initial DM2 ∩ NPDs 
KEGG pathway-pathway network. Moreover, the Calcium signaling 
pathway was an additional missing node added on the network to 
establish connections between the unconnected NPDs reference points 
and the rest of the network. It also interacts with several of the common 
disease pathways. In addition, the shortest path to comorbidity includes 
the Estrogen signaling pathway, which exhibits functional interactions 
with the GABAergic synapse (NPDs reference point), the Calcium 
signaling pathway (added missing pathway), and the MAPK signaling 
pathway (comorbidity disease communicator nodes).

3.4. Validation of the importance of the central and “shortest path to 
comorbidity” pathways in DM2 and NPDs comorbidity using PFC data

As described in the Methods section, we validated the importance of 
the central and "shortest path to comorbidity" pathways using micro-
array gene expression data from the PFC obtained from the GEO 
database.

Pathway enrichment analysis of the DEGs from each dataset revealed 
8, 21, 13, and 28 statistically significant KEGG pathways associated with 
depression, schizophrenia, BD, and DM2, respectively (Supplementary 
File 2–3). The pathway enrichment analysis yielded several significant 

findings. First, the PI3K-Akt signaling pathway, identified as one of the 
top 10 high centrality nodes (hubs) in our computational model 
contributing to DM2 and NPDs comorbidity, was statistically significant 
in all three NPDs datasets (depression, schizophrenia, BD). Additionally, 
it showed statistical significance in the DEGs from the PFC of DM2 rats. 
Second, the Kaposi sarcoma-associated herpesvirus infection pathway, 
which was recognized by our analysis as one of the top 10 high centrality 
disease communicator nodes, displayed statistical significance in both 
DM2 and schizophrenia. Finally, the MAPK signaling pathway, high-
lighted in our analysis as participating in the shortest path to DM2 and 
NPDs comorbidity and as one of the top 10 high centrality nodes, 
demonstrated statistical significance in both NPDs (schizophrenia, BD) 
and DM2.

Previous studies have successfully used transcriptomics to infer 
shared and distinct molecular mechanisms underlying comorbid dis-
eases, providing valuable insights into the pathophysiological links and 
potential therapeutic targets for complex comorbidities [75]. The find-
ings from the PFC transcriptomic datasets (GSE34451, GSE12654) 
indicate a strong convergence between the pathways identified through 
our network-based computational framework and those deemed statis-
tically significant in the DEGs from the PFC. This convergence validates 
the reliability and robustness of our computational model by demon-
strating that it can independently capture relevant pathways.

However, it is important to acknowledge the limitations of our 
validation approach. While the use of animal models, such as the Goto- 
Kakizaki rats in dataset GSE34451, provides valuable insights into the 
molecular mechanisms of DM2, these models may not fully replicate the 
complexity of human disease. Differences in physiology, brain structure, 

Fig. 5. Visualization of the expanded DM2 ∩ NPDs KEGG pathway-pathway network, where the reference points are highlighted in yellow, the additional pathways 
added are shown in red, and the remaining common disease pathways between DM2 and NPDs are depicted in green. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)
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and disease progression between rats and humans may result in gene 
expression variations that do not perfectly reflect human conditions. 
Therefore, findings from animal models must be interpreted cautiously 
when extrapolating to human disease.

Additionally, due to the lack of comparable human PFC samples for 
DM2, we were required to compare the rat results with human datasets 
from PFC samples of individuals with NPDs. This introduces another 
layer of complexity, as the gene expression profiles in the PFC of diabetic 
rats may not align precisely with those in humans, particularly in the 
context of NPDs. This limitation underscores the challenge of validating 
comorbid disease mechanisms when direct human data for both condi-
tions in the same tissue are unavailable. As a result, the conclusions 
drawn from this comparison, while informative, must be considered 
indicative rather than definitive, emphasizing the need for future studies 
that directly examine comorbid DM2 and NPDs in human tissues. 
Nevertheless, the alignment of our computational findings with PFC- 
specific data reinforces the significance of these pathways in the co-
morbidity of DM2 and NPDs, confirming our model as a robust tool for 
uncovering critical pathological mechanisms.

Despite these limitations, the convergence of our computational 
findings with PFC data underscores the effectiveness and reliability of 
our model in capturing critical interactions. Although the model is not 
tissue-specific, it offers a comprehensive understanding of the comorbid 
mechanisms of DM2 and NPDs. This validation process, though con-
strained by the available datasets, provides strong evidence supporting 
our computational findings and highlights the robustness of our 
pathway network-based approach in identifying key pathological 
mechanisms underlying DM2-NPD comorbidity.

4. Discussion

Our network-based computational framework makes significant 
contributions by providing a novel method for identifying key pathways 
and determining the shortest path to comorbidity between DM2 and 
NPDs. By focusing on high centrality (hub) pathways and uncovering the 
most direct and biologically relevant connections between these dis-
eases, our model reveals critical molecular interactions that may serve as 

potential therapeutic targets. This approach surpasses traditional tran-
scriptomic analyses, especially considering the lack of available tran-
scriptomic data from human patients or animal models with comorbid 
DM2 and NPDs. Consequently, our model provides novel insights into 
shared biological mechanisms that might be overlooked by conventional 
methods. The framework can be applied to identify therapeutic targets 
that address both metabolic and neuropsychiatric conditions simulta-
neously, making it a versatile tool for exploring complex disease in-
teractions and guiding personalized treatment strategies. By leveraging 
a graph-based approach, we pinpointed the top 10 high centrality dis-
ease pathways and uncovered the shortest path between DM2 and NPDs. 
These findings are critical, as they highlight specific molecular in-
teractions that may serve as therapeutic targets for addressing the 
comorbidities of these diseases. While the framework does not aim to 
capture every possible mechanism contributing to comorbidity, it em-
phasizes key pathways that are critical to its emergence through shared 
disease pathways. The ability of the framework to identify these path-
ways in DM2-NPDs comorbidity was validated using transcriptomic data 
from the PFC.

We first reconstructed five DM2-NPDs comorbidity PPI networks and 
extracted their commonalities subnetworks. We then performed 
enrichment analysis on the human proteins contained in each subnet-
work. This allowed to identify 87 common disease pathways shared 
between DM2 and all five NPDs (ND, MDD, BD, AD and Schizophrenia), 
which could represent possible crossroad pathological mechanisms that 
facilitate the emergence of comorbid DM2 and NPDs. Furthermore, we 
reconstructed the DM2 ∩ NPDs KEGG pathway-pathway network using 
the identified 87 common disease pathways and their 328 functional 
relationships.

Topological analysis of the DM2 ∩ NPDs KEGG pathway-pathway 
network allowed us to identify the top 10 high centrality (hubs) path-
ways, which can act as comorbidity disease communicator nodes and 
play a crucial role in promoting systemic comorbid pathogenic effects. 
Nodes that act as hubs in a network have a high degree of connectivity, 
meaning they are connected to a large number of other nodes in the 
network, this centrality renders them crucial for the network’s overall 
structure and functioning. Consequently, perturbations affecting these 
hub nodes can have significant implications for the stability, func-
tioning, and overall behavior of the network.

Our network analysis identified the top 10 high centrality pathways 
that could possibly lead to DM2 and NPDs comorbidity, suggesting their 
essential role due to their high connectivity and potential systemic in-
fluence. These pathways, including PI3K-Akt signaling, mTOR signaling, 
and Toll-like receptor signaling pathway, which have been previously 
implicated in the pathophysiology of both DM2 and NPDs. For instance, 
the PI3K-Akt signaling pathway is crucial for insulin signaling and 
glucose homeostasis and is known to be dysregulated in DM2 [76]. 
Dysregulation of this pathway in the brain has been associated with 
synaptic dysfunction and neuroinflammation [77], which are critical 
factors in the development of NPDs such as schizophrenia and depres-
sion. The mTOR signaling pathway, another high centrality node, plays 
a vital role in cell growth, proliferation, and survival. Alterations in 
mTOR signaling have been associated with both metabolic disorders like 
DM2 [76] and NPD conditions such as MDD [78,79], BD [80] and 
Schizophrenia [81]. Evidence from preclinical models suggests that 
impaired mTOR signaling contributes to insulin resistance and β-cell 
dysfunction in DM2 and affects synaptic plasticity and neurogenesis in 
NPDs [76, 78–81]. Chronic inflammation is a common feature in DM2 
and has been increasingly recognized in the pathology of NPDs, 
including the possible role of Toll-like receptor signaling in contributing 
to this inflammation [82–84]. The identification of immune-related 
pathways suggests that inflammatory processes may be a shared 
mechanism contributing to the comorbidity.

We have also analyzed the composition of the 87 common disease 
pathways, which showed that the majority belong to the subclasses of 
Signal transduction, Endocrine system, Cancer, and Infectious diseases. 

Fig. 6. Shortest path to DM2 and NPDs comorbidity. Illustration of the sub-
network representing the shortest path to DM2 and NPDs comorbidity. It 
highlights the five reference points representing DM2 and NPDs in yellow color, 
as well as the minimum number of pathways (shown in red) required to connect 
the Type II diabetes mellitus pathway (representing DM2) with each of the four 
reference points: Dopaminergic synapse, Glutamatergic synapse, Serotonergic 
synapse and GABAergic synapse (representing NPDs). Dotted edges represent 
additional interactions that were required to be added to create the fully con-
nected expanded DM2 ∩ NPDs KEGG pathway-pathway network. On the other 
hand, undotted edges depict the interactions present in the initial DM2 ∩ NPDs 
KEGG pathway-pathway network, which included only the 87 common disease 
pathways found to be shared between DM2 and NPDs. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web 
version of this article.)
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More specifically, 23 pathways belong to the infectious disease sub-
classes, including viral, bacterial, and parasitic infections. Several 
pathogenic organisms have been considered as environmental risk fac-
tors for the development of various diseases, including DM2 [85–90]
and NPDs [91,92]. Based on the ‘associated risk factors’ etiological 
model, comorbidity can arise when risk factors, such as viral infections, 
for Disease “A” correlate with the risk factors of Disease “B” [1, 93, 94]. 
For example, the COVID-19 infectious disease is associated with the 
development of both DM2 and several NPDs, including depression, 
schizophrenia, and AD [40, 87, 88, 92, 95]. Viruses have the ability to 
modulate and dysregulate disease-associated pathways via virus-host 
PPIs and lead to the emergence of diseases [40, 45, 46], thereby lead-
ing to the development and exacerbation of comorbid conditions. Un-
derstanding these mechanisms highlights the importance of infectious 
disease pathways in contributing to the comorbidity of DM2 and NPDs, 
emphasizing the need for integrated therapeutic strategies that address 
both metabolic and neuropsychiatric aspects.

In addition, we performed tissue-specific gene enrichment which led 
to the identification of eleven overlapping tissues (spleen, pancreas, 
cervix uteri, fallopian tube, colon, pituitary, small intestine, esophagus, 
stomach, muscle, brain) between DM2 and NPDs. These tissues could 
represent possible sites where the dysregulation of the 87 common 
pathways could occur. The pancreas and the brain are particularly 
notable, as their reciprocal interaction plays an important role in 
maintaining glucose homeostasis both in the brain and peripheral tissues 
[96]. Pancreatic islets communicate with the brain, and vice versa; brain 
circuits regulate the endocrine functions of the pancreas. The brain is a 
key player in the regulation of energy metabolism and glucose homeo-
stasis, as it integrates various peripheral metabolic inputs, including 
signals from the pancreas [97]. Glucose metabolism is critical for brain 
functioning, and disruption of glucose metabolism is a primary patho-
physiological characteristic of NPDs [98]. Hence, the brain is particu-
larly vulnerable to the metabolic effects of DM2. Moreover, evidence 
suggests the involvement of brain pathways in the regulation of 
pancreatic islet physiology; however the exact brain regions that 
communicate with the pancreas have not yet been fully defined [99, 
100]. Therefore, communication between common disease pathways 
from different tissues can also facilitate the development of 
comorbidities.

It is notable that the fallopian tube appeared as the most enriched 
tissue in our analysis of DM2 (Fig. 4A). This unexpected result un-
derscores the need for further investigation to understand its relevance. 
One possible explanation is the association between DM2 and polycystic 
ovarian syndrome (PCOS) in women. Women of reproductive age who 
have PCOS and are obese have an eight times greater chance of devel-
oping DM2 [101]. This is because most PCOS women exhibit metabolic 
syndrome symptoms such as insulin resistance [102]. Additionally, 
women with PCOS have a higher prevalence of NPDs, including anxiety, 
depression, and BD [103]. This link suggests that molecular changes in 
the fallopian tube related to PCOS might also be relevant in the context 
of DM2 and NPDs comorbidity.

Finally, we devised the ‘minimum path to comorbidity’ algorithm 
that allowed us to identify the shortest path that might facilitate the 
development of comorbid DM2 and NPDs. Existing tools utilizing 
different methods allow for the recreation, visualization, and analysis of 
pathway-pathway networks, such as ComPath [104], ClueGO [58], 
PANEV [105], PathExNET [106] and PathwayConnector [107]. For 
instance, ComPath [104] is specifically designed for the systematic 
comparison and visualization of biological pathways across different 
databases. It allows researchers to explore the similarities and differ-
ences between pathways from various sources like KEGG, Reactome, 
and WikiPathways. Thus, ComPath mainly focuses on comparing exist-
ing pathways across databases and identifying pathway modules and 
clusters. PathwayConnector introduces complementary pathways to 
create a fully connected pathway-pathway network [107], and 
PathExNET is a tool specifically designed to create pathway-pathway 

expression networks by incorporating over- and under-expression data 
from differential gene expression analyses.

However, PathExNET [106], PathwayConnector [107] and ComPath 
[104], lack the flexibility to introduce specific pathways as disease 
reference points, which is crucial for disease-focused research. This 
limitation becomes particularly challenging when disease-specific 
pathways are not available in databases like KEGG. In contrast, our 
approach overcomes this by allowing the introduction and selection of 
specific pathways to represent diseases, even in the absence of pre-
defined pathways. For instance, in the case of NPDs, were no direct 
KEGG pathways were available, we selected four relevant pathways to 
represent NPD reference points in our network using a knowledge-based 
approach.

Most importantly, unlike PathExNET [106], PathwayConnector 
[107] and ComPath [104], our novel approach allows for the identifi-
cation of all the shortest paths on a KEGG pathway-pathway network 
between selected pathways that act as disease reference points. This 
feature enables us to pin point the minimum path that might facilitate 
the development of comorbid diseases, a functionality not available in 
these existing tools. The ’minimum path to comorbidity’ algorithm is 
designed to identify the most direct and functionally relevant connec-
tions between disease pathways that contribute to the comorbidity of 
DM2 and NPDs. While it leverages the shortest path principle, it in-
tegrates biological relevance by focusing on pathways with established 
roles in both conditions. This targeted approach ensures that the iden-
tified paths are not only the shortest but also biologically significant. 
Therefore, the ’minimum path to comorbidity’ algorithm is not merely a 
shortest path algorithm but a biologically informed method that in-
tegrates network centrality, functional relevance, and enrichment vali-
dation. This approach provides meaningful insights into the 
pathophysiological mechanisms underlying the comorbidity of DM2 and 
NPDs and identifies potential therapeutic targets.

The ‘minimum path to comorbidity’ algorithm allowed us to high-
light the Calcium signaling pathway, MAPK signaling pathway, 
Apoptosis pathway, and the Estrogen signaling pathway as pathways 
within the shortest path that leads to DM2 and NPDs comorbidity. The 
identification of these pathways suggests their critical role in the 
interplay between DM2 and NPDs. The fact that the MAPK signaling 
pathway and Apoptosis pathway are also ranked among the top 10 high 
centrality nodes within the DM2 ∩ NPDs KEGG pathway-pathway 
network further supports their central role in the emergence of comor-
bid DM2 and NPDs. These findings suggest that pharmacological in-
terventions targeting these pathways may offer a promising approach to 
simultaneously address both diseases, due to their close proximity to the 
reference points of DM2 and NPDs and their functional interactions. 
Despite the existence of other possible paths, our hypothesis is that 
targeting these pathways would have a higher drug impact effect than 
targeting more distant disease pathways or longer paths involving 
additional pathways. This hypothesis is supported by network-based 
approaches that have modeled the effects of drugs and have shown 
that proximity between drug targets and the disease pathways provides 
new insights into the therapeutic effects of pharmacotherapies [108, 
109].

Calcium signaling plays an important role in regulating insulin 
secretion from pancreatic islet β-cells [110] and its dysregulation results 
in deficient insulin secretion, increasing the risk for the development of 
DM2 [111]. In turn, insufficient pancreatic insulin release triggers cal-
cium dysregulation in neuronal cells, leading to impaired synaptic 
plasticity in the brain [112] and neuronal cell death [113,114], which 
contributes to the development of brain diseases, including NPDs and 
neurodegenerative diseases (NDs) such as Alzheimer’s disease and 
Parkinson’s disease. Disturbances in neuronal calcium signaling has 
been reported in various NPDs, including schizophrenia and BD [115]. 
Notably, it was shown that remission of acute psychosis symptoms in 
patients with schizophrenia correlates with increased calcium levels in 
the cerebrospinal fluid [116]. This underscores the critical role calcium 
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signaling plays not only in insulin secretion but also in neuronal func-
tion, and its dysregulation can lead to both metabolic and cognitive 
impairments.

Additionally, calcium signaling is linked to the MAPK (Mitogen- 
Activated Protein Kinase) signaling pathway, which further amplifies its 
impact on cellular health. Calcium can promote neuronal apoptosis via 
the activation of the MAPK signaling pathway [117,118]. The MAPK 
pathway is a critical signal transduction pathway involved in regulating 
various cellular processes, including growth, differentiation, and sur-
vival [119]. In the brain, MAPK activates transcription factors that are 
crucial for learning and memory, highlighting its role in cognitive 
function [120,121]. However, abnormal activity of the MAPK signaling 
pathway has been implicated in the development of NPDs, contributing 
to disorders such as depression, schizophrenia, and BD [120–122]. This 
dysregulation leads to altered neuronal plasticity and increased sus-
ceptibility to stress-induced neuronal damage, both of which are key 
features in the pathophysiology of these disorders. Furthermore, the 
MAPK signaling pathway is also involved in insulin signaling, and its 
improper activation is linked in diabetic complications, including insu-
lin resistance and vascular damage [123]. This dual role in both meta-
bolic and neurological processes highlights the MAPK signaling pathway 
as a critical junction point in the intersection of DM2 and NPDs.

Moreover, estrogen signaling has neuroprotective effects and regu-
lates glucose metabolism, with low estrogen levels being linked to 
increased risk of both DM2 and NPDs. Estrogen, which is a sex hormone, 
exerts neuroprotective effects in the brain, through activation of the 
MAPK signaling pathway [124–126]. Consequently, low estrogen levels 
in the brain result in reduced activation of the MAPK signaling pathway, 
diminishing the neuroprotective actions of estrogen, leading to brain 
diseases like NPDs and NDs [124]. In addition, estrogen is an important 
regulator of glucose homeostasis, and low levels of estrogen in post-
menopausal women are associated with an increased risk of developing 
DM2, insulin resistance, and decreased calcium secretion, which can be 
reversed with estradiol treatment [127,128]. Premenopausal women 
have reduced DM2 risk and exhibit enhanced sensitivity to insulin 
compared to age matched controls [129], which might explain why DM2 
is more common in the elderly female population. Estradiol treatment in 
menopausal women increases insulin and calcium secretion [128]. 
Experimental evidence suggests that estrogen potentiates calcium 
signaling in pancreatic insulin-releasing β-cells and abolishes calcium 
oscillations generated by low glucose levels in glucagon releasing α-cells 
[130]. In contrast to women, increased estradiol levels in men are 
associated with increased risk of developing DM2 [131]. The identifi-
cation of these pathways as central to the comorbidity of DM2 and NPDs 
suggests that they could represent potential pharmacological targets for 
treatment. Additionally, estradiol’s impact on serotonin, glutamate, and 
dopamine systems [132] underscores the potential of targeting hor-
monal pathways to manage both DM2 and NPDs. Given the role of the 
estrogen signaling pathway in both DM2 and NPDs, future research 
should investigate how hormonal fluctuations influence these comor-
bidities to guide the development of sex-specific personalized treat-
ments. Tissue-specific transcriptomic analysis could offer valuable 
insights into sex-specific molecular patterns, aiding in more precise 
therapeutic targeting [133].

Furthermore, the PI3K-Akt pathway is integral to insulin signaling 
and glucose uptake in peripheral tissues [134]. Dysregulation of this 
pathway leads to insulin resistance, a hallmark of DM2 [135]. This in-
sulin resistance, in turn, further impairs the PI3K/AKT pathway, 
creating a vicious cycle [135]. Moreover, the PI3K-Akt pathway also 
plays a critical role in neuronal survival, growth, and plasticity with 
impairments in this pathway have been associated with NPDs, including 
MDD [136]. This suggests that interventions targeting the PI3K-Akt 
pathway could address both metabolic and cognitive symptoms.

The findings from our network-based computational framework 
have significant translational potential in clinical settings. By identifying 
key pathways such as the PI3K-Akt signaling, MAPK signaling, and 

Calcium signaling pathways as central to the comorbidity between DM2 
and NPDs, our study provides a robust foundation for the development 
of targeted therapies. These pathways are not only critical to the path-
ophysiology of DM2 and NPDs but also serve as viable therapeutic tar-
gets. Modulating these pathways through pharmacological 
interventions could potentially address both DM2 and NPDs simulta-
neously, thereby improving treatment outcomes. Additionally, our 
approach offers a comprehensive understanding of the molecular in-
teractions driving comorbidity, which could guide the design of 
personalized treatment strategies in the future. This has the potential to 
significantly impact clinical practice by enabling more effective, tar-
geted treatments for patients suffering from these complex and often 
challenging comorbid conditions.

Our methodology is grounded in sound biological knowledge, 
drawing on a wealth of existing research on DM2 and NPDs. It has also 
been validated utilizing publicly available transcriptomic experimental 
data. Overall, our study represents a significant advance in the field of 
comorbid disease research, with the potential to impact clinical practice 
by facilitating the development of more effective treatments for these 
complex conditions. Additionally, our methodology can serve as a 
paradigm for identifying key pathological mechanisms underlying other 
comorbid diseases, making it a valuable resource for researchers and 
clinicians alike.
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[15] Alcántara-Garcés MT, Rodríguez-Ramírez AM, García-Ulloa AC, Hernández- 
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Apitius M. ComPath: an ecosystem for exploring, analyzing, and curating 
mappings across pathway databases. npj Syst Biol Appl 2019;5.

[105] Palombo V, et al. PANEV: an R package for a pathway-based network 
visualization. BMC Bioinforma 2020;21.
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